
Standarization Actions Report

Project no. FP7 - 258030

Deliverable D6.2.1

Executive Summary
This document provides a description of the standardization actions
for Serenoa, starting with a look at standardization opportunities,
and then reviewing progress in the W3C MBUI Working Group.

1

Table of Contents
1 Introduction . 4
2 Potential opportunities for standardization 4

2.1 Task Models. 4
2.2 Domain Models . 5
2.3 Abstract UI Models . 5
2.4 Concrete UI Models. 6

2.4.1 WIMP (desktop GUI) 7
2.4.2 Touch-based GUI (smart phones and

tablets) . 8
2.4.3 Vocal UI . 9
2.4.4 Multimodal UI . 10
2.4.5 Industrial UI. 11

2.5 Context of Use . 12
2.5.1 General Considerations 12
2.5.2 Industry: Fulfilment of Safety Guidelines 13
2.5.3 Automotive: Mitigation of Driver

Distraction . 13
2.6 Multidimensional Adaptation of Service Front

Ends . 14
2.6.1 CARF Reference Framework 14
2.6.2 CADS Design Space 15
2.6.3 CARFO Multidimensional Adaptation

Ontology. 16
2.7 Design-time adaptation rules 16
2.8 Run-time adaptation rules 18
2.9 Advanced Adaptation Logic Description Language

(AAL-DL). 19
2.10 Corporate Rules for Consistent User Experience 21

3 W3C Model-Based UI Working Group. 21
3.1 Introduction. 21
3.2 History. 21

3.2.1 MBUI Incubator Group 24
3.2.2 MBUI Workshop. 24
3.2.3 Formation of MBUI Working Group. . . . 25

3.3 MBUI Working Group Charter 26
3.4 MBUI Submissions . 29

3.4.1 Advanced Service Front-End Description
Language (ASFE-DL) 29

3.4.2 The ConcurTaskTrees Notation (CTT) . . 30
3.4.3 Useware Markup Language (UseML) . . 33
3.4.4 User Interface Markup Language (UIML) 35
3.4.5 Abstract Interactor Model (AIM)

Specification . 36
3.4.6 Multimodal Interactor Mapping (MIM)

Model Specification 38

2

3.4.7 UsiXML . 39
3.4.8 MARIA . 41

3.5 MBUI WG Note - Introduction to Model-Based UI
Design . 47

3.6 MBUI WG Note - Glossary of Terms 47
3.7 MBUI WG Specification - Task Models for Model-

Based UI Design . 47
3.8 MBUI WG Specification - Abstract User Interface

Models . 49
3.9 Future Plans . 49

4 CoDeMoDIS proposal for a COST Action 50
5 ISO 24744 standardisation action 51
6 Conclusions. 51
7 References . 52

3

1 Introduction
This report describes standardization actions for the Serenoa
project, and will consider opportunities for standardization, current
progress, and future plans. Our motivation for work on
standardization is to encourage the development and uptake of
interoperable tools at both design and run-time for context aware
model-based user interfaces.

The following diagram illustrates the Serenoa Architecture, and
many of the components shown will be considered in later sections
of this report from the perspective of their potential for
standardization.

For an introduction to the architecture and the benefits for a range
of stakeholders, you are invited to read the Serenoa White Paper:

• Serenoa White Paper (PDF)

2 Potential opportunities for
standardization
This section reviews the different areas of work underway in the
Serenoa project and provides a brief account of their potential for
standardization.

2.1 Task Models

Task models provide a means for describing the set of tasks
involved in an interactive system, how the tasks decompose into

4

http://www.serenoa-fp7.eu/wp-content/uploads/2010/10/white_paper_v1.0.pdf|

subtasks, which tasks are to be carried out by the user, the system
or both, and the temporal sequence and inter-dependencies of
tasks. Task models enable the user interaction to be described and
reviewed without being distracted by the details of the user
interface. As such task models are not intended to be a complete
description.

The primary task modeling language in Serenoa is
ConcurTaskTrees (CTT). This has good prospects for
standardization and would enable interoperable exchange of task
models between different user interface design tools. See the
section on W3C MBUI Working Group for information on how this
is proceeding.

2.2 Domain Models

The general architecture for Serenoa assumes a clean separation
between the user interface and the application back-end. The
interface is defined through a domain model with named properties
and methods. Each property can have an atomic value such as a
boolean, a number or a string. Alternatively, a property can have a
structured value with subsidiary properties and methods. Property
values, method arguments and return values are described with a
type language. The domain model may also include a means for the
system to signal events or exceptions, for example, an
asynchronous change in the context of use, or an error in the user's
input. A further consideration is whether a method is synchronous
or asynchronous, i.e. it takes sufficient time to execute to have a
noticeable impact on the user experience.

Serenoa has so far avoided defining a separate formal language for
domain models, and instead has embedded a limited treatment as
part of the abstract user interface (ASFE-DL). An adequate
formalization of domain models will be essential for interoperable
interchange of user interface designs. The precise requirements
will depend on the kinds of interactive systems that are being
targeted.

2.3 Abstract UI Models

In the Serenoa architecture, abstract user interface design models
describe interactive systems at a greater level of detail than is
commonly the case for task models, but are still independent of the
target platforms and modes of interaction. The ASFE-DL language
can be loosely described as follows:

At the top level, the abstract user interface can be described in
terms of a set of inter-related dialogues. Each dialogue has a set of

5

interactors which can be thought of as abstract versions of user
interface controls. Each interactor is bound to the domain model as
well as a variety of properties.

There is a lot of potential for standardizing an abstract user
interface design language. However, there are many more such
languages than is the case for task models. This will make it harder
to standardize due to the need to forge bridges between different
camps, through the establishment of common use cases, a shared
vocabulary and a synthesis of ideas. As such, ASFE-DL will be just
one input into the standardization process.

The list of existing alternatives for AUIs is quite lengthy (Souchon
and Vanderdonckt, 2003). Next we will provide more detailed
information regarding the two AUI languages that comprise the
consortium's portfolio of authored and co-authored languages in
this field, namely: UsiXML and MARIA.

The USer Interface EXtensible Markup Language (UsiXML)
(Limbourg et al., 2005) is an XML-compliant mark-up language to
describe user interfaces for multiple contexts and different
modalities. UsiXML allows also non-developers to use the language
to describe user interfaces, mainly because the elements of the UI
can be described at a high level, regardless of the platform of use.
The UsiXML language was submitted for a standardisation action
plan in the context of the Similar network of excellence and of the
Open Interface European project.

MARIA (Model-based language for Interactive Applications)
(Paternò et al., 2009), is a universal, declarative, multiple
abstraction-level, XML-based language for modelling interactive
applications in ubiquitous environments. For designers of multi-
device user interfaces, one advantage of using a multi-layer
description for specifying UIs is that they do not have to learn all
the details of the many possible implementation languages
supported by the various devices, but they can reason in abstract
terms without being tied to a particular UI modality or, even worse,
implementation language. In this way, they can better focus on the
semantics of the interaction, namely what the intended goal of the
interaction is, regardless of the details and specificities of the
particular environment considered.

2.4 Concrete UI Models

The concrete user interface involves a commitment to a class of
device and modes of interaction. Some typical examples are
examined in the following subsections. There are quite a few
existing user interface languages at this level of abstraction. Some

6

of these are widely deployed proprietary solutions, where the
vendor may feel little imperative to add support for interoperable
interchange of user interface designs. An open standard is likely to
have a tough time in widening its support beyond a relatively small
community of early adopters. The larger the community, the easier
it is to gather the resources needed to create and maintain
effective easy to use tools and documentation. This is true for both
open source and proprietary solutions.

Some examples of existing concrete user interface languages:

• UIML - early example of a user interface markup language
• MXML - introduced by Macromedia for compilation into

Flash SWF
• XUL - introduced by Mozilla Foundation for the Gecko engine
• XAML - introduced by Microsoft for use with their .NET

framework
• OpenLazlo (LZX) - introduced by Lazlo Systems for their

presentation server
• MARIA - developed by ISTI-CNR, and combining abstract

and concrete UI
• XForms - developed by W3C for rich forms interfaces

2.4.1 WIMP (desktop GUI)

The abbreviation WIMP stands for "windows, icons, menus,
pointer", and describes the kind of graphical user interface
common on desktop computers running operating systems such as
Microsoft Windows, MacOS, and Linux + X Windows. WIMP user
interfaces were originally developed by Xerox in the early
seventies, but came to popular attention through the Apple
Macintosh in the mid-eighties, and later Microsoft Windows. A
concrete user interface modelling language for WIMP platforms
can build upon a wealth of experience. Some examples of common
features include:

• scroll-able windows, inline and pop-up dialogues
• click, double click, drag and drop idioms
• window minimization, maximization and close buttons
• icons for minimized applications, and as clickable buttons
• tab controls for groups of related panes
• control bars with subsidiary controls
• drop down menus and combo boxes
• Keyboard short cuts as alternatives to using the mouse/

trackpad
• single and multi-line text boxes
• captioned radio buttons
• captioned check boxes

7

• up/down spinners
• buttons with text and icons as captions
• named boxes for grouping related controls
• a variety of layout policies, e.g. absolute, horizontal, vertical,

grid and table layouts

Graphical editors for creating WIMP user interfaces typically
consist of a palette of controls that can be dragged on to a canvas.
Once there, each control has a set of associated properties that you
can update through a property sheet. These can be used to attach
the desired behaviour, and it is common to define this with a
scripting language that bridges the user interface controls and the
application back-end.

One challenge for WIMP user interfaces is adapting to varying
window sizes and resolutions. To some extent this can be addressed
through layout policies that make the best use of the available
space. The end user may be able to vary the font size. Scrollable
windows make it possible to view a large window in a smaller
screen area. However, large changes in window size and resolution
call for more drastic adaptations, and one way to address this via
splitting the user interface design into multiple concrete user
interface models aimed at different sizes of window.

2.4.2 Touch-based GUI (smart phones and tablets)

In the last few years, there has been a rapid deployment of phones
and tablets featuring a high resolution colour screen with a multi-
touch sensor. Touch-based devices typically lack traditional
keyboards, and have given rise to a new set of user interface
design patterns. Some common features include:

• tap, double tap, long tap, drag and drop
• two finger pinch, stretch and zoom
• swipe to pan
• single rather than multiple windows
• background services
• pop-up notifications
• icons for launching applications
• suspend and resume semantics for applications
• orientation sensing and portrait/landscape adaptation
• ambient light level sensing
• proximity sensing
• GPS-based location sensing
• wide variety of display resolutions
• Bluetooth, USB and NFC interfaces
• variations in support for Web standards, especially scripting

APIs

8

Further study is needed to see just how practical it is to define and
standardize a common concrete user interface language for
different touch-based platforms such as Apple's iOS and Google's
Android. Variations across devices create significant challenges for
developers, although some of this can be hidden through the use of
libraries.

2.4.3 Vocal UI

Vocal user interfaces are commonly used by automated call centres
to provide service that customers can access by phone using their
voice and the phone's key pad. Vocal interfaces have to be designed
to cope with errors in speech recognition, and ungrammatical or
out of domain responses by users. Simple vocal interfaces direct
the user to respond in narrow and predictable ways that can be
characterized by a speech grammar. Errors can be handled via
repeating or rephrasing the prompt, or by giving users the choice
of using the key pad. Some relevant existing W3C specifications
are:

• Voice Extensible Markup Language (VoiceXML)
• Speech Recognition Grammar Specification (SRGS)
• Semantic Interpretation for Speech Recognition (SISR)
• Speech Synthesis Mark Language (SSML)
• Pronunciation Lexicon Specification (PLS)
• Emotion Markup Language (EmotionML)
• Voice Browser Call Control (CCXML)
• State Chart XML (SCXML)

VoiceXML is similar in some respects to the Hypertext Markup
Language (HTML) in its use of links and forms. VoiceXML also
provides support for spoken dialogues in terms of error handling,
and the use of complementary languages such as SRGS for speech
grammars, and SSML for control of speech synthesis and
prerecorded speech.

The Serenoa framework can be applied to vocal interfaces
described in VoiceXML where the the speech grammars can be
readily derived. This is the case for applications involving
navigation through a tree of menus, where the user is directed to
repeat one of the choices given in a prompt, or to tap the key pad
with the number of the choice, e.g.:

M: Do you want news, sports, or weather?
U: weather
M: the weather today will be cold and windy with a chance of rain ...

9

VoiceXML corresponds to the final user interface layer in the
Cameleon Reference Framework, and could be complemented by a
higher level concrete user interface models for vocal interfaces.
Further work is needed to clarify the requirements before
standardization can take place.

More sophisticated voice interfaces encourage users to answer in
an open ended way, where a statistical language model is used to
classify the user's utterance based upon an analysis of large
numbers of recorded calls. The classification triggers a state
transition network encoding the dialogue model. The following
example is from "How may I help you" by Gorin, Parker, Sachs and
Wilpon, Proc. of IVITA, October 1996.

M: How may I help you?
U: Can you tell me how much it is to Tokyo?
M: You want to know the cost of a call?
U: Yes, that's right.
M: Please hold for rate information

This kind of vocal interface is a poor fit for the Serenoa framework
as it requires specialized tools for annotating and analyzing large
numbers of calls (the above paper cited the use of a corpus of over
10,000 calls), and for the development of utterance classification
hierarchies and state transition dialogue models.

State Chart extensible Markup Language (SCXML)

• http://www.w3.org/TR/scxml/

SCXML provides a means to describe state transition models of
behaviour and can be applied to vocal and multimodal user
interfaces.

2.4.4 Multimodal UI

Multimodal user interfaces allow users to provide input with
multiple modes, e.g. typing or speaking. A single utterance can
involve multiple modes, e.g. saying "tell me more about this one"
while tapping at a point on the screen. Likewise the system can
respond with multiple modes of output, e.g. visual, aural and
tactile, using the screen to present something, playing recorded or
synthetic speech, and vibrating the device.

The wide range of possible approaches to multimodal user
interfaces has hindered the development of standards. Some work
that has been considered includes:

10

http://www.w3.org/TR/scxml/

• Using spoken requests to play video or music tracks based
upon the Voice Extensible Markup Language (VoiceXML)

• Loosely coupling vocal and graphical user interfaces, where
these are respectively described with VoiceXML and HTML,
see: http://www.w3.org/TR/mmi-arch/

• Extending HTML with JavaScript APIs for vocal input and
output, see: http://www.w3.org/2005/Incubator/htmlspeech/
XGR-htmlspeech-20111206/

The W3C Multimodal Interaction Working Group has worked on

• The Extensible Multimodal Annotation Markup Language
(EMMA), which defines a markup language for containing
and annotating the interpretation of user input, e.g. speech
and deictic gestures.

• Ink Markup Language (InkML), which defines a markup
language for capturing traces made by a stylus or finger on a
touch sensitive surface. This opens the way to user
interfaces where the user writes rather than types or speaks
the information to be input.

Human face to face communication is richly multimodal with facial
gestures and body language that complements what is said. Some
multimodal interfaces try to replicate this for system output by
combining speech with an animated avatar (a talking head).
Handwriting and speech also lend themselves to biometric
techniques for user authentication, perhaps in combination of face
recognition using video input.

Serenoa could address a limited class of multimodal user
interfaces, but it is unclear that it is timely to take this to
standardization. A possible exception is for automotive applications
where multimodal interaction can be used to mitigate concerns
over driver distraction, where drivers need to keep focused on the
task of driving safely.

2.4.5 Industrial UI

There is plenty of potential for applying the Serenoa framework to
industrial settings. Manufacturing processes frequently involve
complex user interfaces for monitoring and control purposes. This
can combine mechanically operated values and sensors, together
with sophisticated computer based interactive displays. Model-
based user interface design techniques could be applied to reduce
the cost for designing and updating industrial user interfaces. This
suggests the need for work on concrete user interface modelling
languages that reflect the kinds of sensors and actuators needed on
the factory floor. The need for specialized models for context

11

http://www.w3.org/TR/mmi-arch/
http://www.w3.org/2005/Incubator/htmlspeech/XGR-htmlspeech-20111206/
http://www.w3.org/2005/Incubator/htmlspeech/XGR-htmlspeech-20111206/

awareness of interactive systems in industrial settings is covered in
a later section.

2.5 Context of Use

This section looks at the context of use and its role in supporting
adaptation, starting with general considerations, and then taking a
look at industrial and automotive settings.

2.5.1 General Considerations

What is the context of use and how does it assist in enabling
context aware interactive systems? There are three main aspects:

1. the capabilities of the device hosting the user interface
2. the user's preferences and capabilities
3. the environment in which the interaction is taking place

Some device capabilities are static, e.g. the size and resolution of
the screen, but others change dynamically, e.g. the orientation of
the screen as portrait or landscape. Designers need to be able to
target a range of devices as people are increasingly expecting to
access applications on different devices: a high resolution desktop
computer with a mouse pointer, a smart phone, a tablet, a TV or
even a car. Model-based techniques can help by separating out
different levels of concerns, but this is dependent on understanding
the context of use.

We are all individuals, and it is natural for us to expect that
interactive systems can adapt to our preferences, and crucially to
our own limitations, for instance, colour blindness, a need for
increased contrast and for big fonts to cope with limited vision,
aural interfaces when we can't see (or have our eyes busy with
other matters). Some of us have limited dexterity, and have
difficulty with operating a mouse pointer or touch screen. Bigger
controls are needed along with the possibility of using assistive
technology.

A further consideration is enabling applications to adapt to our
emotional state, based upon the means to detect emotional cues
from speech. In the car, researchers are using gaze tracking to see
what we are looking at, and assessing how tired we are from the
frequency of which we blink, as well as the smoothness by which
we are operating the car.

Finally, we are influenced by the environment in which we are
using interactive systems. Hot/cold, quiet/noisy, brightly lit/dark,
the level of distractions, and so forth. Other factors include the

12

battery level in mobile device, and the robustness or lack of the
connection to the network.

From a standardization perspective, there is an opportunity to
formalize the conceptual models for the context of use, and how
these are exposed through application programming interfaces
(APIs) and as properties in the conditions of adaptation rules.

2.5.2 Industry: Fulfilment of Safety Guidelines

Interactive systems for industrial settings need to adapt to dynamic
changes in the context of use. A robot arm may need to be kept
stationary to allow a human to safely interact with the system. The
application thus needs to be able to alter its behaviour based upon
sensing the proximity of the user. Another case is where the user
must be on hand to monitor the situation and take control of
potentially dangerous processes. This suggests the need for
specialized models for the context of use in industrial settings.

2.5.3 Automotive: Mitigation of Driver Distraction

Interactive systems in the car pose interesting challenges in the
need to keep the driver safely focused on the road, and the risk of
legal liability is that isn't handled effectively.

Modern cars have increasingly sophisticated sensors and external
sources of information. Some examples include:

• imminent collision detection and braking control
• dynamic adjustment of road-handling to match current

conditions, e.g. when there is ice or water on the road
• detection of when the car is veering out of the lane
• automatic dipping of headlights in the face of oncoming

traffic
• automatic sensing of road signs
• adaptation for night-time operation
• car to car exchanges of information on upcoming hazards
• access to the current location via GPS
• access to live traffic data over mobile networks
• dead-spot cameras for easier reversing
• sophisticated sensors in many of the car's internal systems

Drivers need to be kept aware of the situation, and free of
distractions that could increase the risk of an accident. Phone
conversations and entertainment services need to be suspended
when appropriate, e.g. when approaching a junction, or the car
ahead is slowing down. Safety related alerts need to be clearly
recognizable under all conditions. Visual alerts may be ineffective

13

at night due the lights of oncoming traffic, or in the day, when the
sun is low on the horizon. Likewise aural alerts may be ineffective
when driving with the windows down, or when the passengers are
talking noisily.

Automotive represents a good proving ground for the Serenoa
ideas for context adaptation. W3C plans to hold a Web and
Automotive workshop in late 2012, and to launch standards work
thereafter. This provides an opportunity for standardizing models
for the context of use, including models of cognitive load, as well as
an automotive oriented version of AAL-DL.

2.6 Multidimensional Adaptation of Service Front
Ends

The theoretical framework for Serenoa is structured in three
components:

• Context-aware Reference Framework (CARF)
• Context-aware Design Space (CADS)
• Context-aware Reference Ontology (CARFO)

Together these provide the concepts and the means for defining,
implementing and evaluating context aware interactive systems.

2.6.1 CARF Reference Framework

The Context-aware Reference Framework (CARF) provides core
concepts for defining and implementing adaptive and adaptable
systems.

The above figure illustrates the main axes:

• What kinds of things are being adapted, e.g. the
navigational flow, or the size of text and images, ...

• Who is triggering and controlling the adaption process, e.g.
the end user, the system or a third party

• When the adaptation takes place, e.g. design-time or run-
time.

14

• Where adaptation takes place, e.g. in the device hosting the
user interface, in the cloud or at some proxy entity

• Which aspects of the context are involved in the adaptation
• How is the adaptation performed, i.e. what strategies and

tactics are involved

It is unclear how CARF could be standardized. An informative
description is fine, but the question to be answered is how CARF is
exposed in design tools and at during the run-time of interactive
systems.

2.6.2 CADS Design Space

The Context-aware Design Space (CADS) provides a means to
analyse, evaluate and compare multiple applications in regards to
their coverage level of adaptation, e.g. for dimensions such as
modality types.

CADS defines a number of axes for considering adaptation. All of
these axes form an ordered dimension, however their levels not
always have equal proportions. These are illustrated in the
following figure:

15

Designers can use CADS as a conceptual model to guide their
thinking. It can also provide a means for classifying collections of
adaptation rules. It is unclear at this point just how CADS would
feed into standardization, except as a shared vocabulary for talking
about specific techniques.

2.6.3 CARFO Multidimensional Adaptation Ontology

The Context-aware Reference Ontology (CARFO) formalizes the
concepts and relationships expressed in the Context-aware
Reference Framework (CARF). CARFO enables browsing and
search for information relevant to defining and implementing the
adaptation process. This is useful throughout all of the phases of an
interactive system: design, specification, implementation and
evaluation.

Standardizing CARFO is essentially a matter of building a broad
consenus around the concepts and relationships expressed in the
ontology. This can be useful in ensuring a common vocabulary, even
if the ontology isn't used directly in the authoring and run-time
components of interactive systems.

2.7 Design-time adaptation rules

Design-time adaptation rules have two main roles:

1. To propagate the effects of changes across layers in the
Cameleon reference framework.

2. To provide a check on whether a user interface design
complies to guidelines, e.g. corporate standards aimed at
ensuring consistency across user interfaces.

One way to represent adaptation rules is as follows:

IF condition THEN conclusion

When executed in a forward chaining mode, rules are found that
match the current state of a model, and the conclusion is fired to
update the model. This process continues until all applicable rules
have been fired. If more than one rule applies at a given instance, a
choice has to be made, e.g. execute the first matching rule, or use a
rule weighting scheme to pick a rule. Some rule engines permit a
mix of forward and backward (goal-driven) execution, where rules
are picked based upon their conclusions, and the rule engine then
tries to find which further rules would match the conditions.

Forward chaining production rules can be efficiently executed by
trading off memory against speed, e.g. using variants of the RETE

16

algorithm. Rule conditions can involve externally defined functions,
provided these are free of side-effects. This provides for flexibility
in defining rule conditions. Likewise, the rule conclusions can
invoke external actions. These can be invoked as a rule is fired, or
later when all of the applicable rules have fired.

To enable rules to respond to changes in models, the rules can be
cast in the form of event-condition-action, where an event
corresponds to a change the user has made to the model. Manual
changes to the abstract user interface can be propagated to each of
the targets for the concrete user interface, for instance desktop,
smart phone and tablet. Likewise, manual changes to the concrete
user interface for a smart phone can be propagated up to the
abstract user interface and down to other targets at the concrete
user interface layer.

The set of rules act as an cooperative assistant that applies best
practices to help the designer. Sometimes additional information
and human judgement is required. The rules can be written to pass
off tasks to the human designer via a design agenda.

One challenge is to ensure that the maintainability of the set of
rules as the number of rules increases. This requires careful
attention to separation of different levels of detail, so that high
level rules avoid dealing with details that are better treated with
lower level rules.

The above has focused on IF-THEN (production rules) that can
respond to incremental changes in models. An alternative approach
is to focus on transformation rules that map complete models from
the abstract user interface to models for the concrete user
interface. W3C's XSLT language provides a great deal of flexibility,
but at the cost of transparency maintainability. Other work has
focused on constrained transformation languages, e.g. the Object
Management Group's QVT (Query/View/Transformation) languages
for transforming models.

There is an opportunity to standardize a rule language for design-
time use. When bringing this to W3C, it will be important to show
how the rule language relates to W3C's generic Rule Interchange
Framework (RIF).

Note that the Serenoa Advanced Adaptation Logic Description
Language (AAL-DL) is covered in a subsequent section.

17

2.8 Run-time adaptation rules

Run-time rules are designed to describe how the user interface
should adapt to changes in the context of use. This could be to
match the user's preferences or capabilities, or to a change in the
environment. The event-condition-action pattern is well suited for
this purpose, where events are changes in the context of use, or in
the user interface state. Serenoa is exploring this approach with
the Advanced Adaptation Logic Description Language (AAL-DL).

The examples considered so far have focused on high level
adaptations with the idea of invoking separate adaptation modules
to determine the detailed changes that need to be applied. These
modules could be implemented with production rules, but other
possibilities include scripting languages or conventional
programming languages like Java.

The Serenoa architecture shows the run-time as a group of three
modules:

1. Context Manager
2. Adaptation Engine
3. Run-time Engine

The Context Manager keeps track of the context of use, i.e.
information about the user, the device and the environment it is
operating in. It provides support for querying the context of use,
and for signalling changes.

The Adaptation Engine execute the AAL-DL rules as described
above. The Run-time Engine maps the concrete user interface
design to the final user interface, in accordance with the
adaptations suggested by the Adaptation Engine. The architecture
can be implemented either in the cloud, or in the device itself
where the resource constraints permit this.

One challenge is preserving the state of the interaction when
applying an adaptation to a change in the context of use. State
information can be held at the domain level, the abstract user
interface, and the concrete user interface.

Some classes of adaptations can be compiled into the final user
interface. For HTML pages, adaptation can be implemented as part
of the web page scripts, or though style sheets with CSS Media
Queries. This raises the challenge of how to compile high level
adaptation rules expressed in AAL-DL into the final user interface.

18

The Advanced Adaptation Logic Description Language (AAL-DL)
seems well suited for standardization, although this may not be
practical until we have more experience of how well the run-time
architecture performs in a variety of settings.

2.9 Advanced Adaptation Logic Description
Language (AAL-DL)

One of the aims of Serenoa is to develop a high-level language for
declarative descriptions of advanced adaptation logic (AAL-DL).
This is described in detail in:

• Deliverable D3.3.1 AAL-DL: Semantics, Syntaxes and
Stylistics

AAL-DL as currently defined can be used for first order adaptation
rules for a specific context of use, and second order rules that
select which first order rules to apply. Further work is under
consideration for third order rules that act on second order rules,
e.g. to influence usability, performance and reliability.

Current examples of AAL-DL focus on adaptation to events
signalling changes in the context of use. In principle, it could also
be used for design time transformation.

The AAL_DL metamodel is as follows:

This diagram just presents the main subclasses of the action
element (create, read, update, delete, if, while, foreach, for, block,
and invokeFunction). An XML Scheme has been specified for

19

interchange of AAL-DL rules, but as yet there is not agreement on a
high level syntax aimed at direct editing.

Here is an example of a rule:

• If user is colour-blind then use alternative color palette.

In XML this looks like:

A significant challenge will be to explore the practicality of
enabling developers to work with a high level rule syntax rather
than at the level expressed in the XML example.

AAL-DL could be submitted to W3C as a basis for a rule language,
however, further work will be needed to demonstrate its practical
effectiveness on a range of examples before the W3C Model-Based
User Interfaces Working Group is likely to proceed with
standardizing an adaptation rule language. In practice, this is
something that would likely take place when the Working Group is
rechartered in early 2014, i.e. after the Serenoa project comes to
an end.

20

2.10 Corporate Rules for Consistent User
Experience

Companies often wish to ensure that the user interfaces on their
products have a consistent look and feel that expresses the brand
the company is promoting. It is still the case that many designers
focus first on the visual appearance by working with tools like
Adobe Illustrator to mock up the appearance of a user interface.
This leads to costly manual processes for reviewing whether the
resultant user interface designs match corporate standards.

The Serenoa Framework has the potential to make this a lot easier
through the separation of design concerns and the application of
design and run-time rule engines. The rules can be written to verify
adherence to corporate standards as the user interface is being
designed. At run-time, business rules can be used to implement
corporate standards. The concrete user interface languages can be
designed to reflect the templates and components required. The
process of transforming the concrete user interface into the final
user interface can be designed to apply the corporate branded look
and feel (skinning the user interface).

Further work is needed to identify what changes are needed to
support this in the rule language, and its suitability for
standardization. There is some potential for standardizing the
means for skinning the concrete user interface for particular
classes of target platforms.

3 W3C Model-Based UI Working Group
This section of the report describes standardization activities at the
W3C on model-based user interface design.

3.1 MBUI WG - Introduction

The W3C Model Based User Interfaces Working Group was formed
on 17 October 2011 and provides the main target for standardizing
work from the Serenoa project. This section will describe the
history leading up to the formation of this Working Group, its
charter, the technical submissions received, the current work items
and future plans.

3.2 MBUI WG History

When Tim Berners-Lee invented the World Wide Web at the start of
the nineties, he set out to ensure that it would be accessible from a
wide range of platforms. Early examples include the NeXT

21

computer, a sophisticated graphics workstation, and dumb text
terminals using the CERN Line Mode Browser. By the mid-nineties,
popular browsers included Netscape's Navigator, and Microsoft's
Internet Explorer. The success of the latter meant that most people
were interacting with the Web from a desktop computer running
Microsoft Windows. Some websites even went as far as stating
"best viewed in Internet Explorer".

By the end of the nineties, as the potential of mobile devices began
to get people's attention, the challenge arose for how to enable
designers to create Web applications for use on desktop and mobile
devices. W3C launched the Device Independence Working Group to
address these challenges. A set of draft device independence
principles were published in September 2001:

• http://www.w3.org/TR/2001/WD-di-princ-20010918/

This followed on from earlier work at W3C on Composite
Capability/Preference Profiles (CC/PP), a means for devices to
advertise their capabilities so that web sites could deliver content
adapted to the needs of each device. That led to a W3C
Recommendation for CC/PP 1.0 in January 2004:

• http://www.w3.org/TR/2004/REC-CCPP-struct-
vocab-20040115/

W3C went on to work on a device independent authoring language
(DIAL). This combines HTML with simple rules according to the
device's capabilities.

• http://www.w3.org/TR/2007/WD-dial-20070727/

With DIAL, adaptation could take place anywhere along the
delivery chain, i.e. at the originating web site, a proxy server or in
the browser. CC/PP and DIAL both failed to take off in practice.
One issue was that mobile device vendors failed to provide
accurate information on device capabilities. Another was browser
developers had at that time little interest in device independence,
with the exception of limited support for conditionals in style
sheets (CSS Media Queries):

• http://www.w3.org/TR/CSS2/media.html

This allowed you to provide different style rules for a limited set of
device categories:

• all - Suitable for all devices.
• braille - Intended for braille tactile feedback devices.
• embossed - Intended for paged braille printers.

22

http://www.w3.org/TR/2001/WD-di-princ-20010918/
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/2007/WD-dial-20070727/
http://www.w3.org/TR/CSS2/media.html

• handheld - Intended for handheld devices (typically small
screen, limited bandwidth).

• print - Intended for paged material and for documents
viewed on screen in print preview mode. Please consult the
section on paged media for information about formatting
issues that are specific to paged media.

• projection - Intended for projected presentations, for
example projectors. Please consult the section on paged
media for information about formatting issues that are
specific to paged media.

• screen - Intended primarily for color computer screens.
• speech - Intended for speech synthesizers. Note: CSS2 had a

similar media type called 'aural' for this purpose. See the
appendix on aural style sheets for details.

• tty- Intended for media using a fixed-pitch character grid
(such as teletypes, terminals, or portable devices with
limited display capabilities). Authors should not use pixel
units with the "tty" media type.

• tv - Intended for television-type devices (low resolution,
color, limited-scrollability screens, sound available).

Few browsers supported CSS media queries apart from screen and
print. More recently, the specification has added further
capabilities and finally became a W3C Recommendation in June
2012.

• http://www.w3.org/TR/2012/REC-
css3-mediaqueries-20120619/

A further possibility is to use web page scripts to adapt the markup
and presentation locally in the browser. Each browser provides the
user agent string, but by itself this doesn't provide sufficient
information for effective adaptation. The scripting APIs for
accessing information about the device are extremely limited. In
part this is driven by concerns over privacy. The more information a
website can determine about a device, the easier it is to fingerprint
a user and to build up a detailed picture of the user's browsing
habits.

DIAL, CSS Media Queries, and client side scripting all fail to tackle
the challenge of separating out different level of design concerns.
This is where research work on model-based user interface design
has the most promise. The next sections will describe how this was
picked up by W3C, and the launch of the Model-Based User
Interfaces Working Group.

23

http://www.w3.org/TR/2012/REC-css3-mediaqueries-20120619/
http://www.w3.org/TR/2012/REC-css3-mediaqueries-20120619/

3.2.1 MBUI Incubator Group

W3C work on model-based user interfaces started with a
preliminary meeting in Pisa, Italy on 23 July 2008, hosted by the
Istituto di Scienze e Tecnologie dell'Informazione, and concluded
with the participants agreeing to work together on preparing a
draft charter for a W3C Incubator Group.

• http://www.w3.org/2008/07/model-based-ui.html

The first face to face meeting of the Model-Based User Interfaces
Incubator Group was held on 24 October 2008, hosted by W3C at
the 2008 Technical Plenary in Mandelieu, France. The Charter and
home page for the Model-Based Interfaces Incubator Group can be
found at:

• http://www.w3.org/2005/Incubator/model-based-ui/charter/
• http://www.w3.org/2005/Incubator/model-based-ui/

Work proceeded via teleconferences and a wiki. A second face to
face meeting took place in Brussels on 11-12 June 2009, hosted by
the Université catholique de Louvain. The Incubator Group report
was published on 4 May 2010.

• http://www.w3.org/2005/Incubator/model-based-ui/XGR-
mbui-20100504/

It provides an introduction to model-based UI design, a survey of
the state of the art, an outline of motivating use cases, and a case
study of user interfaces in the digital home. The concluding
remarks cover suggested standardization work items.

The publication of the Incubator Group report was followed by a
Workshop in Rome. This is described in the next section.

3.2.2 MBUI Workshop

The W3C Workshop on Future Standards for Model-Based User
Interfaces was held on 13-14 May 2010 in Rome, hosted by the
Istituto di Scienze e Tecnologie dell'Informazione. The website
includes the statements of interest submitted by participants, the
agenda and links to talks, and the Workshop Report, which can be
found at:

• http://www.w3.org/2010/02/mbui/report.html

The Workshop was timed to follow the publication of the report of
the W3C Model-Based UI Incubator Group. Participants presented

24

http://www.w3.org/2008/07/model-based-ui.html
http://www.w3.org/2005/Incubator/model-based-ui/charter/
http://www.w3.org/2005/Incubator/model-based-ui/
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://www.w3.org/2010/02/mbui/report.html

model-based approaches from a variety of perspectives, reflecting
many years of research work in this area. The Workshop's final
session looked at the opportunity for launching standards work on
meta-models as a basis for exchanging models between different
markup languages. The following photo shows the workshop
participants:

3.2.3 Formation of MBUI Working Group

The W3C Model-Based User Interfaces Working Group was
launched on 17 October 2011 and is chartered until the 13
November 2013. Work is proceeding with a mix of regular
teleconferences, the mailing list and wiki, and face to face
meetings. The first face to face was hosted by DFKI in
Kaiserslautern, Germany on 9-10 February 2012,

25

and the second on 14-15 June in Pisa, hosted by ISTI-CNR.

3.3 MBUI Working Group Charter

• http://www.w3.org/2011/01/mbui-wg-charter

26

http://www.w3.org/2011/01/mbui-wg-charter

The Working Group Charter defines the scope of the permitted
work items, and the roadmap as envisioned when the charter came
into effect. The charter is subject to review by the W3C Advisory
Committee, which includes one person per member organization
(regardless of size), and the W3C Management Team. The Model-
Based User Interfaces (MBUI) Working Group is currently
chartered until 30 November 2013. The scope is as follows:

Use cases and Requirements

As needed to guide and justify the design decisions for the
development of the specifications.

Specification of meta-models for interchange of models
between authoring tools for (context aware) user interfaces
for web-based interactive application front ends

This could take the form of UML diagrams and OWL ontologies,
and cover the various levels of abstraction (e.g. as defined in the
Cameleon reference framework, as well as that needed to support
dynamic adaption to changes in the context).

Specification of a markup language and API which realize
the meta-models.

This is expected to draw upon existing work such as (but not
restricted to) Concur Task Trees (CTT), Useware Markup Language
(useML), UsiXML or UIML.

Test assertions and Test suite for demonstrating
interoperability

This is needed to support progress along the W3C
Recommendation Track, and in particular, to exit from the
Candidate Recommendation phase.

Model-based user interface design primer

An explanation/guideline for how to apply the specifications to
support the development of the associated use cases.

Open Source Implementations

Working Group members may wish to develop open source
implementations of authoring tools to demonstrate the potential,
and for use in developing and applying the test suite described
above.

Some features are explicitly out of scope for the Working Group

27

Defining markup and APIs for direct interpretation by
interactive application front ends (e.g. web browsers).

But where appropriate, it should be feasible to define markup,
events and APIs that are supported by libraries, e.g. JavaScript
modules. This may be needed to support dynamic adaptation to
changes in the context.

This restriction was included in the charter to reassure browser
vendors that there is no requirement for changes to Web browsers.
Instead, the work on model-based user interface design is aimed at
authoring tools, and associated run-time libraries that run on top of
browsers.

3.3.1 Work Items

The expected deliverables are as follows:

• Recommendation Track specification for task models
• Recommendation Track specification for abstract user

interface models
• Working Group Note introducing model based user interface

design, along with use cases
• Working Group Note defining a glossary of terms as used in

the other deliverables

W3C Recommendation Track specifications follow the following
stages. This have been annotated with the dates the MBUI
deliverables were envisioned by the charter to reach each stage.

1. First Public Working Draft - initial publication (expected
March 2012)

2. Last Call Working Draft - stable version (expected
September 2012)

3. Candidate Recommendation - test suites and
implementation reports (expected February 2013)

4. Proposed Recommendation - reviewed by W3C Advisory
Committee (expected June 2013)

5. Recommendation - supplemented by errata (expected
August 2013)

In the preparatory work leading up to drafting the charter, there
was general agreement that it would be best to focus initial work
on standards for task models and abstract UI models. Once this has
been achieved, the next step will be to work on standards for
concrete UI models, and context adaptation. This would require re-
chartering the MBUI Working Group for a further period. Further
details will be discussed in the conclusion to this report.

28

3.4 MBUI Submissions

When the Model-Based User Interfaces Working Group was formed,
the first step was to invite submissions of background work as as
basis for discussions leading to a consensus on the specifications
we planned to create. There were 7 submissions by the time we
met for the first face to face meeting in Kaiserslautern. The
following subsections briefly reviews each in turn. Further
information can be found on the MBUI Wiki at:

• http://www.w3.org/wiki/MBUI_Submissions

3.4.1 Advanced Service Front-End Description Language
(ASFE-DL)

• http://www.w3.org/2012/01/asfe-dl/

This is a submission on behalf of the FP7 Serenoa project, and
covers a meta-model and XML serialization for the abstract UI
layer of the Cameleon Reference Framework, see:

• CAMELEON (Context Aware Modelling for Enabling and
Leveraging Effective interactiON) Project
(FP5-IST4-2000-30104), http://giove.isti.cnr.it/projects/
cameleon.html.

The ASFE-DL language is expected to evolve further during the
remainder of the Serenoa project, but the version submitted just
focuses on abstract user interface models, and corresponds to the
Platform-Independent-Model – PIM in Model Driven Engineering
(MDE). ASFE-DL draws upon experience with previous work on
MARIA and UsiXML, both of which were submitted separately to
the MBUI Working Group. The idea behind ASFE-DL is to create a
unified and more complete language, combining the strengths of
the two languages, unifying concepts and adding new features that
will allow this language to meet requirements for context aware
adaptation of service front ends. The ASFE-DL meta-model (for the
submission) is defined by the following UML diagram:

29

http://www.w3.org/wiki/MBUI_Submissions
http://www.w3.org/2012/01/asfe-dl/
http://giove.isti.cnr.it/projects/cameleon.html
http://giove.isti.cnr.it/projects/cameleon.html

Different colours are used to highlight different parts of the
metamodel: sky-blue for the main structure of the interface, green
for the interactor hierarchy, red for the classes that model the
relationships between interactors and yellow for the classes that
model the UI behaviour.

Loosely put, ASFE-DL can be used to describe the user interface as
a set of interrelated abstract dialogues (AbstractInteractionUnits),
where each dialogue has a set of interactors for collecting user
input, updating the domain model, activating methods on the
domain model, and navigating between dialogues. ASFE-DL
provides a means to define handlers for a variety of events, which
can be triggered by user actions, or by the system itself.

3.4.2 The ConcurTaskTrees Notation (CTT)

* http://www.w3.org/2012/02/ctt/

The ConcurTaskTrees (CTT) notation provides a metamodel,
visualization and XML format for interchange of user interface task
models between different design tools. CTT was developed by ISTI-

30

http://www.w3.org/2012/02/ctt/

CNR and first published at INTERACT'97 and since then has been
widely used in academic and industrial institutions.

Task models can be used in a variety of ways:

• Improve understanding of the application domain
• Record the result of interdisciplinary discussion
• Support effective design
• Support usability evaluation
• Support the user during a session
• Documentation

The aim of CTT is to provide fairly high level descriptions of user
interfaces. It is not intended as a programming language, and
deliberately omits details that would risk derailing high level
design discussions. Extensions have been proposed for cooperative
task models involving multiple users.

The notation covers:

• Hierarchical structuring of tasks
• Temporal relations between tasks
• Task allocation (user or system)
• Task preconditions

CTT task models are frequently depicted as a diagrams, e.g.

31

The temporal operators are as follows:

Operator Symbol
Enabling T1 >> T2 or T1 []>> T2
Disabling T1 [> T2
Interruption T1 |> T2
Choice T1 [] T2
Iteration T1* or T1{n}
Concurrency T1 ||| T2 or T1 |[]| T2
Optionality [T]
Order Independency T1 |=| T2

Where the second symbol for enabling is for task enabling with
information passing. Likewise, the second symbol for concurrency
is for concurrent communicating tasks.

Tasks can be allocated as follows

• System - data presentation or action carried out by the
system

• User input - data entry by the user
• Cognition - a cognitive task carried out by the user

CTT's meta-model as a UML diagram:

32

There is also an XML schema to support interchange of models in
the XML format.

3.4.3 Useware Markup Language (UseML)

• http://www.w3.org/wiki/
Useware_Markup_Language_(UseML)

The Useware Markup Language (UseML) and dialog modelling
language (UseDM) have been developed to support the user and
task oriented Useware Engineering process and has been applied
to the domain of production automation and industrial
environments. The Useware process has the following steps:

1. Analysis
2. Structuring
3. Design
4. Realization

33

http://www.w3.org/wiki/Useware_Markup_Language_(UseML)
http://www.w3.org/wiki/Useware_Markup_Language_(UseML)

The following diagram illustrates the various kinds of models
involved:

The use model abstracts platform-independent tasks, actions,
activities, and operations into use objects that make up a
hierarchically ordered structure. Each element of this structure can
be annotated by attributes such as eligible user groups, access
rights, importance. Use objects can be further structured into other
use objects or elementary use objects. Elementary use objects
represent the most basic, atomic activities of a user, such as
entering a value or selecting an option

Currently, five types of elementary use objects exist:

• Trigger: starting, calling, or executing a certain function of
the underlying technical device (e.g., a computer or field
device)

• Select: choosing one or more items from a range of given
ones

• Input: entering an absolute value, overwriting previous
values

• Output: the user gathers information from the user interface
• Change: making relative changes to an existing value or item

The following diagram describes the UseDM meta-model:

34

The presentation model covers the layout and style aspects for the
elements given in the dialogue model. The presentation model is
specified using the User Interface Markup Language (UIML), which
is covered in the following subsection of this report.

3.4.4 User Interface Markup Language (UIML)

This was an indirect submission, as UIML is the presentation
language for UseML. UIML was developed by Marc Abrams, et al.
in the late 1990's to address the challenges of developing for a
growing variety of target devices for user interfaces.

UIML is an XML language for implementing user interfaces, see
[UIML]. It combines appliance independent presentation concepts
with appliance dependant concepts. Please refer to the following
link for a discussion of the relationship of UIML to other interface
description languages:

• http://www.oasis-open.org/committees/download.php/3419/
The%20Relationship%20of%20the%20UIML%203%20v01.03.doc

Here is a pertinent extract:

UIML was not intended as a UI design language, but rather
as a language for UI implementation. Therefore UI design
tools could represent a design in a design language, and
then transform a UI in a design language to a canonical
representation for UI implementation, namely UIML.

UIML has been standardized by OASIS, see:

• https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=uiml

UIML describes a user interface with five sections: description,
structure, data, style, and events. The template looks like:

35

http://www.oasis-open.org/committees/download.php/3419/The%20Relationship%20of%20the%20UIML%203%20v01.03.doc
http://www.oasis-open.org/committees/download.php/3419/The%20Relationship%20of%20the%20UIML%203%20v01.03.doc
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uiml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uiml

<?xml version="1.0" standalone="no"?>
<uiml version="2.0">

<interface name="..." class="MyApps">
<description>...</description>
<structure>...</structure>
<data>...</data>
<style>...</style>
<events>...</events>

</interface>

<logic>
</logic>

</uiml>

The description element assigns a name and a class to each UI
component. The structure element defines which components are
present from the description, and how they are organized as a
hierarchy. The data element binds to application dependent data.
The style element binds UI components to their implementation,
e.g. java classes such as "java.awt.MenuItem". The events element
binds events to actions. You can use application dependent, but
appliance independent events, and then bind them to appliance
dependent events through the style element. OASIS is currently
working on version 4 of the UIML specification.

An longer introduction to UIML can be found at:

• http://www8.org/w8-papers/5b-hypertext-media/uiml/
uiml.html

[UIML] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, und J. E. Shuster, „UIML: An Appliance-Independent XML
User Interface Language“, Journal Computer Networks: The
International Journal of Computer and Telecommunications
Networkin, Bd. 31, Nr. 11-16, S. 1695-1708, 1999.

3.4.5 Abstract Interactor Model (AIM) Specification

• http://www.multi-access.de/mint/aim/2012/20120516/

AIM focuses on modelling multimodal interactions in terms of
modes and media.

The three basic interactors are:

36

http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html
http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html
http://www.multi-access.de/mint/aim/2012/20120516/

1. Abstract Interactor Model describing behaviour common to
all modes and media

2. Concrete Interactor Model describing user interface for a
certain mode or medium

3. Interaction Resource Model - a database used to store and
manage interactor state

The following figure shows the interactor class and its relations to
the three basic interactors as a UML diagram:

The abstract model distinguishes input from output, and continuous
from discrete interaction. The AIM class model is as follows:

37

AIM further makes use of W3C's State Chart XML notation
(SCXML) to describe interactor behaviour in terms of event based
state transition. User interface design involves two concepts
(interactors and mappings), and three steps:

1. Widget design
2. Interaction design
3. Mapping

AIM has been implemented using a range of web technologies:
WebSockets, HTML5 / CSS3, Rails, NodeJS, Redis/TupleSpace, and
MMI-Arch. For more details see the link above.

3.4.6 Multimodal Interactor Mapping (MIM) Model
Specification

• http://www.multi-access.de/mint/mim/2012/20120203/

This submission supplements the submission on Abstract Interactor
Model (AIM) Specifications.

Multimodal Mappings

Each multimodal mapping consists of:

• Observations - used to observe state charts (state
machines) for state changes

• Actions - used to trigger state changes by sending events to
start charts or to call functions in the backend

• Operators - specify multimodal relations and link a set of
observations to a set of actions

There are six operators: sequence, redundance, complementary,
assignment, and equivalence.

Synchronization Mappings

These are predefined together with interactors.

Exemplary Mappings

• Drag and drop
• Gesture based navigation

38

http://www.multi-access.de/mint/mim/2012/20120203/

3.4.7 UsiXML

• http://www.w3.org/wiki/images/5/5d/
UsiXML_submission_to_W3C.pdf

• http://www.w3.org/wiki/images/8/83/UsiXMLSubmission-
Kaiserslautern-Feb2012-Part1.pdf

• http://www.w3.org/wiki/images/3/3e/UsiXMLSubmission-
Kaiserslautern-Feb2012-Part2.pdf

• http://www.w3.org/wiki/images/9/96/UsiXMLSubmission-
Kaiserslautern-Feb2012-Part3.pdf

The User Interface eXtensible Markup Language (UsiXML) is a
XML-compliant markup language that describes the user interface
for multiple contexts of use such as Character User Interfaces
(CUIs), Graphical User Interfaces (GUIs), Auditory User Interfaces,
and Multimodal User Interfaces. UsiXML has been defined by the
UsiXML Consortium, see:

• http://www.usixml.org/

The semantics are defined in a UML 2.0 class diagram, MOF-XMI
and as an ontology using OWL-Full 2.0. The interchange syntax is
XML and defined with an XML schema. UsiXML is based upon the
CAMELEON Reference Framework:

Where task models can be defined with the ConcurTaskTree (CTT)
notation and mapped to abstract user interface models
(independent of devices and modalities), and thence to concrete
user interface models (designed for a class of devices and

39

http://www.w3.org/wiki/images/5/5d/UsiXML_submission_to_W3C.pdf
http://www.w3.org/wiki/images/5/5d/UsiXML_submission_to_W3C.pdf
http://www.w3.org/wiki/images/8/83/UsiXMLSubmission-Kaiserslautern-Feb2012-Part1.pdf
http://www.w3.org/wiki/images/8/83/UsiXMLSubmission-Kaiserslautern-Feb2012-Part1.pdf
http://www.w3.org/wiki/images/3/3e/UsiXMLSubmission-Kaiserslautern-Feb2012-Part2.pdf
http://www.w3.org/wiki/images/3/3e/UsiXMLSubmission-Kaiserslautern-Feb2012-Part2.pdf
http://www.w3.org/wiki/images/9/96/UsiXMLSubmission-Kaiserslautern-Feb2012-Part3.pdf
http://www.w3.org/wiki/images/9/96/UsiXMLSubmission-Kaiserslautern-Feb2012-Part3.pdf
http://www.usixml.org/

modalities) and compiled into a final user interface for delivery to
specific device platform. Domain models describe the interface to
the user interface back end in terms of properties and methods that
can be invoked based upon user interaction. Behaviour can be
described in terms of event driven state transition models using
W3C's State Chart XML (SCXML).

You can define different kinds of mappings:

• Reification: from high to lower-level
• Abstraction: from low to higher-level
• Reflexion: at the same level

Reflexion is useful for transcoding, graceful degradation,
restructuring and retasking.

UsiXML defines context of use models

• User models, e.g. personal preferences and abilities
• Platform models, e.g. device capabilities
• Environment models, e.g. ambient light and noise

The UsiXML metamodel is as follows:

UsiXML is accompanied with a plugin for the Eclipse Integrated
Development Environment.

Proposed UsiXML extension enabling the detailed description of the
users with focus on the elderly and disabled

• http://www.w3.org/wiki/images/f/f8/
An_extension_of_UsiXML_for_users.pdf

This introduces a unified user modelling technique designed to
support user interfaces for the elderly and disabled.

Two new models are proposed for UsiXML's uiModel:

40

http://www.w3.org/wiki/images/f/f8/An_extension_of_UsiXML_for_users.pdf
http://www.w3.org/wiki/images/f/f8/An_extension_of_UsiXML_for_users.pdf

• disability model
• capability model

This covers the relationship between affected tasks and various
kinds of disabilities including both physical and cognitive
disabilities.

3.4.8 MARIA

MARIA (Model-based language for Interactive Applications)
[Paterno2000], is a universal, declarative, multiple abstraction-
level, XML-based language for modelling interactive applications in
ubiquitous environments.

MARIA supports the CAMELEON framework, with one language for
the abstract description (the so-called “Abstract User Interface”
level, in which the UI is defined in a platform –independent
manner) and multiple platform-dependent languages (which are at
the level of the so-called “Concrete User Interface”), which refine
the abstract one depending on the interaction resources at hand .
Examples of platforms are the graphical desktop, the graphical
mobile, the vocal platform, etc.

Abstract User Interface

The Abstract User Interface (AUI) level describes a UI only through
the semantics of the interaction, without referring to a particular
device capability, interaction modality or implementation
technology

At the abstract level, a user interface is composed of a number of
presentations, has an associated data model, and can access a
number of external functions. Each presentation is composed of a
number of interactors. (basic interaction elements) and a set of
interactor compositions.

According to its semantics an interactor belongs to one the
following subtypes:

• Selection. Allows the user to select one or more values
among the elements of a predefined list. It contains the
selected value and the information about the list cardinality.
According to the number of values that can be selected, the
interactor can be a Single Choice or a Multiple Choice.

• Edit. Allows the user to manually edit the object represented
by the interactor, which can be text (Text Edit), a number
(Numerical Edit), a position (Position Edit) or a generic
object (Object Edit).

41

• Control. Allows the user to switch between presentations
(Navigator) or to activate UI functionalities (Activator).

• Only output. Represents information that is submitted to
the user, not affected by user actions. It can be a Description
that represents different types of media, an Alarm, a
Feedback or a generic Object.

The different types of interactor-compositions are:

• Grouping: a generic group of interactor elements.
• Relation: a group where two or more elements are related

to each other.
• Composite Description: represents a group aimed to

present contents through a mixture of Description and
Navigator elements.

• Repeater which is used to repeat the content according to
data retrieved from a generic data source.

MARIA XML allows describing not only the presentation aspects
but also the behaviour Data Model. The interface definition
contains description of the data types that are manipulated by the
user interface. The interactors can be bound with elements the
data model, which means that, at runtime, modifying the state of an
interactor will change also the value of the bound data element and
vice-versa. The main features available already at the abstract level
and common to all languages are:

• Data Model. The interface definition contains description of
the data types that are manipulated by the user interface.
The interactors can be bound with elements the data model,
which means that, at runtime, modifying the state of an
interactor will change also the value of the bound data
element and vice-versa. This mechanism allows the
modelling of correlation between UI elements, conditional
layout, conditional connections between presentations, input
values format. The data model is defined using the standard
XML Schema Definition constructs.

• Generic Back End. The interface definition contains a set of
External Functions declarations, which represents
functionalities exploited by the UI but implemented by a
generic application back-end support (e.g. web services,
code libraries, databases etc.). One declaration contains the
signature of the external function that specifies its name and
its input/output parameters.

• Event Model. Each interactor definition has a number of
associated events that allow the specification of UI reaction
triggered by the user interaction. Two different classes of
events have been identified: the Property Change Events

42

that specify the value change of a property in the UI or in the
data model (with an optional precondition), and the
Activation Events that can be raised by activators and are
intended to specify the execution of some application
functionalities (e.g. invoking an external function).

• Continuous update of fields. It is possible to specify that a
given field should be periodically updated invoking an
external function.

• Dynamic Set of User Interface Elements. The language
contains constructs for specifying partial presentation
updates (dynamically changing the content of entire
groupings) and the possibility to specify a conditional
navigation between presentations.This set of new features
allows having already at the abstract level a model of the
user interface that is not tied to layout details, but it is
complete enough for reasoning on how UI supports both the
user interaction and the application back end.

Concrete User Interface

A Concrete User Interface (CUI) in MARIA XML provides platform-
dependent but implementation language-independent details of a
UI. A platform is a set of software and hardware interaction
resources that characterize a given set of devices. MARIA XML
currently supports the following platforms:

• Desktop CUI s model graphical interfaces for desktop
computers.

• Mobile CUI s model graphical interfaces for mobile devices.
• Multimodal Desktop CUI s model interfaces that combine the

graphical and vocal modalities for desktop computers.
• Multimodal Mobile CUI s model interfaces that combine the

graphical and vocal modalities for mobile devices.
• Vocal CUI s interfaces with vocal message rendering and

speech recognition.

Each platform meta-model is a refinement of the AUI, which
specifies how a given abstract interactor can be represented in the
current platform. The followings paragraphs provide a brief
description of the Desktop CUI and of the Vocal CUI.

Concrete Desktop User Interface

A CUI meta-model for a given platform is an extension of the AUI
meta-model, which means that all the entities in the AUI still exist

43

in the CUI. The extensions add the platform-dependent information
(but still implementation language independent) to the structure of
the corresponding AUI model for the same application interface by
either adding attributes or extending through an inheritance
mechanism the existing entities for the specification of the possible
concrete implementation of the abstract interactors. In this
paragraph, we will introduce the extension to the AUI meta-model
for the definition of the Graphical Desktop CUI meta-model. The
existing elements with new attributes are: Presentation: it contains
the presentation_setting attribute, which contains information on
the title, background (color or image) and the font used. Grouping:
it contains the grouping_setting attribute, which contains the
information on the grouping display technique (grid, fieldset,
bullet, background color or image) and if the elements are related
with an ordering or hierarchy relation. The classes which have
been extended using the inheritance are the following:

• An Activator can be implemented as a button, a text_link,
image_link, image_map (an image with the definition of a set
of areas, each one associated with a different value) or
mailto

• An Alarm can be implemented as a text (a text with font and
style information) or an audio_file

• A Description can be implemented as a text, image, audio,
video, table

• A MultipleChoice can be implemented as a check_box or a
list_box

• A Navigator can be implemented as an image_link,
text_link, button, image_map.

• A NumericalEditFull can be implemented as a text_field or
a spin_box (a text field which includes also up and down
buttons)

• A NumericalEditInRange can be implemented as a
text_field, a spin_box or a track_bar

• A PositionEdit can be implemented as an image_map
• A SingleChoice can be implemented as a radio_button,

list_box, drop_down_list or image_map
• A TextEdit can be implemented as a text_field or a

text_area.

Concrete Vocal User Interface

While in graphical interfaces the concept of presentation can be
easily defined as a set of user interface elements perceivable at a
given time (e.g. a page in the Web context), in the case of vocal

44

interfaces we consider a presentation as a set of communications
between the vocal device and the user that can be considered as a
logical unit, e.g. a dialogue supporting the collection of information
regarding a user. The AUI refinements for obtaining the Vocal CUI
definition involves defining some elements that enable setting some
presentation properties. In particular, we can define the default
properties of the synthesized voice (e.g. volume, tone), the speech
recognizer (e.g. sensitivity, accuracy level) and the DTMF (Dual-
Tone Multi-Frequency) recognizer (e.g. terminating DTMF char).

The following are the interactors refinements:

• An Alarm can be implemented as a pre-recorded sound
• A Description can be implemented as:

◦ speech, which defines text that the vocal platform
must synthesize or the path where the platform can
find the text resources. It is furthermore possible to
set a number of voice properties, such as emphasis,
pitch, rate, and volume as well as age and gender of
the synthesized voice. Moreover, we have introduced
control of behaviour in the event of unexpected user
input: by suitably setting the element named barge in,
we can decide if the user can stop the synthesis or if
the application should ignore the event and continue.

◦ pre-recorded message, which defines a pre-recorded
audio resource, with an associate alternative content
in case of unavailability.

• A MultipleChoice can be implemented vocal selection. This
element defines the question(s) to direct to the user and the
set of possible user input that the platform can accept. In
particular, it is possible to define textual input (word or
sentences) or DTMF input. In this version, the interactor
accepts more than one choice

• A SingleChoice can be implemented as a vocal selection
that accepts only one choice.

• An Activator can be implemented as a command, in order to
execute a script, a submit, to send a set of data to a server,
and goto to perform a call to a script that triggers an
immediate redirection

• A Navigator can be implemented as a goto for automatic
change of presentation, a link for user-triggered change of
presentation, and a menu for supporting the possibility of
multiple target presentations.

• A TextEdit can be implemented as vocal textual input
element, which permits setting a vocal request and
specifying the path of an external grammar for the platform
recognition of the user input.

45

• A NumericalEditFull and NumericalEditInRange can be
implemented as a vocal numerical input, which accepts only
numbers (in a range in the latter case) specified through a
grammar.

• An ObjectEdit can be implemented as a record element,
which allows specifying a request and storing the user input
as an audio resources. It is possible to define a number of
attributes relative to the recording, such as beep to emit a
sound just before recording, maxtime to set the maximum
duration of the recording, and finalsilence, to set the interval
of silence that indicates the end of vocal input. Record
elements can be used for example when the user input
cannot be recognised by a grammar (e.g. a sound).

With respect to the composition of interactors, the Vocal CUI has
four solutions that permits to identify the beginning and the end of
grouping:

• Inserting a sound at the beginning and at the end of the
group

• Inserting a pause , which must be neither too short (useless)
nor too long (slow system feedback)

• Change the synthesis properties (such as volume and
gender)

• insert keywords that explicitly define the start and the end of
the grouping

Another substantial difference of vocal interfaces is in the event
model. While in the case of graphical interfaces the events are
related mainly to mouse and keyboard activities, in vocal interfaces
we have to consider different types of events: noinput (the user has
to enter a vocal input but nothing is provided within a defined
amount of time), nomatch, the input provided does not match any
possible acceptable input, and help, when the user asks for support
(in any platform specific way) in order to continue the session. All
of them have two attributes: message, indicating what message
should be rendered when the event occurs, and re-prompt, to
indicate whether or not to synthesize the last communication again.

[Paterno2000] F. Paternò, C. Santoro, L.D. Spano, "MARIA: A
Universal Language for Service-Oriented Applications in
Ubiquitous Environment", ACM Transactions on Computer-Human
Interaction, Vol.16, N.4, November 2009, pp.19:1-19:30, ACM
Press.

46

3.5 MBUI WG Note - Introduction to Model-Based
UI Design

This document is currently in preparation and is expected to be
published as a W3C Working Group Note in October 2012. The
document provides introductory material describing model-based
user interface design, its benefits and limitations, and a range of
illustrative use cases.

3.6 MBUI WG Note - Glossary of Terms

This document is currently in preparation and is expected to be
published as a W3C Working Group Note in October 2012. The
document provides definitions for a range of terms used for model-
based user interface design, and is targeted at would be adopters
of model-based user interface design techniques. In working on this
document, we have noticed that different practitioners of model-
based user interface design techniques often use slightly different
terminology, and moreover, there is an understandable tendency for
this to be focused on the needs of academic study as opposed to
that of industrial users. We have therefore taken a selective
approach to which terms we are including in the glossary.

3.7 MBUI WG Specification - Task Models for Model-
Based UI Design

• http://www.w3.org/TR/2012/WD-task-models-20120802/

This is a specification document that the Model-Based User
Interfaces Working Group is progressing along the W3C
Recommendation Track with a view to attaining Recommendation
status by the end of the current charter period (November 2013).
The First Public Working Draft was published on 2nd August 2012.

The specification is based upon the ConcurTaskTree (CTT) notation
and refines the metamodel introduced in earlier versions of CTT.

47

http://www.w3.org/TR/2012/WD-task-models-20120802/

The refinements include the introduction of postconditions, and
adjustments to the set of temporal operators:

• Choice
• Order independence
• Interleaving
• Parallelism
• Synchronization
• Disabling
• Suspend resume
• Enabling

The specification provides a normative metamodel as a UML 2.0
class diagram along with an easy to read textual alternative for
people who can't see the diagram. An XML schema is provided as
an interchange format, although we envisage the use of other
formats, e.g. JavaScript Structured Object Notation (JSON). The
graphical notation commonly used for CTT is considered to be
optional and not a normative part of the specification.

The document concludes with a table showing which operators are
supported by a range of task modelling languages. It is interesting
to note that whilst all of the languages considered support
"enabling", very few support "disabling" (deactivation) and even
fewer support "suspend and resume". The latter is considered to be
critical for automotive user interfaces where the issue of driver
distraction is a major consideration. It is essential to be able to
suspend a user interface in favour or safety critical services, e.g.
alerts of upcoming hazards. The original user interface can be
resumed once the hazard has been passed.

48

3.8 MBUI WG Specification - Abstract User Interface
Models

This document is currently in preparation and is expected to be
published as a W3C Working Draft in October 2012. The document
will specify a metamodel and interchange format for abstract user
interface models. This is taking longer than originally envisaged in
the Working Group Charter due to the need to assimilate ideas
from all of the various Working Group submissions, and to reach a
broad consensus on a merged approach.

The following diagram presents the metamodel as of the beginning
of August 2012, and as such is likely to be subject to revision in the
First Public Working Draft:

3.9 MBUI WG Future Plans

The W3C Model-Based User Interfaces Working Group is currently
chartered until November 2013. During this period, we are
attempting to standardize metamodels and interchange formats for
task models and abstract user interface models. We are also
working on supplementary information covering the rationale for

49

adopting model-based user interface design techniques, exemplary
use cases, and a glossary of terms.

If we are successful, further opportunities for standardization
include

• metamodels and interchange formats for the context of use
• rule languages for mappings between layers in the

CAMELEON Reference Framework and for adaptation to the
context of use at both design time and run-time

• metamodels and interchange formats for the Concrete User
Interface

Whether the W3C Model-Based User Interfaces Working Group is
rechartered when its current charter expires will depend on
greater engagement with industry. This makes it essential for the
Serenoa Project to focus on exploitation in its final year.

4 CoDeMoDIS proposal for a COST
Action
COST (European Cooperation in Science and Technology) is a long
running intergovernmental framework supporting cooperation
among scientists and researchers across Europe.

• http://www.cost.eu/

A proposal for a COST Action has been prepared to support
collaboration on Model Driven Engineering (MDE) and Model-
Based User Interface Development (MBUID). If approved, this will
foster continued collaboration beyond the end of the Serenoa
project, and provide an opportunity for supporting involvement in
further work on standardization in addition to work on
harmonization between the currently distinct fields of MDE and
MBUID. The proposal plans to set up working groups on the
following topics:

• Taxonomy of Model-Driven Engineering of Interactive
Systems

• Comparative Analysis of Models, Methods, and Related
Technologies

• Software Support for Model-Driven Engineering of
Interactive Systems

• Harmonization and Unification of Standardisation Efforts

In addition, a Standardization Coordinator would be assigned in
order to coordinate all efforts towards standardization.

50

http://www.cost.eu/

The participants behind the proposal come from a broad range of
countries, including Austria, Belgium, Bulgaria, Switzerland,
Cyprus, Czech Republic, Germany, Denmark, Estonia, Greece,
Spain, Finland, France, Croatia, Hungary, Iceland, Ireland, Israel,
Italy, Luxembourg, Macedonia, Norway, Poland, Portugal, Romania,
Serbia, Sweden, Slovenia, Slovakia, United Kingdom, Argentina,
Japan, New Zealand, and the United States. The proposer is Dr.
Gerrit Meixner, German Research Center for Artificial Intelligence
(DFKI), Kaiserslautern, Germany.

The pre-proposal was accepted, and the full proposal submitted for
review at the end of July 2012.

5 ISO 24744 standardisation action
ISO/IEC 24744 Software Engineering — Metamodel for
Development Methodologies is an international standard focusing
on the use of meta models for software development methodologies
for information-based domains.

• http://www.iso.org/iso/
catalogue_detail.htm?csnumber=38854

A standardization action has been suggested to harmonize the ISO
24744 methodologies with Model-Based User Interface
Development techniques. At this point, this is very much in the
early planning stage.

6 Conclusions
This report surveys the standardization prospects for ideas
emerging from the Serenoa project and describes the progress
made in the W3C Model-Based User Interfaces Working Group. A
First Public Working Draft has been published for task models and
will soon be followed by another for abstract user interface model,
based upon a synthesis of ideas from a range of submissions to the
Working Group. The aim is to progress these to W3C
Recommendations by the time the Working Group's Charter draws
to an end in November 2013.

A major challenge will be to convince industry of the practical value
of model-based user interface design techniques, and this will
require investment in developing robust tools and run-time
environments as well as outreach on the business case for
adoption. The Serenoa project is playing a key role in supporting
this work, but further investment will be needed beyond the end of
the project if Europe is to realize the opportunities for exploiting

51

http://www.iso.org/iso/catalogue_detail.htm?csnumber=38854
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38854

model-based user interface design techniques. This is all the more
important given the current trend towards a wider range of user
interface technologies and device platforms. Further work should
also take into account the emergence of the Internet of Things as a
driver for new kinds of user interfaces, along with the importance
of multilingual user interfaces to support interaction in people's
native languages.

7 References
• Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L. and

López-Jaquero, V. USIXML: A language supporting multi-path
development of user interfaces, Engineering Human
Computer Interaction and Interactive Systems, Springer,
2005, 134-135.

• Paternò, F., Santoro, C. and Spano, L. D. MARIA: A universal,
declarative, multiple abstraction-level language for service-
oriented applications in ubiquitous environments, ACM
Trans. Comput.-Hum. Interact., ACM, 2009, 16, 19:1-19:30.

• Souchon, N. and Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages, Proc. of
10th Int. Conf. on Design, Specification, and Verification of
Interactive Systems DSV-IS'2003 (Madeira, 4-6 June 2003),
Jorge, J., Nunes, N.J., Falcao e Cunha, J. (Eds.), Lecture Notes
in Computer Science, Vol. 2844, Springer-Verlag, Berlin,
2003, pp. 377-391.

52

	Standarization Actions Report
	Deliverable D6.2.1
	Executive Summary
	Table of Contents
	Introduction
	Potential opportunities for standardization
	Task Models
	Domain Models
	Abstract UI Models
	Concrete UI Models
	WIMP (desktop GUI)
	Touch-based GUI (smart phones and tablets)
	Vocal UI
	State Chart extensible Markup Language (SCXML)

	Multimodal UI
	Industrial UI

	Context of Use
	General Considerations
	Industry: Fulfilment of Safety Guidelines
	Automotive: Mitigation of Driver Distraction

	Multidimensional Adaptation of Service Front Ends
	CARF Reference Framework
	CADS Design Space
	CARFO Multidimensional Adaptation Ontology

	Design-time adaptation rules
	Run-time adaptation rules
	Advanced Adaptation Logic Description Language (AAL-DL)
	Corporate Rules for Consistent User Experience

	W3C Model-Based UI Working Group
	MBUI WG - Introduction
	MBUI WG History
	MBUI Incubator Group
	MBUI Workshop
	Formation of MBUI Working Group

	MBUI Working Group Charter
	Work Items

	MBUI Submissions
	Advanced Service Front-End Description Language (ASFE-DL)
	The ConcurTaskTrees Notation (CTT)
	Useware Markup Language (UseML)
	User Interface Markup Language (UIML)
	Abstract Interactor Model (AIM) Specification
	Multimodal Interactor Mapping (MIM) Model Specification
	Multimodal Mappings
	Synchronization Mappings
	Exemplary Mappings

	UsiXML
	Proposed UsiXML extension enabling the detailed description of the users with focus on the elderly and disabled

	MARIA
	Abstract User Interface
	Concrete User Interface
	Concrete Desktop User Interface
	Concrete Vocal User Interface

	MBUI WG Note - Introduction to Model-Based UI Design
	MBUI WG Note - Glossary of Terms
	MBUI WG Specification - Task Models for Model-Based UI Design
	MBUI WG Specification - Abstract User Interface Models
	MBUI WG Future Plans

	CoDeMoDIS proposal for a COST Action
	ISO 24744 standardisation action
	Conclusions
	References

