

Multi-Dimensional Context-Aware
Adaptation of Service Front-Ends

Project no. FP7 – ICT – 258030

Deliverable D.4.1.2
Runtime UI Generation

Engine (R2)

Due date of deliverable: 28/02/2013

Actual submission to EC date: 25/02/2013

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

Dissemination level

[PU] [Public] Yes

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA (This license is only applied when the deliverable is public).

http://creativecommons.org/licenses/by-nc-sa/3.0/

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 2

Document Information

Lead Contractor

Editor Javier Rodríguez Escolar

Cristina González Cachón

Ignacio Marín Prendes

Revision 25/02/2013

Reviewer 1 TID

Reviewer 2

Approved by

Project Officer Mr. Michel Lacroix

Contributors

Partner Contributors

CTIC Javier Rodríguez Escolar

Cristina González Cachón

Ignacio Marín Prendes

CNR-ISTI Marco Manca

Fabio Paternò

Lucio Davide Spano

UCL Vivian Genaro Motti

 Pascal Beaujeant

Nesrine Mezhoudi

Jean Vanderdonckt

SAP Jörg Rett

TID Javier Caminero, Mari Carmen
Rodríguez Gancedo

W4 Jean-Loup Comeliau

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 3

Changes

Version Date Author Comments

1 09/01/2013 CTIC Table of Contents

2 25/01/2013 CTIC First version of the deliverable

3 08/02/2013 UCL, SAP, CNR-ISTI,
TID, W4

Contributions from the partners

4 13/02/2013 CTIC Second version of the deliverable

5 20/02/2013 TID Review of the document

6 25/02/2013 CTIC Final version of the deliverable

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 4

Executive Summary
This deliverable describes the current state of the Runtime User Interface Generation Engine (RUIGE) in a
concise manner. RUIGE is intended to generate multi-platform applications from a common abstract
description defined in ASFE-DL. Moreover, the generated applications are adapted to the delivery context in
order to maximize the user experience. To carry out such adaptations at runtime, RUIGE needs to
interoperate with other modules of the Serenoa platform, mainly with the Adaptation Engine.

This document provides an update of the previous version of the deliverable (D4.1.1), so it focuses on the
progresses made over it. RUIGE has been conceived as a modular system in order to facilitate the creation of
different sub-modules specialized in the runtime generation for different platforms or modalities. This
deliverable describes the current state of each of the RUIGE sub-modules developed as part of the Serenoa
project.

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 5

Table of Contents
Executive Summary ... 4

Table of Contents ... 5

Table of Figures .. 7

1 Introduction ... 8

1.1 Objectives .. 8

1.2 Audience .. 8

1.3 Related documents ... 8

1.4 Organization of this document... 8

2 General overview of RUIGE ... 9

3 The role of RUIGE in the Serenoa Framework .. 11

3.1 Relation between the Adaptation Engine and RUIGE .. 11

4 Evolution of the RUIGE sub-modules ... 12

4.1 Mobile Web RUIGE sub-module: MMW-4S .. 12

4.1.1 MMW-4S Transformer .. 12

4.1.2 MMW-4S Generator .. 13

4.1.3 MMW-4S Runtime .. 13

4.2 MARIA RUIGE sub-module ... 13

4.2.1 MARIA transformer .. 14

4.2.2 MARIA Generator ... 14

4.2.3 MARIA Runtime ... 14

4.2.4 Warehouse picking prototype based the MARIA Runtime.. 15

4.3 UsiXML RUIGE sub-module .. 15

4.3.1 UI Transformer .. 15

4.3.2 UI Generator .. 16

4.3.3 UI Runtime .. 16

4.3.4 Application .. 16

4.4 Avatar RUIGE sub-module.. 16

4.4.1 UI Transformer .. 17

4.4.2 UI Generator .. 17

4.4.3 UI Runtime .. 17

4.4.4 Example ... 17

4.5 Leonardi RUIGE sub-module .. 18

4.5.1 LEONARDI Transformer .. 19

4.5.2 LEONARDI Generator .. 19

4.5.3 LEONARDI Runtime .. 19

5 Conclusions ... 20

5.1 Summary .. 20

5.2 Future Work ... 20

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 6

6 References ... 22

Acknowledgements ... 23

Glossary ... 24

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 7

Table of Figures
Figure 1. Serenoa Architecture .. 10
Figure 2. MMW-4S Architecture... 12
Figure 3. MARIA Architecture .. 14
Figure 4. Architectural approach for UsiXML RUIGE module transformations .. 16
Figure 5. Adaptation example for the eHealth scenario .. 18
Figure 6. LEONARDI RUIGE Overview ... 18
Figure 7. LEONARDI Runtime details ... 19

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 8

1 Introduction
1.1 Objectives
The Runtime User Interface Generation Engine (RUIGE) is in charge of the generation of context-tailored
UIs from different abstract descriptions defined in the project. This document aims at describing the
architecture of RUIGE and its role within the Serenoa Framework. It intends not only to provide a clear
overview of the module, but also to highlight its evolution from the release of the previous version of this
deliverable in M18 (D4.1.1).

As introduced in previous deliverables, RUIGE has been designed as a modular system, thus facilitating the
creation of different modules, each one intended to generate UIs for a specific set of target devices, platforms
or modalities. This document offers a description of all the RUIGE modules developed as part of the Serenoa
project, detailing the following aspects: their general purpose, the abstract languages they support as an
input, the target platforms they cover, how they interact with the rest of the Serenoa modules, their current
state and how they have evolved from M18, the expected state by the end of the project and they availability
for the developers community (e.g. open-source license).

1.2 Audience
The audience for this document are the following groups:

a) Members of the consortium, in order to understand the runtime engine of the Serenoa framework:
how it works, which is its role, the different modules and their functionality.

b) Developers and developer communities, in order to understand how to create ad-hoc modules fully
compliant with RUIGE and the Serenoa framework.

c) The members of the research community dedicated to the creation of context-aware applications,
who might learn concepts and techniques from the Serenoa framework and improve them.

d) EC officials that will use the information in this document as an account of the activities taken in the
project tasks that inform this work.

1.3 Related documents
• D1.2.2 Architectural specifications (R2)
• D1.3.2 Serenoa Roadmap describing next steps in the evolution of the Serenoa framework.
• D3.2.2 ASFE-DL: Semantics, Syntaxes and Stylistics (R2) describe the abstract language that is used

by the runtime.
• D3.3.1 AAL-DL Semantics, Syntaxes and Stylistics describes the adaptation rules languages used by

the runtime.
• D4.1.1 Runtime UI Generation Engine (R1)
• D4.3.1 Adaptation Engine describes some adaptations needed on the runtime.
• D5.1.1 Serenoa Framework (R1)
• D5.2.2 Application Prototypes (R1)

1.4 Organization of this document
Chapter 1 is an introduction that describes the objectives, the audience and related documents of the
deliverable. Chapter 2 outlines a general overview of the runtime of the Serenoa framework. Chapter 3
specifies the role of the runtime inside the whole project and highlights the relation established with the
Adaptation Engine. The mission of chapter 4 is to describe the current state of the different runtime sub-
modules. To finish the deliverable, Chapter 5 describes the conclusions of the work achieved in the
development of the RUIGE module so far, and the future work to be carried out until the end of the project.

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 9

2 General overview of RUIGE
RUIGE is one of the most illustrative modules of the Serenoa Framework. It is a modular engine responsible
for the creation of final applications adapted to the context starting from a specification of the UI at the
Abstract UI level by means of ASFE-DL.

RUIGE is composed of various sub-modules, each of them in charge of generating different outputs, such as
mobile interfaces, vocal systems, avatar engines, etc. New sub-modules might be added to the architecture in
order to support additional interaction modes and target platforms for the same application definition. The
existing sub-modules were explained in the last version of this deliverable, D4.1.1, and the changes carried
out over them will be explained in Chapter 3.

Each RUIGE sub-module follows several stages in order to generate the final application based on the
abstract definition. Each stage is associated to a specific module:

• Transformer: component in charge of the process of converting the abstract language (ASFE-DL)
into a generic language for the representation of the concrete user interface of each sub-module. This
language will be the input to the next stage.

• Generator: this module analyses the output of the transformer and generates the executable code,
which will be used at runtime.

• Runtime: this component is intended to provide support for the execution of applications. Note that
some sub-modules may require both deployment and execution stages. This component is in charge
of deploying the application, if it has not been done before by the generator. For instance, uploading
web applications in a web server, deploying an application in a servlet container or even installing
(or running) a file in the user device. After the deploy stage, the application is executed by an
execution platform; for instance, a web browser.

This modular architecture is shown in Figure 1. The RUIGE modules establish communication with other
modules of the Serenoa framework, such as the Adaptation Engine or the back-end services.

By definition, the RUIGE module receives the application definition by means of:

• A UI specification in ASFE-DL created by the Authoring Tools (see D4.5.1).
• A set of adaptation actions coming from the Adaptation Engine (see D4.3.1). To get the final

application, some adaptation rules could be applied expressed in AAL-DL. They will guide the
adaptation process at design time or even at runtime level of both user interfaces and resources
referenced by the UI.

• Additional information coming from the back-end system.

The output of the RUIGE module should include the final code of the application and its corresponding
runtime support. This means a set of libraries to carry out the adaptations while the user interacts with the
application.

Figure 1 shows the interaction between the RUIGE module and the rest of components of the Serenoa
framework. Basically, the authoring tool creates the abstract language for the UI definition by means of
ASFE-DL and the adaptation rules expressed in AAL-DL. To facilitate the recovery of both files by any of
the Serenoa components, they are stored in a Service Repository. The Adaptation Engine will retrieve them
in order to accomplish its goal. To make the adaptations, RUIGE will query the Adaptation Engine
identifying the UI it should adapt in order to get the corresponding actions to perform the adaptation in the
appropriate stage.

RUIGE allows application generation at least for rendering both desktop and mobile platforms and for vocal
interfaces.

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 10

Figure 1. Serenoa Architecture

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 11

3 The role of RUIGE in the Serenoa Framework
The functionality of RUIGE is made possible by other modules of the Serenoa architecture, such as the
CARFO Ontology and the Context Manager. In D4.1.1, the relations between RUIGE and these sub-modules
were explained. However, from now on, the Adaptation Engine will assume the responsibility of gathering
all the information from the rest of the modules in order to act as an adaptation manager. Consequently,
RUIGE will just need to interact with the Adaptation Engine, avoiding the establishment of direct
communications with CARFO or the Context Manager. In this chapter, we focus on the interaction between
RUIGE and Adaptation Engine, while the interactions between Adaptation Engine and the rest of the
modules are explained in D4.3.1.

3.1 Relation between the Adaptation Engine and RUIGE
The Adaptation Engine (AE) is the module in charge of collecting the high-level descriptions of the
application (UI definition and adaptation rules), the information of the context in which it is being used and
the adaptation knowledge in order to produce the adaptation commands. Some of these commands might be
used at runtime to adapt the application to the context, while others might be employed at transformation
time. The adaptation commands guide the optimization process needed for the selection of the proper
adaptation logic and are expressed by means of a reduced version of the AAL-DL language.

The relation between both modules is based on the adaptation process: the Adaptation Engine calculates the
adaptation logic that has to be applied by the RUIGE to perform the optimal adaptation for a given context.
Each internal component of a RUIGE sub-module has a particular relation with the Adaptation Engine.

• Transformer: component in charge of transforming from the abstract level to the concrete one of
each runtime. The input of this module will be formed not only of the ASFE-DL but also of a set of
adaptation rules that the AE provides. Some of these rules have direct impact in the transformation
process while others might be applied at generation time or at runtime.

• Generator: it takes the concrete description from the adapter and transforms it to the final
representation. As the transformer does, the generator may consider some of the adaptation
commands provided by the AE.

• Runtime: this module is responsible of the execution of the application. A bidirectional
communication is established between both modules. On the one hand, RUIGE runtime must react to
the adaptation commands produced by the AE in order to provide support for context variations. On
the other one, the RUIGE module may report the feedback of the users to the Adaption rules so it can
be taken into account in future adaptations.

Note that the bidirectional communication between RUIGE and AE might occur in two different modes:

• RUIGE may query the AE in order to know how to adapt a specific UI in a given context.
• AE may send adaptation commands to be executed by RUIGE as a result of any context variation.

RUIGE must be ready to react to those commands at any time.

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 12

4 Evolution of the RUIGE sub-modules
4.1 Mobile Web RUIGE sub-module: MMW-4S
MMW-4S (MyMobileWeb for Serenoa) is an open-source module1 fully compliant with RUIGE. It is aimed
at generating mobile Web applications for multiple platforms and devices. Moreover, MMW-4S is able to
interoperate with the Adaptation Engine Module in order to adapt the generated UIs accordingly, thus
maximizing the user experience. Figure 2 shows a simplified version of Figure 1, where the different sub-
modules of MMW-4S are highlighted in blue colour. The following sub-sections explain the current state of
each of these sub-modules, how they have been evolved from M18 and how they will be evolved until the
end of the project.

Figure 2. MMW-4S Architecture

4.1.1 MMW-4S Transformer
MMW-4S transformer has been implemented as an XSL transformation sheet (XSLT) due to the fact that
both the input language (ASFE-DL) and the output languages (IDEAL2 and SCXML) are XML-based. The
current version of MMW-4S Transformer supports the last version of ASFE-DL available at the time of
writing (see D3.2.2 for more details), the last version of IDEAL2 [1], the draft version of SCXML published
on 16 May 2008 [2].

The last changes carried out in the Transformer module were intended to provide support for the last
specification of ASFE-DL. The last major changes introduced in the ASFE-DL language which impacts the
MMW-4S Transformer module are:

• The introduction of the Back class, a new type of connection. A connection in ASFE-DL declares
that from a given AbstractInteractionUnit (AIU) is possible to reach another AIU. A Back instance
connects the current AIU with the previously visited one. If the current AIU can be reached from
more than one AIU, the target of the back connection is different according to the user’s navigation.
For instance, suppose that the current AIU is C and it can be reached from both the A and B AIUs. If
the user has visited C from A, then the back connection target is A, while if the user has visited C
from B, the back connection target is B. In order to provide support for this functionality, the
Transformer produces:

o An <a> element of IDEAL2 with a mymw:back role annotation, which indicates that this
link will be rendered as a back navigation component (note that it might be rendered in a

1 All MMW-4S code has been released as open-source under the LGPLv3 license and it is available at the Morfeo
Forge: https://svn.forge.morfeo-project.org/serenoa/trunk/

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 13

different manner depending on the target platform):
 Back

o An SCXML custom action called back within the MyMobileWeb namespace. This action2 is
internally managed by MMW-4S in order to allow the user to navigate to previous states
avoiding to define explicit code in the flow definition:

<mymw:back />

• The addition of a role attribute to the AIUs, in order to allow the designer to specify a semantic tag
for them. The semantics of the tag are completely up to the interface designer, therefore we do not
assign a unique way for interpreting the values. MMW-4S Transformer uses these annotations to
create groups of presentations (Operation Presentations or OPs) related to the same task.

4.1.2 MMW-4S Generator

The UI Generator of MMW-4S is the part of the platform in charge of generating JSPs (JavaServer Pages)
from IDEAL2 documents. Each UI defined in IDEAL2 implies the generation of a specific JSP for each
markup language in the market (WML, XHTML Basic/Mobile Profile, HTML4 and HTML5). Note that the
generated JSPs contain server-side code that will be executed at runtime (see 4.1.3). Minor changes have
been performed in this module in order to improve the generation of the set of JSPs that guide the execution
of the HTLM5 Rendering Engine at runtime.

4.1.3 MMW-4S Runtime

This module is intended to provide the most appropriate Final User Interfaces at runtime. Whenever a client
device requests a specific Web page to the server, the corresponding JSP (see 4.1.2) will be executed. Note
that JSPs are translated into Java Servlets at runtime. Consequently, each web page access will result in the
invocation of server-side code containing the logic that generates the adapted Web content dynamically.

In order to obtain the most appropriate Web contents for each delivery context, MMW-4S runtime libraries
query the Adaptation Engine and render the final UI in accordance to the resulting adaptation commands.
The major changes carried out in this module from M18 are:

• Improvements in the Rendering Engine to support the generation of more IDEAL2 UI components
by means of JQMobile. The current state of the implementation supports the following subset of
IDEAL2 elements: ui, body, section, div, menu, a, input, inputDate, secret, submit, select, select1,
item, label, value, submit, footer image, media, map, placemark.

• Integration with the Adaptation Engine to carry out advanced adaptation actions.

4.2 MARIA RUIGE sub-module
The MARIA RUIGE sub-module is composed of a transformer, a generator and a runtime according to the
RUIGE architecture. Figure 3 summarizes the architecture highlighting the MARIA sub-modules. This
RUIGE module is able to subscribe to the Adaptation Engine and to receive from this external module the
adaptation actions which describe how to adapt the interface to the context of use.

2 http://forge.morfeo-project.org/wiki_en/index.php/SCXML_Flow_Engine_4_0#.3Cmymw:back.3E

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 14

Figure 3. MARIA Architecture

4.2.1 MARIA transformer

The MARIA transformer is implemented through an XSLT stylesheet and aims to transform the Serenoa
abstract description (ASFE-DL) to MARIA notation. We decided to exploit XSLT transformation because
ASFE-DL and MARIA are both XML-based languages. Various XSLT transformations from MARIA AUI to
various concrete languages have been developed for different platforms. In the last year we have particularly
focused on the transformation for the MARIA Multimodal concrete description that will be the input for the
generator module. This concrete language describes in an implementation language independent way the
possibility of obtaining user interfaces that combine, in different ways, graphical and vocal interactions using
CARE (Complementarity, Assignment, Redundancy, Equivalence) properties associated with the various
user interface elements.

4.2.2 MARIA Generator
The MARIA Multimodal Generator is also implemented with an XSLT stylesheet and produces JSP
implementations combining graphical vocal interfaces in Web environments.

For this purpose, we developed a Chrome extension (for desktop devices) and an Android app (for mobile
devices) able to interpret the HTML generated and which call Google APIs for Automatic Speech
Recognition (ASR) and Text-To-Speech (TTS) synthesis. In order to understand when to activate the
functions that access the vocal Google libraries, the generator considers the indications of the CARE
properties and annotates each user interface element accordingly with a specific CSS class if it contains a
vocal part: tts for the output elements; asr for the input parts of interaction elements. The generated elements
are marked with these classes because the multimodal application/extension uses them to identify all the
graphical elements having an associated vocal part.

4.2.3 MARIA Runtime

The MARIA Runtime integrates the communication with the Adaptation Engine and the Context Manager.
The run-time subscribes itself to the Adaptation Engine sending the user and service (application) identifier.
Then, the Adaptation Engine subscribes to the Context Manager for being notified of the relevant events. The
Adaptation Engine receives events detected by the Context Manager, and checks whether some adaptation
rules should be triggered. In the positive case, the Adaptation Engine sends the action part of the XML rule
to the run-time, which transforms the actions in an equivalent JSON object (since JSON is easier to
manipulate through Javascript in client side) and updates the final user interface to perform the associated
modifications. In multimodal adaptation, the action part of the rules changes the CARE values of the
interface elements adding or removing the graphical or the vocal modalities. An adaptation script, inside the
generated final user interface, receives the action part of the rule in JSON format and interprets the received
CARE values by adding or removing CSS class (as it was aforementioned) of the interface elements in order
to adapt the interface.

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 15

We have developed a Multimodal Car Rent prototype that uses the MARIA RUIGE module to adapt the UI
adding or removing interaction modalities accordingly to the adaptation rules.

4.2.4 Warehouse picking prototype based the MARIA Runtime

The first release of the intelligent picking prototype (Deliverable D5.2.2 Application Prototypes (R1)) used
an internal representation of the adaptation engine and retrieved the context information (e.g. level of
experience of the user) directly. For its second release, the prototype will communicate with the Adaptation
Engine as shown in Figure 3. Thus, the prototype will not use the context information directly but the
Adaptation Engine takes care of selecting the appropriate action considering the state of the context.

It was decided to exploit the existing MARIA RUIGE as its focus on multimodal interaction fits well with
the characteristics of the intelligent picking prototype. The prototype uses a combination of visual and vocal
interaction modes while the degree of multimodality depends on the state of the context (e.g. in a noisy area
only visual interaction will be used). Additionally, the MARIA generator is focused on web environments
which fits well in the architecture of the prototype. The prototype exploits a browser-based solution using a
smartphone as the platform on the client side. The Head-Mounted Display (HMD), which allows the effect of
augmented reality, is in the basic version merely used as a monitor displaying (i.e. duplicating) the
smartphone’s desktop.

4.3 UsiXML RUIGE sub-module
The UsiXML module consists in a proposal for generating final user interfaces that are adapted according to
the context. As the other modules of RUIGE, it receives as input information the description of the
application in ASFE-DL format and through the application of different transformations generates the final
UI compatible with the UsiXML language. As mentioned in the previous releases of this deliverable, the
UsiXML module is a proposal, since ASFE-DL still did not reach a consolidated and standard version, it is
likely that further modifications and adjustments may be needed in order to implement the proposal. Besides
this, there are minor modifications that apply to this module, thus this section is a recall of the previous
contents presented.

The transformations within UsiXML context can be executed in two directions: Linear transformations are
responsible for specializing or reifying the models, changing their abstraction level within the same context,
and Transversal transformations act between two different contexts but within the same level of abstraction,
changing thus specific aspects of the models according to the specificities of the new target context of use.

UsiXML covers different contextual dimensions, therefore the context information may belong to user,
platform or environment, covering the adaptation process in general. The final goal is to reach applications
that are both device-independent and modality-independent.

4.3.1 UI Transformer

According to the D4.1.1, transformations in this module can rely on mapping technologies such as XSLT,
ATL, or QVT. Aiming at compatibility and reuse, ATL is preferred at this stage of development. The three
transformations envisaged include:

• From CIM (Context-Independent Model) to PIM (Platform-Independent Model): based on more
generic specifications of the UI, and models like task model, domain model, context model, a
mapping and a marking model, the Abstract User Interface (AUI) is generated, reaching a
specification that is still at this stage device-independent.

• From PIM to PSM (Platform-Specific Model): based on the model specification that was generated
in the previous stage, a new specification that targets the new context of use is generated. At this
stage the new device is considered, and appropriate changes are applied in the model generating a
Concrete User Interface (CUI) specification that is compliant with the target platform. So far, XWT
has been employed in this process (interpreted by a Windows Builder Eclipse plugin).

• From PSM to ISM (Implementation-Specific Model): this transformation takes into account the
particularities of the system of the user and configuration of the device in order to generate the Final
User Interface (FUI). At this stage, the plugin is able to generate HTML and SWING/SWT
implementations.

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 16

It is worth to note that XMI (XML Model Interchange Language) has been used in all models for UsiXML.

4.3.2 UI Generator

Although UsiXML targets at different dimensions of the context, the RUIGE sub-module and the description
provided mainly focus on specificities of the platform and device, for instance by considering different
technologies and languages in order to generate the FUI specification (e.g. HTML and Java Swing versions).

For now, the generation of the FUI relies on a Java Swing application and uses ATL and XML for
transformations. Such technologies are complemented by the use of Ecore models, XWT and an Eclipse
plugin, all supporting the different processes during the generation of the final UIs.

4.3.3 UI Runtime

As previously mentioned in the D4.1.1, the execution at runtime varies according to the technology used to
generate the FUI. Specific approaches are applicable in each case: for the HTML document or the Java
Swing version, the runtime must be respectively performed with the browser itself or the java compiler.

4.3.4 Application

In the example of the car rental application, the transformations specified in the previous sections would
(Figure 4):

• First, take into account models describing the: tasks, domain, context, mappings, markings to
generate the AUI

• Then, with the AUI and the target context specification generates the CUI (by means of XWT
transformations)

• Finally, based on the generated CUI, more specific transformations would lead to the generation of
the FUI, in HTML5 or SWING according to the context.

Figure 4. Architectural approach for UsiXML RUIGE module transformations

4.4 Avatar RUIGE sub-module
Minor changes have been introduced in the Avatar RUIGE sub-module. This sub-module is structured as
SAIBA framework [3] and it proposes to generate the best suitable context-aware front-end for an avatar-
based application. Some libraries have been analyzed and we have taken a decision on which one to use. The
final demo planning has also been changed from the previous version, but the use case remains the same.

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 17

4.4.1 UI Transformer

The UI Transformer outputs the Serenoa Avatar CUI, which is based on the FML language [4] proposed by
SAIBA framework from the abstract descriptions of the avatar. We are not going to fully implement the
capabilities of FML in our transformer and our approach may not perfectly align FML and the Serenoa
Avatar CUI for the avatar. For instance, FML covers gesture-text synchronization and fine descriptions for
the elements that conforms the gestures, but the SERENOA Avatar CUI only describes a generic gesture. The
details about gestures will be resolved later, when more context information about the device, environment
and user will be incorporated into the adaptation process.

4.4.2 UI Generator

The UI Generator incorporates the remaining elements of FML that have not been included in the
aforementioned transformation process. In order to achieve this goal, the results of the transformer are
converted to our own BML-like language that will be used for the different target platforms. It is important
that, while we are using the same FUI language for all the possible target platforms (see section 4.4.3),
different descriptions are produced in accordance to the context. For instance, if we know that our target
runtime belongs to a reduced profile family (e.g., a mobile phone with no generative Text-to-Speech
capabilities but just recordings of the possible utterances by the avatar), we would not send the ‘Hello
master’ TTS element but an identifier of the appropriate available pre-recorded sound instead.

4.4.3 UI Runtime

The UI Generator will provide different execution profiles depending on the performance conditions. For
example, an ActiveX component in case of the runtime environment is an Internet Explorer browser or a
sequence of images or videos in case of a mobile device platform. The UI Runtime is in charge of
interpreting the FUI description of avatar actions and actually rendering an avatar that acts in accordance to
them.

In case the runtime environment is an Internet Explorer browser, a Haptek [5] player will be used. The other
avatar runtime that Serenoa will feature is internally developed and will be a lower-specified one, but able to
run in less powerful devices (i.e., mobile phones, tablets). The implementation will be based upon HTML5
technologies taking advantage of its <video> tag, and thus will be also available for desktop environments
and will be developed with extensibility in mind.

4.4.4 Example

The final demo due by the end of the project has been refined and will include a conversational avatar. This
section is going to describe an example based on the eHealth prototype. In short, the aim of the
abovementioned prototype is to help patients in the management of their health information. Further details
about the service are available in “D5.2.1 Application Prototypes (Requirements and Design)”.

In order to show the adaptation process in the RUIGE, a use case scenario is proposed:

“Jane is at home checking her last blood test results, using an eHealth desktop application and taking
advantage of the avatar-based assistant. She receives a call and she has to leave. While she is on the bus, she
decides to continue reviewing the information, but this time using her smartphone. Unfortunately the noise
conditions are terrible inside the bus.”

In accordance with this scenario the adaptation rules that could be applied are:

• R1: Jane is logged into the application. RUIGE will generate the UI following the adaptation rules
based on Jane’s context and preferences.

• R2: If the device is a mobile, RUIGE will adapt the UI to be displayed in such device, i.e., the avatar
will be rendered as a sequence of images or pieces of videos.

• R3: If the noise conditions get worse, then the avatar stops speaking and only communicates by text.

Then, as it is shown in Figure 5, the adaptation process performed by Serenoa framework would be as
follows: Jane starts using the desktop application, at home, rendered following Jane’s preferences (R1).
When she is outside and she tries to access to the eHealth assistant using her smartphone (R2), the Runtime

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 18

module is in charge of degrading the avatar presentation and presenting the sequence-of-images version.
Afterwards, the Context Manager warns about a high level of noise (R3), so it has no sense to keep the avatar
voice feature. Then, the Runtime module is responsible of automatically stopping this feature.

Figure 5. Adaptation example for the eHealth scenario

4.5 Leonardi RUIGE sub-module
The LEONARDI RUIGE’s architecture and sub-modules is similar to the other Serenoa RUIGEs. It is
depicted in Figure 6. It includes a transformer, a generator and a runtime.

The LEONARDI RUIGE is used to implement the eCommerce prototype, which is already operational and
integrated with the Serenoa adaptation engine. The prototype is intended to illustrate the end-to-end reuse of
Serenoa modules: authoring tools, ASFE-DL, AAL-DL, Adaptation Engine, RUIGE, Context Manager,
CARFO...

Figure 6. LEONARDI RUIGE Overview

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 19

4.5.1 LEONARDI Transformer
The LEONARDI Transformer takes as an input the Serenoa abstract description of the UI (ASFE-DL) and
converts it into a LEONARDI-DL of the associated application. Both languages are XML based, so the intent
is to rely on some mechanism such as XSLT to perform this transformation.

This module has been started but is not yet operational, since we are waiting for a stable definition of the
ASFE-DL and for the availability of the Eclipse based Authoring tool that will facilitate the production of
ASFE-DL files. Its implementation is independent on the other integration tasks.

Therefore, currently, the starting point of the eCommerce scenario is a LEONARDI description of the
application (Version 8.9), which feeds, as an input, the LEONARDI Generator.

4.5.2 LEONARDI Generator

The LEONARDI Generator is implemented and already operational, as illustrated by the current status of the
eCommerce scenario. It uses as an input a LEONARDI model, using the LEONARDI-DL as syntax. This
mechanism allows to benefit as much as possible of the LEONARDI environment for Serenoa purposes.

It relies on the LEONARDI execution engine to interpret, on the fly, the application model. The LEONARDI
engine is implemented in the Java technology. It is used as a service by fat clients (Java applications),
typically used as desktop applications, and deployed as a Servlet for web based applications (including
mobile applications).

4.5.3 LEONARDI Runtime

The LEONARDI runtime takes advantage of the LEONARDI technology and integrates the communication
with the Serenoa Adaptation Engine and the Context Manager. For a specific user and context, the
application queries the Adaptation Engine for the best adaptation rule based on the user’s profile and context
providing user ID and service ID), and then effectively adapts the UI for the specific platform based on the
response returned by the Adaptation Engine.

The LEONARDI Runtime is completed by specific modules for mobility, as illustrated by Figure 7. These
two modules, named “iOS Player” and “Android Player”, are installed on Android and iOS smartphones or
tablets. The LEONARDI runtime uses different protocols to communicate with different platforms: JSON for
native applications installed on Android or iOS platforms, HTTP for web browsers and XML-based for Java
applications.

Figure 7. LEONARDI Runtime details

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 20

5 Conclusions
5.1 Summary
RUIGE module is in charge of the generation of different applications adapted to the context and to different
platforms. The starting point is an abstract language (ASFE-DL) that defines the Abstract User Interface and
a set of rules defined by means of AAL-DL. RUIGE takes the abstract definitions and creates adapted
applications. To get the final application, it queries the Adaptation Engine to retrieve any useful information
to carry out the adaptation process. Subsequently, the Adaptation Engine will communicate with the rest of
the modules involved in the Serenoa framework: the Context Manager, CARFO, etc.

Finally, RUIGE is composed of different sub-modules trying to cover a great amount of target devices and
modalities. It has been designed to facilitate the creation of new sub-modules. The RUIGE sub-modules
developed within the Serenoa project are able to produce: mobile web, vocal applications, avatar and
eCommerce applications. All of them are able to generate, at least, a basic application. Due to the fact that the
project is still at M30 and some of the Serenoa components are not in the final version yet, these RUIGE sub-
modules might be modified in order to adapt to them.

5.2 Future Work
The final version of this deliverable is released at month 30 but the project ends at month 36. This will cause
some minor changes on each of the RUIGE sub-modules in order to adapt to other Serenoa components that
will be released later, such as the ASFE-DL, the AAL-DL, the Adaptation Engine, etc.

In spite of the fact that RUIGE is composed of four sub-modules, the modular architecture allows to add any
other sub-module to create context-aware SFEs, following a set of minimum requirements to become a
RUIGE module.

There are also some plans for each one of the RUIGE sub-modules:

• MMW-4S RUIGE sub-module:
o To adapt the MMW-4S Transformer to be fully compliant with the final Abstract User

Interface Model that will be produced in the W3C Model-Based User Interface Working
Group.

o At the time of writing this document, there is no CUI version of ASFE-DL tailored to mobile
platforms (see D3.2.2). In case new specifications are finally defined at the CUI level, a
future step will be to adapt MyMW-4S to use such specifications.

o Improve the generation of HTML5 applications taking into account the feedback received
from the developers’ community.

• MARIA RUIGE sub-module:
o To improve the support of the adaptation process by supporting more complex adaptation

rules able even to change the structure of the user interface (not only rules that indicates
updates of any UI properties).

o To apply the MARIA environment to the Warehouse prototype.
• UsiXML RUIGE sub-module:

o To adjust the definitions of potential transformations between ASFE-DL and UsiXML
assuring the synchronization between them.

o To refine the definitions currently specified based on specific application scenarios.
o To test and validate the proposed approaches.

• AVATAR RUIGE sub-module:
o Avatar RUIGE sub-module should be extended to be reactive to user's context changes while

the user is logged or using the service, i. e. changes in user's environment like noise level.
o Modification of the UI to be rendered in mobile devices, such as Android mobile phones or

tablets.
o Generation of more sequences of images mapping all the gestures that the avatar can render.

• LEONARDI RUIGE sub-module:
o To complete the LEONARDI Tranformer module.

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 21

o Improvement in UI rendering based on adaptation rules.
o To optimize the mobile players components for a better user experience on smartphones and

tablets.

A further possible solution for runtime user interface generation will be the engine that is being developed as
part of the Quill browser based authoring tool, see D4.5.1. The reasoning engine is being developed in
JavaScript as a constraint-based expert system that generates the concrete UI for target platforms from the
models for the domain, tasks and context of use. The engine will run in the cloud under Node.JS. Note that
this is very much work in progress and won't be completed until near the end of the Serenoa project. Quill
explores the design space looking for solutions that match the constraints provided by the designer and the
context of use. At runtime, the end user could provide additional constraints, perhaps even overriding the
designer's constraints. The engine uses constraint propagation to reduce the size of the search space and is
capable of providing explanations when a solution can't be found. Further work would be needed on the
means for end-users to express constraints.

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 22

6 References
[1] IDEAL2, (http://files.morfeo-project.org/mymobileweb/public/specs/ideal2/
[2] SCXML, http://www.w3.org/TR/2008/WD-scxml-20080516/
[3] Kopp, S.; Krenn, B.; Marsella, S.; Marshall, A.; Pelachaud, C.; Pirker, H.; Thórisson, K. &

Vilhjálmsson, H.lmsson, H. (2006), Towards a common framework for multimodal generation: The
behavior markup language, in 'Intelligent Virtual Agents', pp. 205—217

[4] Heylen, D.; Kopp, S.; Marsella, S.; Pelachaud, C. & Vilhjálmsson, H. The next step towards a
function markup language Intelligent Virtual Agents, 2008, 270-280

[5] http://www.haptek.com/developers/HaptekGuide4/HaptekHyperText/htref/html/index.html

http://files.morfeo-project.org/mymobileweb/public/specs/ideal2/
http://www.w3.org/TR/2008/WD-scxml-20080516/
http://www.haptek.com/developers/HaptekGuide4/HaptekHyperText/htref/html/index.html

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 23

Acknowledgements

• TELEFÓNICA INVESTIGACIÓN Y DESARROLLO, http://www.tid.es

• UNIVERSITE CATHOLIQUE DE LOUVAIN, http://www.uclouvain.be

• CNR-ISTI, http://giove.isti.cnr.it

• SAP AG, http://www.sap.com

• GEIE ERCIM, http://www.ercim.eu

• W4, http://w4global.com

• FUNDACION CTIC http://www.fundacionctic.org

http://www.tid.es/
http://www.uclouvain.be/
http://giove.isti.cnr.it/
http://www.sap.com/
http://www.ercim.eu/
http://w4global.com/
http://www.fundacionctic.org/

 FP7 – ICT – 258030

SERENOA D4.1.1 – Runtime UI Generation Engine (R2) Page 24

Glossary
http://www.serenoa-fp7.eu/glossary-of-terms/

http://www.serenoa-fp7.eu/glossary-of-terms/

	1 Introduction
	1.1 Objectives
	1.2 Audience
	1.3 Related documents
	1.4 Organization of this document

	2 General overview of RUIGE
	3 The role of RUIGE in the Serenoa Framework
	3.1 Relation between the Adaptation Engine and RUIGE

	4 Evolution of the RUIGE sub-modules
	4.1 Mobile Web RUIGE sub-module: MMW-4S
	4.1.1 MMW-4S Transformer
	4.1.2 MMW-4S Generator
	4.1.3 MMW-4S Runtime

	4.2 MARIA RUIGE sub-module
	4.2.1 MARIA transformer
	4.2.2 MARIA Generator
	4.2.3 MARIA Runtime
	4.2.4 Warehouse picking prototype based the MARIA Runtime

	4.3 UsiXML RUIGE sub-module
	4.3.1 UI Transformer
	4.3.2 UI Generator
	4.3.3 UI Runtime
	4.3.4 Application

	4.4 Avatar RUIGE sub-module
	4.4.1 UI Transformer
	4.4.2 UI Generator
	4.4.3 UI Runtime
	4.4.4 Example

	4.5 Leonardi RUIGE sub-module
	4.5.1 LEONARDI Transformer
	4.5.2 LEONARDI Generator
	4.5.3 LEONARDI Runtime

	5 Conclusions
	5.1 Summary
	5.2 Future Work

	6 References
	Acknowledgements
	Glossary

