

Multi-Dimensional Context-Aware
Adaptation of Service Front-Ends

Project no. FP7 – ICT – 258030

Deliverable D.4.4.2
Context of Use Runtime

Infrastructure (R2)

 Due date of deliverable: 30/09/2013

Actual submission to EC date: 30/09/2013

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

Dissemination level

[PU] [Public] Yes

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA (This license is only applied when the deliverable is public).

http://creativecommons.org/licenses/by-nc-sa/3.0/

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 2

Document Information

Lead Contractor ISTI

Editor ISTI

Revision 1.0 (26/09/2013)

Reviewer 1 CTIC

Reviewer 2

Approved by

Project Officer Michel Lacroix

Contributors

Partner Contributors

ISTI Giuseppe Ghiani

CTIC Javier Rodríguez, Cristina González

Changes

Version Date Author Comments

0.1 04/09/2013 ISTI First draft.

0.2 04/09/2013 CTIC DDR integration

0.3 20/09/2013 ISTI Consolidated version

0.4 23/09/2013 CTIC Reviewed version

1.0 26/09/2013 ISTI Final version

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 3

Executive Summary
This document describes the final version of the Context of Use management, also referred to as Context
Manager, in the Serenoa framework.

As discussed in the previous version (D4.4.1), the Context of Use management support consists of several
modules for gathering context information, saving and exposing it to other modules/components of the
framework (e.g., Adaptation Engine).

The current document focuses on the updates that have been introduced, such as novel functionalities and
data modeling strategies, after finalization of the previous version (D4.4.1).

At finalization time of this document, some modules have been integrated with the Context Manager. Such
modules include context delegates deployable on user devices, providing context information to the Context
Manager, as well as major components of the Serenoa framework. An example of such components is the
Adaptation Engine that subscribes to particular events in order to get asynchronous notifications about
relevant context changes.

At finalization time of this document, an implementation of the context of use management support is
available and has already been exploited by project partners (e.g. remotely accessed and/or integrated in
prototypes).

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 4

Table of Contents
1 Introduction ... 5

1.1 Objectives .. 5

1.2 Audience .. 5

1.3 Related documents ... 5

1.4 Organization of this document... 5

2 State of the Art ... 6

2.1 Context Management in Literature .. 6

2.2 Our Approach with Respect to Previous Proposals ... 6

3 Architecture of the Context Management Support .. 7

3.1 Core Functionalities ... 8

3.1.1 RESTful Web services ... 8

3.1.2 Event subscription ... 8

3.2 Context delegates ... 9

3.2.1 Environment noise and light .. 9

3.2.2 Bluetooth beacons availability ... 9

3.2.3 Physiological parameters ... 10

3.2.4 Device battery .. 10

3.3 Limitations and possible improvements .. 10

3.4 Device Description Repository .. 10

4 Conclusions ... 16

4.1 Summary .. 16

4.2 Future Work ... 16

5 References ... 17

Acknowledgements ... 18

Glossary ... 19

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 5

1 Introduction
1.1 Objectives
This document is the second version of design and implementation of the support for acquiring, updating and
distributing Context of Use information across the Serenoa framework architecture. The current version is
intended to integrate the previous one, by extending the architecture description with the specifications of the
novel functionalities. A discussion on the motivations for adding the described functionalities (that led to the
specific implementation choices) is also provided.

1.2 Audience
The audience of this document consists of those subjects, even beyond the current Serenoa project partners,
which are interested in applying the Context of Use management architecture, or part of it, introduced in
Serenoa.

1.3 Related documents
• Deliverable D4.4.1 Context of User Runtime Infrastructure (R1) is the first version of the document.
• D4.3.2 Adaptation Engine (R2) tackles runtime adaptations triggered and driven by context related

information.
• D5.2.3 Application Prototypes (R2) describes how the prototypes implemented over the Serenoa

framework (i.e. E-Health, E-Commerce, Warehouse Management) are integrated with the Context
Manager.

1.4 Organization of this document
The first section describes objectives and audience. The subsequent part of the document is organised as
follows:

• Section 2 provides a brief overview of the state of the art about context management, and mentions
how our conceptual/implementation choices build on top of previous proposals.

• Section 3 describes architectural/functional updates with respect to the previous version of the
deliverable (e.g. novel event subscription mechanisms, RESTful interface, context delegates). The
current DDR implementation is also discussed.

• Section 4 reports on considerations about the current implementation and gives hints for future
development.

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 6

2 State of the Art
2.1 Context Management in Literature
Context awareness in computing systems has been widely discussed in the past, and various definitions of
context information can be found in literature. Some works, e.g. [2] refer to it as:

“a limited amount of information covering a person's proximate environment”.

This includes user location and available technological resources, environmental aspects (noise/light levels)
and social implications. Dey and Abowd [1] instead define context information as:

“…any information that can be used to characterize the situation of (…) a person, place, or object that is
considered relevant to the interaction between a user and an application, including the user and applications
themselves.”

2.2 Our Approach with Respect to Previous Proposals
Although the two above cited definitions differ in the amount of information involved (i.e. limited amount of
vs. any information), we believe that there is not incompatibility between them as they can coexist in a single
solution. We designed our context manager to combine these two visions: a lower layer managing
information as a set of interconnected entities and an external interface allowing to access such information
with different abstraction levels.

The undeniable benefit of the low level way of storing information is flexibility. Entities are basic data
containers, able to store an arbitrary number of attributes and/or references to other entities. Entities can be
created, modified, deleted in real time by processes internal to the context server or residing outside.

One way for creating/updating/deleting context information is to directly manipulate low level entities. The
other way is to cope with more abstract resources. The former mechanism, in our proposal, is accessible by
sending commands via HTTP POST, the latter is implemented as a set of RESTful services.

Both strategies have pros and cons. Sending commands via HTTP is a powerful way to access any stored
entity, since a single HTTP POST can embed an arbitrary number of commands (e.g. for modifying as many
entities as needed at a time). However, knowledge of the command language as well as entities identifiers are
needed to express the needed operation(s). RESTful services are less performing, but provide higher level
integration mechanisms, e.g. a formal interface definition.

A whole description of such features is provided in the following sections, where benefits and limitations are
also discussed.

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 7

3 Architecture of the Context Management Support

Figure 1. Context Management Core

With respect to the preliminary version, the context management support has been extended with an
additional interfacing mechanism to the Context Management Core (CMC). As introduced in the previous
version of this document, the CMC allows external modules to gather/store/retrieve information.

The CMC keeps data as a set of (interconnected) entities, i.e. simple data structures defined by an identifier,
an array of attributes and/or references to other entities, etc. (please, refer to D4.4.1 for a full entity
description). In order to access such data, external modules can rely on two mechanisms with two different
abstraction levels, as illustrated in Figure 1.

The most elementary mechanism is implemented by a simple HTTP interface that accepts requests via the
POST method. A request contains one or more commands in comet language (“comet” stands for COntext
ManagemEnT, as described in D4.4.1), that encode an elementary operation to be performed on the Data
Store: insertion, update, query, deletion of an entity.

In general, as already mentioned, entities can be manipulated in real time by processes that may reside inside
or outside the Context Management Core. Internal processes are, for instance, the consistency daemon for
recovering dangling entity references, and the expiration checker for deleting entities that go on update-
timeout or that exceed the absolute time-to-live. Such internally deployed processes would include also the
mechanism for allowing the Context Management Core to interface with an instance of Device Description
Repository (DDR, see section 3.4). DDR indeed can contain data which could be accessed at runtime by the
Context Management Core. These data can include, for instance, a set of capabilities supported by the device

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 8

and/or browser in use. Indexing could occur through the user-agent of the web browser: a possible strategy is
to detect the user-agent at login time (i.e., when the user accesses the platform) and provide it to the Context
Manager (e.g., by calling a dedicated RESTful web service for updating the user session entity). The Context
Manager would then query the DDR in order to acquire more information about the device in use.

A novel mechanism has been defined aiming to expose data in a higher abstraction level. The goal is to hide
to higher layers the entities complexity, i.e. internal structure of the entities as well as the connections among
them. The mechanism relies on a RESTful interface and more details are given in the following sections.

3.1 Core Functionalities

3.1.1 RESTful Web services

RESTful Web services are formally defined both in terms of methods and of input/output data by the Web
Application Description Language (WADL). Each service allows manipulating a single resource without
requiring knowledge of the entity/entities involved. For instance, the service to retrieve the preferences
resource of a user, accessible through a URL like “http://cm-server/rest/user/{username}/preferences”,
provides the description of all user preferences by hiding the complexity of gathering the entities of type
“preference” referred by the user entity. The issue is here related to inefficiency when several generic entities
need to be updated at a time. This is because the RESTful interface is pre-defined according to the platform
requirements (i.e. the aspects that are likely to be monitored at runtime) in order to model specific resources
such as user, preferences, environment, technology, etc. We refer to any module devoted to detect context
information as context delegate. A context delegate, upon sensing several context parameters, usually
updates the corresponding attributes in the context server. Attributes such as user location coordinates, device
battery level, environment noise may refer to diverse entities/resources. If an ad-hoc service is not defined,
then the delegate has to invoke the single RESTful services of the three involved resources, thus performing
three HTTP requests. It is worth noting that the same updates could technically be done by packing three
entity-update commands on a single HTTP POST. To this regard, bandwidth and energy usage optimization
should be taken into account as context delegates are typically deployed on mobile devices.

Some of the RESTful services we have so far defined are listed in the following:

• UserEnvironment, for getting/setting the current user environment entity that includes attributes such as
noise/light/temperature.

• UserDeviceBattery, for getting/setting the current user device battery entity, defining left percentage and
charging status.

• UserLocationBluetoothBeacon, for getting/setting the state (e.g. signal strength) of a Bluetooth beacon
detected by the device.

• UserPhysiologicalActivity, for getting/setting the current user respiration and heart rate.

GET method data is encoded in XML. For efficiency purposes, updates (POST) are encoded in JSON rather
than in XML. This is done to reduce bandwidth usage, because updates are typically done by context
delegates deployed on mobile devices.

We have implemented a number of context delegates for Android devices, that exploit such RESTful
interfaces. Their description is given later (section 3.2).

3.1.2 Event subscription

The preliminary subscription mechanism presented in D4.4.1 allowed an external module to subscribe to an
entity change. Notification was sent through a TCP message. The main issue of this approach was the

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 9

inability for the subscriber to specify conditions on a specific attribute, neither belonging to the same entity
nor to different entities.

An enhanced subscription mechanism has been defined for a subscriber to be notified only when one or more
conditions are met on entity attributes.

Conditions refer to one or more attributes belonging, in general, to any entities. Attributes path is consistent
with the context model (e.g., noise level attribute is defines on environment sub-entity of user entity).
Notifications are sent via HTTP POST.

Subscription is carried out by forwarding an “event” and a “condition” as parameters of a special comet
operation labeled “subscribe_event” (which has been added to the set of operations described in D4.4.1, sect.
5.2.1).

An example of subscription to an event is reported in the following XML code fragment. It is worth noting
that event and condition elements syntax is analogous to adaptation rules, structured as event-conditions-
actions, as discussed in Serenoa deliverables D3.3.1 and D3.3.2:

<comet>
 <op>subscribe_event</op>
 <subscriber_address>http://urano.isti.cnr.it/ae/simulatedServer?user_id=david</subscriber_address>
 <rule priority="0" name="outPromptVocal" id="rule1">
 <event>
 <simple_event event_name="onEnvironmentNoiseLevelDecreased" xPath="/user /environment/@noise_level "
externalModelId="ctx"/>
 </event>
 <condition operator="and">
 <condition operator="gt">
 <entityReference xPath="/user/environment/@noise_level" externalModelId="ctx"/>
 <constant value="20" type="int"/>
 </condition>
 <condition operator="lt">
 <entityReference xPath="/user/environment/@noise_level" externalModelId="ctx"/>
 <constant value="50" type="int"/>
 </condition>
 </condition>
 </rule>
</comet>

3.2 Context delegates

3.2.1 Environment noise and light
Two different delegates are devoted to user environment updating: one for the light and one for the noise
level. The former parameter is provided by the device light sensor; the latter is obtained by analysing the
audio input amplitude provided by the embedded microphone.

The noise delegate hosts an Android remote service, i.e. implements an external interface, through which
external applications can pause/resume noise detection. This is because most devices embed a single
microphone that, in the considered scenarios, can be devoted to sense noise environment as well as to get
user vocal input, and this can lead to concurrence problems. The external interface we have defined allows,
for instance, a vocal application to pause the noise delegate when waiting for user vocal input, thus avoiding
conflicts. As soon as input has been acquired, the application resumes the noise delegate.

3.2.2 Bluetooth beacons availability

Bluetooth beacons (e.g. Bluetooth embedded devices, dongles, etc.) available in the environment are

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 10

detected by a context delegate that provides the context manager with their identifier (name, MAC address)
and Received Signal Strength Indicator (RSSI).

3.2.3 Physiological parameters

A context delegate has been developed for interfacing with a physiological monitoring hardware with
Bluetooth interface. The physiological monitor is a belt, manufactured by Smartex1, which can be
comfortably worn and senses several parameters (e.g. heart rate, ECG-variability, respiration rate, user
motion activity). The physiological context delegate connects to the hardware via Bluetooth, decodes the
sensed data and periodically sends the updates to the context server through the UserPhysiologicalActivity
service.

3.2.4 Device battery
Battery status (percentage left, charging flag) is detected by a context delegate that queries the operating
system and updates the device battery sub-entity of user entity. Updates are posted to the UserDeviceBattery
service.

3.3 Limitations and possible improvements
Limitations were found during prototyping and experimenting the Context Manager, but also possible
solutions for improvements. One problem is due to inefficiency when several context delegates run at the
same time in one device. Each context delegate usually updates one resource, which is accessed by invoking
a RESTful service. Each invocation leads the device to make an HTTP request. The amount of HTTP
requests thus grows with the number of context delegates. A centralized sensing solution would solve the
issue. This could be structured in two ways:

(1) As a set of sensing delegates that connect to a single local daemon instead that to the context server.
The daemon packs the samples before sending them to the context server. The local daemon would
declare and implement a remote service interface generic enough to be accessed by any context
delegate installed on the device. In Android devices, this can be done in AIDL2.

(2) As a single multi-threaded super-delegate that senses all the parameters and packs the samples
before sending them to the context server.

In both cases, a novel functionality is also needed at server-side. At device-side, it is only known the
username and the resource to be updated (e.g. user environment), which are used to set up the RESTful URL.
The novel functionality should thus accept a set of couples <RESTful URL, current resource representation>.

These technical observations and the suggested improvements are expected to assure shorter response times
of the overall system and, thus, a better usability.

3.4 Device Description Repository
As described in [3], device description databases have been named as Device Description Repositories
(DDRs) by the World Wide Web Consortium (W3C) through their already extinct Device Independence
Working Group. DDRs include device descriptions which contain information known a priori. In this way, a
client device can perform a request to a server system and the server can subsequently obtain evidences
about the identity of the device. These evidences can be used to query a DDR in order to find out the actual
identity of the device and its software and hardware features, thus guarantying an appropriate adaptation
according to the device capabilities.

As stated in D4.4.1 (chapter 5.4.1.1), in order to allow interoperability between Serenoa and existing DDR
implementations, the Consortium had agreed that any DDR technology to be used by the Serenoa framework
would have to expose its functionality by means of the W3C DDR Simple API. However, considering the
fine granularity required to perform context-aware adaptations, the licensing terms of most of the existing
DDRs and the high costs to manually maintain a DDR, the Serenoa Consortium decided to explore

1 http://www.smartex.it
2 http://developer.android.com/guide/components/aidl.html

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 11

alternatives to add new device descriptions in an automated way by using automated tests, thus minimizing
the need for manual additions. Due to the great difficulties associated to the construction of a universal DDR
that covers all the existing device capabilities, imposed by diversity of platforms on the market, we have
focused on Web technologies at a first stage.

The prototype developed aims at figuring out if the incoming web browsers support the capabilities depicted
in Table 1. Such capabilities cover CSS properties, MediaQueries capabilities, HTML5 features, GPS access,
etc.

Web capabilities
animationTiming cssBackGround cssReflections geoLocation notifications webAudioApi
animationTimingInPr
actice

cssBackground-
Standard

cssText getComputedStyle offLine webrtc

applicationCache cssBorder-image cssText-Standard getElementsByClassName postMessage webSockets
audioElement cssColors cssTransform hashChange postMessageOnPra

ctice
webStorage

audioMulti cssDocType cssTransitions hashChangeInPractice progressEvent webWorkerBlob
Blob cssElement cssUi history prompts webWorkerDataMess
blobConstructing cssEOT cssValues htmlMediaCapture selector webWorkerGlobal
Canvas cssFlexBox dataset html5 server-

SentDomeventes
webWorkerLocation

canvas2D cssFlexbox-
Standard

datasetAndData html5FormsInputs sharedWebWorkers webWorkerNavigation

canvas3D cssFontFace detailsSummary iframe svg webWorkers
canvas3DStandard cssGeneratedCon

tent
deviceOrientation iframeSandboxAllowScripts svgAnimation xhr2

classList cssGradients ecmaScript iframeSandboxAllowScriptsAl
lowForms

svgInline xhr2ArrayBuffer

createObjectUrl cssImages fileApi iframeSandboxSanity touchEvents xhr2ArrayBufferRespon
seType

cssTextStroke cssMediaQueries fileReader indexDb typedArrays xhr2Blob
css2-1Selectors cssMediaQueries

Api
fileSystemFileWrit
erAPI

input-PlaceHolder url xhr2BlobResponseType

css3d cssMinMax flexibleBox jSon vibration xhr2DocumentResponseT
ype

css3ImagesStandard cssOpacity fontFace masking video xhr2Upload
css3UiStandard cssOverflow formData multiTouch videoTracks xhr2Url
cssAnimation cssOverflow-

Standard
fullScreen navigationTiming visibilityState xmlHttpRequest

Table 1 - Web capabilities considered

In order to carry out the detection of these properties, we have implemented a JavaScript test suite to be
executed in Web browsers. This approach facilitates test executions in comparison with native probes, since
users can run the test suite without installing any additional software apart from the Web browser itself.

The test suite has been implemented by using JQuery, a powerful JavaScript library, and QUnit, a JavaScript
unit testing framework commonly used in combination with JQuery. QUnit provides useful assertion
methods to determine whether a test is successful or not and also offers the possibility of establishing groups
of tests.

Figure 2 shows a very basic test that checks if the web browser supports the HTML canvas element.
test("Canvas", function()
{
 var canvas = document.createElement("canvas");

 assert("getContext" in canvas, "canvas getContext supported" , "canvas");
 assert("toDataURL" in canvas, "canvas toDataURL supported" , "canvas");

 var CanvasRenderingContext2D = window.CanvasRenderingContext2D,
 context = canvas.getContext("2d");

 assert(! ! CanvasRenderingContext2D, "CanvasRenderingContext2D supported", "canvas"
);
 assert(context instanceof CanvasRenderingContext2D, "context instanceof
CanvasRenderingContext2D", "canvas");
 assert(! ! context.fillText, "2D Text supported", "canvas");
}
);

Figure 2 - Canvas test

In this case the evaluation of the canvas capability implies to check the support of other five sub-properties
related to the canvas element: getContext, toDataURL, CanvasRenderingContext2D, context instanceof

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 12

CanvasRenderingContext2D and 2D Text.

In our DDR prototype, all the information related to the test suite is stored in a NoSQL database (CouchDB).
CouchdDB is an open-source database that stores JSON documents and uses JavaScript at server-side as
query language. Moreover, CouchDB allows us to expose all the information by means of HTTP/REST
services. Both test definitions and test executions are stored in CouchDB as JSON documents and are
accessible by means of REST services using the basic HTTP operations: POST, GET, PUT and DELETE.

Figure 3 shows the schema of a test definition, as it is stored in the CouchDB database. In this case the
“doc_type” attribute is “TestDefinition” and it contains a set of tags that characterizes the test. Note that this
document includes the test itself (media files, HTML5, CSS and JavaScript code) as part of the attachments
of the JSON document.
{
 "_id": xxx,
 "_rev": xxx,
 "doc_type" = "TestDefinition",
 "tags": ["xx","xx",...],
 "vocab_name": xxx,
 "description": xxx,
 "links": ["xxx","xxx",...],
 "name": "xxxx",
 "_attachments": {
 "xxxx.xx": {
 "content_type": xxx,
 "revpos": xx,
 "digest": xx,
 "length": xx,
 "stub": xx
 }
 }
}

Figure 3 - Test definition example

In order to facilitate the execution of tests, we have created a CouchApp that dynamically generates the tests
according to users’ requests. A CouchApp is an application written in HTML5 and JavaScript that can be
served directly to the browser from CouchDB, without any other software in the stack.

Figure 4 shows the schema of a JSON document that represents a test execution. In this case the “doc_type”
attribute is “test_execution” and it contains navigator features and the results of the test (name, test URI and
whether the test has succeeded or not).
{
 "_id": xxx,
 "_rev": xxx,
 "doc_type" = "test_execution",
 "date" = xxxxx,
 "navigator" = {
 "appCodeName" = xxx,
 "appName" = xxx,
 "appVersion" = xxx,
 "platform" = xxx,
 "product" = xxx,
 "productSub" = xxx,
 "userAgent" = xxx,
 "vendor" = xxx,
 "vendorSub" = xxx
 },
 "results" = [
 {

"name" = "xxxx",
 "test" = "test_url?rev=xxxx",
 "passed" = true|false

 },

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 13

 {
"name" = "xxxx",

 "test" = "test_url?rev=xxxx",
 "passed" = true|false

 }......
]
}

Figure 4 - Test execution example

Finally, a web interface has been developed using ExtJS library in order to allow final users to interact with
the DDR, visualizing test definitions (Figure 5), analysing test executions (Figure 6) and visualizing
statistical graphs about the tests (Figure 7).

Figure 5 - Test definition visualization via Web interface

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 14

Figure 6 - Test execution visualization via Web interface

Figure 7 - Statistics about text executions

The overall architecture of the aforementioned prototype corresponds to the scheme depicted in Figure 8.
Note that all the information in the Device Description Repository is available for the Context Manager
through a REST interface.

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 15

Figure 8 - Overall architecture of the DDR prototype

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 16

4 Conclusions
4.1 Summary
This deliverable describes the current implementation of the runtime infrastructure for management of
Context of Use. The final version of the Context Management Core is provided, describing the capabilities as
well as its external interface (e.g. the RESTful one). The Context Delegates implemented so far for mobile
devices are presented.

The final version of the DDR is also discussed, including its powerful interfacing mechanisms which will
allow stronger integration with the Context Management Core in future releases.

Some considerations are also drawn that will allow to further improve the support, especially from the
performance point of view.

4.2 Future Work
Further developments will improve the performance, making the Context Management support more
efficient. Enhancements might be done in context event detection strategies: novel aspects, such as temporal
relationships among simple events, could be modelled. This would lead to the detection of more complex
events, for better gathering and modelling context of use information.

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 17

5 References
1. Dey, A.K. and Abowd, G.D. Towards a better understanding of context and context-awareness. In

Proc. Workshop on the What, Who, Where, When and How of Context-Awareness, ACM Press
(2000).

2. Schilit, B., Adams, N. and Want, R. Context-Aware Computing Applications. In Proc. WMCSA '94,
First Workshop on Mobile Computing Systems and Applications. IEEE Computer Society
Washington, DC, 1994, 85-90.

3. Quiroga J., Rodríguez J., Berrueta D., Gutiérrez N., Marín I., Campos A. From UAProf towards a
Universal Device Description Repository. In: Proceedings of the 3rd International Conference on
Mobile Computing, Applications, and Services (MobiCASE'2011), Los Angeles, CA, October 24-27,
2011.

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 18

Acknowledgements

• TELEFÓNICA INVESTIGACIÓN Y DESARROLLO, http://www.tid.es

• UNIVERSITE CATHOLIQUE DE LOUVAIN, http://www.uclouvain.be

• ISTI, http://hiis.isti.cnr.it

• SAP AG, http://www.sap.com

• GEIE ERCIM, http://www.ercim.eu

• W4, http://w4global.com

• FUNDACION CTIC http://www.fundacionctic.org

http://www.tid.es/
http://www.uclouvain.be/
http://hiis.isti.cnr.it/
http://www.sap.com/
http://www.ercim.eu/
http://w4global.com/
http://www.fundacionctic.org/

 FP7 – ICT – 258030

SERENOA Context of Use Runtime Infrastructure (R2) Page 19

Glossary

• http://www.serenoa-fp7.eu/glossary-of-terms/

http://www.serenoa-fp7.eu/glossary-of-terms/

	1 Introduction
	1.1 Objectives
	1.2 Audience
	1.3 Related documents
	1.4 Organization of this document

	2 State of the Art
	2.1 Context Management in Literature
	2.2 Our Approach with Respect to Previous Proposals

	3 Architecture of the Context Management Support
	3.1 Core Functionalities
	3.1.1 RESTful Web services
	3.1.2 Event subscription

	3.2 Context delegates
	3.2.1 Environment noise and light
	3.2.2 Bluetooth beacons availability
	3.2.3 Physiological parameters
	3.2.4 Device battery

	3.3 Limitations and possible improvements
	3.4 Device Description Repository

	4 Conclusions
	4.1 Summary
	4.2 Future Work

	5 References
	Acknowledgements
	Glossary

