

A Framework for the Development of Distributed
Interactive Applications

Luca Frosini
HIIS Laboratory – ISTI-CNR

Via G. Moruzzi, 1
56124 Pisa (Italy)

luca.frosini@isti.cnr.it
+39 050 621 2602

Marco Manca
HIIS Laboratory – ISTI-CNR

Via G. Moruzzi, 1
56124 Pisa (Italy)

marco.manca@isti.cnr.it
+39 050 621 3117

Fabio Paternò
HIIS Laboratory – ISTI-CNR

Via G. Moruzzi, 1
56124 Pisa (Italy)

fabio.paterno@isti.cnr.it
+39 050 621 3066

ABSTRACT
In this paper we present a framework and the associated
software architecture to manage user interfaces that can be
distributed and/or migrated in multi-device and multi-user
environments. It supports distribution across dynamic sets
of devices, and does not require the use of a fixed server.
We also report on its current implementation, and an
example application.

Author Keywords
Multi-device User Interfaces, Multi-user User Interfaces,
Distributed and Migratory User Interfaces.

ACM Classification Keywords
H.5 Information Interfaces and Presentation; H.5.2 User
Interfaces, H.5.3 Group and Organization Interfaces.

INTRODUCTION
In the last decade mobile devices have increased in number,
and people spend more and more time using them. This has
made it possible to create many environments where people
spend long time interacting with various devices in
sequential or in parallel [4].

In order to better exploit such technological offer often
people would like to dynamically move components of
their interactive applications across different devices with
various interaction resources. Thus, there is a need for
novel frameworks that facilitate the development of
interactive applications that can be dynamically distributed
across various devices.

This is an area in which some research contributions have
already been proposed. Some contributions have been
dedicated to investigating design spaces indicating various
important relevant dimensions for this type of applications
[3][6]. Such dimensions can be addressed in different ways.
For example, some authors [1] proposed a solution for
migrating existing Web applications, while herein we put

forward a new solution for supporting distribution and
migration in the development of new applications. A toolkit
for peer-to-peer distribution of user interfaces was
presented in [5], but it requires the use of specific libraries,
while our framework can be exploited in different
implementation environments. DeepShot [2] is a
framework for migrating tasks across devices using mobile
phone cameras, but it does not support user interface
distribution across multiple devices at the same time.

In particular, our work aims to provide designers and
developers with a framework that allows them to obtain
applications in which the interactive components can be
dynamically distributed across various devices. It allows
developers to obtain applications that can have multiple
instances at the same time for different groups of devices
and users.

In the paper we first introduce our approach, then we
describe the distribution manager and the commands that it
is able to handle. We report on the underlying architecture,
and the protocol used for the communication among the
components. The last part is dedicated to describing the
current implementation, an example application,
conclusions and future work.

OUR APPROACH
We propose an environment called Distribution Manager
composed of a client-side library for the development of
Distributed User Interfaces (DUI), and run-time support for
the management of the dynamic distribution. One
advantage of our approach is that it does not require the use
of a fixed server, as in [1], but it allows dynamic sets of
devices to organize themselves in order to support the
distribution. In addition, the versions of the distributed
interactive applications for the various devices should not
be pre-developed at design time, but can be created
dynamically at run-time according to the indications
defined by the developers.

The ultimate goal of the work is to provide developers with
a framework to easily develop applications supporting
distribution without having to implement the necessary
protocol of communication and the run-time support to
manage the distribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’13, June 24–27, 2013, London, United Kingdom.
Copyright © ACM 978-1-4503-2138-9/13/06...$15.00.

249

Figure 1. Example of Components Distribution.

With our framework the application can be distributed
through dynamic sets of devices. The first device accessing
the distribution service provides the initial distribution
configuration. If later on new devices access the
distribution service for the same application instance then
they inherit such distribution, and can modify it if they
have the appropriate access rights.

In general, it is possible to create different distribution
groups composed of different devices for the same
application.

THE DISTRIBUTION MANAGER
The framework is logically divided into two main
components: one running on the devices where the
application interactive parts are presented (we will refer to
this as client side) and the other in a device which behaves
as distribution manager (engine side). Using our framework
the engine part does not necessarily reside on a fixed
server, but when the application starts the user can
configure the application to access a distribution engine
running on their own mobile device or in another device.
For example, in a situation where external network
availability is not guaranteed, the devices can create a LAN
and set one of the devices as master, which will act as the
distribution engine.

The client side part is a library which provides application
developers with facilities to:

 subscribe a device to the UI distribution service;

 request a UI distribution change to the engine side;

 receive notification from the engine of UI distribution
changes for the device.

The engine side part provides capabilities to:

 subscribe devices to distribution changes;

 filter (depending on configurations and credentials
provided by the client) and process requests for UI
distribution changes;

 notify UI distribution changes to involved devices.

The requests for distribution changes can be specified by
one command called ASSIGN. It has been designed in such
a way to be easy to understand, compact, and with the

possibility of obtaining flexible results. The command takes
three parameters as follows:

ASSIGN(what, inputEnabled, target);

Where:

 what : identifies an interface part, typically the ID of the
element or the container of elements that has to be
distributed.

 inputEnabled : is a Boolean value. If this parameter is
set to False, any UI events assigned to the element
identified by what are not enabled.

 target : specifies to which device(s) the interface part
identified by what should be distributed.

The target devices can be identified by lists of:

 Device Types (e.g. Mobile, Desktop), so that all the
devices of the type indicated that have been subscribed to
the service will receive the updates;

 Device IDs (e.g. Device 1, Device 54);

 Device Roles (e.g. Guide, Tourist, Widescreen), in this
case groups of devices can be identified for the role that
they play within the application.

Figure 1 shows an example in which a UI composed of one
container and 3 internal elements: a Label, a TextInput, a
Button. Three devices are subscribed to the distribution
service (A, B, C). Suppose that we want to show the
container on all devices and the other elements in the
following way:

 Device A shows all the elements contained in container
and all element are enabled to receive input events;

 Device B shows only Label and TextInput (but does not
show the Button). TextInput receives the feedback of the
entered input from other devices but the user cannot
insert any value through it.

 Device C shows all the elements, the Button is visible,
but is deactivated.

Such assignments are then transmitted to the relevant
devices through distribution update commands defined in
our protocol, each of them can contain multiple assign
commands. The distribution commands requested for this
configuration are the following:

250

 ASSIGN("Container", True, [A, B, C])

 ASSIGN("Label", True, [A,B,C])

 ASSIGN("TextInput", True, [A,C])
ASSIGN("TextInput", False, B)

 ASSIGN("Button", True, A)
ASSIGN("Button", False, C)

In general, a distribution command on an application
element clears the previously defined assignments. Thus,
for example if we want to move one object from one device
to another then it is sufficient to assign it to the second
device. This implicitly removes the element from the initial
device. If the element needs to be redundant over multiple
devices then it is sufficient to indicate such devices in the
target field.

ARCHITECTURE
Figure 2 shows the proposed architecture divided into its
two main components: engine side and client side.
Furthermore, there is a component that represents the
application that uses the client side library; the application
logic is responsible for associating UI events with
distribution change commands.

Figure 2. Overview of the Distribution Manager
architecture.

Engine Side
The engine side part of the architecture is logically
composed of three main components: Command Receiver,
Command Engine, Devices Manager.

The Command Receiver is the one responsible for:

 receiving new device subscriptions to the UI distribution
service;

 receiving requests of distribution changes commands;

 filtering and controlling if the received request can be
made by the device sent it.

The Command Engine is the component responsible of
taking in charge the requests of UI distribution changes
(from Command Receiver), and process them to calculate
the new distribution status.

The processing consists in: expanding the list(s) identified
by the target (when the ASSIGN command target is a list

of Device Types and/or Device Roles) to obtain the actual
devices involved; checking if the ASSIGNMENT
command (for what) is compatible with the
ASSIGNMENT of the ancestor elements in the interactive
application structure.

Once the new state of the distribution has been processed, it
is passed to the Devices Manager, which is the component
responsible for communicating to each subscribed device
the new distribution status.

There is also a Distribution Configuration Repository
(DC Rep), which is used by the Command Engine to
retrieve application specific information. For example, it
can provide the description of the actual distribution state,
allowed roles for the application, and the needed credential
to get such a role. The DC Rep is also the component
responsible to maintain the status of distribution at any time
(we will refer to this as Actual Status).

Client Side
The client side part is logically composed of two
components: the Command Notifier and the UI Manager.

The Command Notifier is the component responsible to
send:

 device subscription commands;

 distribution update commands;

The UI Manager is the component responsible for:

 receiving UI update commands;

 receiving the Actual Status of UI distribution when a
device is subscribed. The Actual Status is the distribution
description in a certain moment;

 perform actions to make UI update commands effective
(i.e. show or hide the UI element, enable or disable event
associated to elements, enable or disable input elements).

COMMUNICATION PROTOCOL
The content of the distribution communication protocol is
encoded in XML. Each request from client to the engine
contains an Application ID defined at development time.
The engine uses this ID to retrieve the configuration for the
specific application on DC Rep.

Some application can be session based. This means that for
the same application more than one session can be created,
which may be even active at the same time. For this reason
each request created by the client contains a Session ID as
well. In this way it is possible to identify the group of
devices running the same application instance.

A session is newly created by the first device that
subscribes with a certain Session ID. To create a new
session a device should have the right to do it. If the new
session is accepted the engine requests the initial
distribution status to the client.

251

Sequence Diagram
Figure 3 shows a sequence diagram that represents the
communication flow between clients and engine.

The diagram describes a case where Device D creates a
new session, and the engine requests it to send the initial
distribution state. Then, device A registers successfully to
distribution and another one (C) is refused, because it did
not provide acceptable credential.

After the subscription Device A receives from the engine
the Actual Status of distribution and it shows the UI
accordingly. Then, device A requests a distribution change.
In the example the request has effect on all devices
subscribed in that moment (A, D).

After this event, device B requires to be subscribed, and
once the request is accepted, it asks for a new distribution
change. In this case we can notice that this request has
effect only on devices A and B.

We can notice that after a new request of subscription to
the distribution service the Actual Status of distribution is
sent to the subscribed device. This allows a device to
subscribe itself at any time and not only at the beginning of
the session.

Figure 3. Sequence Diagram describing an example of

interactions among multiple devices.

MESSAGE TYPE

Device Subscription
The following XML snippet shows an example Device
Subscription Request.

<DeviceSubscription
applicationID="4071d6cb-f11e-4f37-9f1d "
sessionID="fec8e5bd-12f1-4c8b-9bee">
<Device id="JDQ39015d2a5018500202"

name="Nexus 7" type="MOBILE">
<Connectors>

<Connector type=”HTTP”
uri=”http://146.48.107.155:5454/” />

</Connectors>
</Device>

</DeviceSubscription>

When a device requests a subscription it communicates its
own ID, a name and the device type it belongs to.
Furthermore it also sends the connector type that will be
used by the engine to contact the client for notification of
distribution changes. The choice of the connector is made
by the developer and depends on the device capabilities and
the current configuration.

One example is when the application recognizes that it is
running on the same device of the engine, in this case an
API connector is preferred because the direct API call
consumes less resources (e.g. battery, memory and CPU,
bandwidth) than the HTTP connector.

In the XML example the device requesting the subscription
is a Mobile device that can be contacted by the engine
using HTTP at the URL provided.

On device subscription, the engine elaborates the new
Actual Status of distribution for the device. The Actual
Status is communicated as a list of UIUpdateCommands
described below.

Distribution Update Command
When a user accesses an application developed using our
framework some user-generated events can trigger requests
for distribution changes in one or more devices subscribed.

Such requests are communicated to the engine using the
Command Notifier through distribution update commands
that can include various assignments. An example of the
information sent for such requests is presented in the
following XML snippet

<DistributionUpdateCommand
applicationID="4071d6cb-f11e-4f37-9f1d "
sessionID="fec8e5bd-12f1-4c8b-9bee">
<Assign>

<What>
<id>Image54</id>

</What>
<InputEnabled>True</InputEnabled>
<Targets>
 <Target>

<ID>
 JDQ39015d2a5018500202
</ID>

252

</Target>
</Targets>

</Assign>
<Assign>

<What>
<id>Image54</id>

</What>
<InputEnabled>False</InputEnabled>
<Targets>
 <Target>

<ID>
 5018500202KH5J99
</ID>

</Target>
</Targets>

</Assign>
</DistributionUpdateCommand>

The example XML shows a case where the element with ID
(Image54) is distributed in different ways on two devices:
in the first one the element is enabled to receive the events
associated by the developer (i.e. tap or long press), in the
second one the events are not enabled.

UI Update Command
When the engine receives a new distribution request, if
accepted this has potential side effects on one or more
devices, which are notified through update commands.

The following XML snippet shows an example of UI
Update Command

<UIUpdateCommand>
<elementID> Image54</objectID>
<visible>True</visible>
<inputEnabled>False</inputEnabled >

</UIUpdateCommand>

The snippet is received by the device identified with
5018500202KH5J99 in the previous example. The UI
Update Command informs the device to show (visible is
True) the element identified by the Image54 ID and to
disable the events associated to it.

IMPLEMENTATION
We have developed a prototype as proof-of-concept
supporting the proposed approach.

Our prototype is implemented in Java and has been
developed to run on Android and Desktop platforms. On
both implementations the engine responds to requests
thought a Servlet.

We have tested the library with different Android devices,
which have different computational capabilities, screen
resolution and size ranging from small mobile phones to
large tablets, and desktop systems with screens with
various sizes.

Another capability in our implementations is the API
connection. The API connection is used when the engine
and the client are running on the same device because it
avoids access to the network and thus saves resource
consumption.

In addition to the advantage that the framework does not
require a fixed server, another important contribution is that
the development of a client supporting the distribution
requires limited effort.

Fig. 4 shows an example of code that can be used to
register the device to distribution.

Figure 4. Example of code to subscribe a device to
distribution.

For each event that generates a distribution change just a
few lines of code are needed to notify it to the engine as
shown in Fig. 5

Figure 5. Example of code to notify a distribution update
to the engine.

EXAMPLE APPLICATION
We have applied our framework prototype for a mobile
guide. The resulting application runs on mobile devices and
can be used to enrich the visit experience of tourists inside
a museum.

The scenario considered aims to exploit opportunistically
large screens that can be encountered during the user visit
and are identified through QR codes.

The application selects the large screen acquiring the QR
code and allows users to select images, video or textual
information to show on the large screen to enrich the visit
experience by sharing them with other visitors. Figure 6

253

shows the user interfaces in the two devices before (top)
and after (bottom) the distribution.

Figure 6. Example of distribution involving a mobile
device (smartphone) and a large screen.

In the mobile application the tap event is associated to a
DistributionUpdateCommand. In this case, the command
contains two ASSIGN commands: one to the sending
device with InputEnabled to True and the other to the large
screen (identified by its ID which is known thanks to the
QR code) with InputEnabled to False. This situation
corresponds to that described as an example in the
Distribution Update Command paragraph.

A long press event on a resource instead results in an
assignment only to the mobile device, removing it from
large screen if present.

It is important to highlight that this application is not just a
solution to share multimedia content but it also changes
dynamically the interaction capabilities of the various parts
of the application distributed across multiple devices.

CONCLUSION & FUTURE WORK
We have presented a framework for dynamic distribution of
interactive components, composed of a library and a run-
time support. We have also reported on the current
implementation and its use for a specific application.

The main contribution of our framework is that it eases the
development of applications that support UI distribution,
and does not require a fixed server to support runtime
distribution.

Future work will be dedicated to investigating further
improvements to our solution able to make it even more
flexible, optimize the battery consumption on mobile
devices, and address security issues by introducing
customizable security policies in the architecture presented.

We also plan to carry out a study with application
developers in order to gather further empirical feedback
regarding the easiness of distributed UI development and
suggestions for improvements.

ACKNOWLEDGMENTS
This work is part of a project co-funded by Regione
Toscana, ISTI-CNR, IIT-CNR and Softec s.p.a which aims
to create a framework to develop applications able to
support distributed user interfaces in mobile environments.
More info at http://giove.isti.cnr.it/IUDSM/index_en.html.

We also thank Zeno Amerini (Softec s.p.a.) for useful
discussions.

REFERENCES
1. Bellucci, F., Ghiani, G., Paternò, F., Santoro, C.

Engineering JavaScript state persistence of web
applications migrating across multiple devices, In
Proc. ACM SIGCHI 2011, ACM Press (2011), 105-
110.

2. Chang, T.H., and Li, Y. Deep Shot: A Framework for
Migrating Tasks Across Devices Using Mobile Phone
Cameras. In Proc. CHI 2011, ACM Press (2011),
2163-2172.

3. Demeure, A., Sottet, J.-S., Calvary, G., Coutaz, J.,
Ganneau, V., and Vanderdonckt, J. The 4C Reference
Model for Distributed User Interfaces, in Proceedings
of ICAS '08, IEEE, 2008, 61-69.

4. Google. The new multi-screen world: Understanding
cross-platform consumer behavior. Technical report,
August 2012.
http://www.google.com/think/research-studies/the-
new-multi-screen-world-study.html

5. Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy,
P. A toolkit for peer-to-peer distributed user interfaces:
concepts, implementation, and applications, In Proc.
ACM SIGCHI 2009, ACM Press (2009), 69-78.

6. Paternò, F., Santoro, C. A logical framework for multi-
device user interfaces. In Proc. ACM EICS 2012,
ACM Press (2012), 45-50.

254

