

Multi-Dimensional Context-Aware

Adaptation of Service Front-Ends

Project no. FP7 – ICT – 258030

Deliverable 4.2.2

Algorithms for
Advanced Adaptation

Logic

 Due date of deliverable: 31/08/2012

Actual submission to EC date: 31/08/2012

Project co-funded by the European Commission within the Seventh

Framework Programme (2007-2013)

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 2

Dissemination level

[PU] [Pubic] Yes

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA (This license is only applied when the deliverable is public).

Document Information

Lead Contractor UCL

Editor Vivian Genaro Motti, Nesrine Mezhoudi, Jean Vanderdonckt

Revision 22.08.2012

Reviewer 1 Dave Raggett

Reviewer 2

Approved by

Project Officer Michel Lacroix

Contributors

Partner Contributors

UCL Vivian Motti, Nesrine Mezhoudi,
Jean Vanderdonckt, Pascal

Beaujeant, Sophie Dupuis

Changes

Version Date Author Comments

1 04/05/2012 UCL First structure of the documents,

and descriptions.

2 21/06/2012 UCL Refinement of structure, draft of

the contents

http://creativecommons.org/licenses/by-nc-sa/3.0/

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 3

Executive Summary
This deliverable is the second release of the advanced adaptation logic (D4.2.1) of Serenoa project. In the

first release we dedicated our efforts on gathering several algorithms that adapt different resource types, as

text, images, and videos. In the second release we investigated how machine learning algorithms can be

effectively applied to perform more complex adaptation logics, i.e. by combining several specific algorithms,

optimizing the inference process, and selecting more concrete adaptation scenarios.

Once the outcome of this task is mainly in a prototype format, we describe the decisions taken and the

characteristics of the algorithms implemented.

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 4

Table of Contents
1 Introduction ... 6

1.1 Objectives .. 6

1.2 Audience .. 6

1.3 Related documents ... 6

1.4 Organization of this document ... 6

2 Fundamental Concepts .. 7

2.1 Techniques ... 7

2.1.1 Regression ... 7

2.1.2 Clustering .. 8

2.1.3 Decision Trees ... 8

2.2 Scenarios .. 8

2.2.1 Justification ... 8

2.2.2 Learning .. 8

2.3 Template ... 9

3 Scenario 1: Task model to AUI model .. 10

3.1 Formal Definition of the Problem .. 10

3.2 Related Works .. 10

3.3 Algorithms ... 10

3.3.1 Roam ... 10

3.3.2 Dygimes ... 11

3.3.3 MOBI-D .. 12

3.3.4 TOMATO-L .. 13

3.4 Discussion .. 13

4 Scenario 2: Decision Trees in the Widget Selection.. 15

4.1 Formal Definition of the Problem .. 15

4.2 Related Works .. 15

4.3 Algorithms ... 15

4.3.1 TRIDENT (by Vanderdonckt and Bodart, 1993) .. 15

4.3.2 TIMM (by Eisenstein and Puerta, 2000) ... 16

4.3.3 TRIAD... 17

4.3.4 Leiva (2012) .. 18

4.4 Discussion .. 19

5 Final Remarks ... 20

5.1 Discussion .. 20

5.2 Summary .. 20

5.3 Future Work ... 20

6 References ... 21

Acknowledgements ... 23

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 5

Glossary ... 24

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 6

1 Introduction

1.1 Objectives

This deliverable presents and describes possible applications of machine learning algorithms in order to

perform advanced adaptation logic. In this sense, two application scenarios were initially defined and then

related algorithms were selected, implemented, and discussed.

1.2 Audience

The target audience for this deliverable is composed by researchers and practitioners from both scientific and

industrial domains with interest in the topic of context-aware adaptation and machine learning techniques.

1.3 Related documents

 D4.2.1 – Algorithms for Advanced Adaptation Logic: the first release of this document provides the

list of specific algorithms that perform context-aware adaptation

 D2.4.2 - Evaluation Criteria: defines quality metrics that are relevant for analysing benefits of these

algorithms

 D5.2.2 presents prototypes and scenarios that can benefit from AAL (advanced adaptation logic)

1.4 Organization of this document

Chapter 1 presents the goal, audience and related documentation with this deliverable. In Chapter 2, the

theoretical background and main definitions are provided. In Chapter 3 the first scenario of application and

respective design of the algorithms are explained. In Chapter 4 the second scenario of application is

presented, and relevant algorithms are described. In Chapter 5 a discussion and conclusion are presented.

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 7

2 Fundamental Concepts
 Machine Learning (ML) algorithms can be applied to solve problems and support decisions in

several different application domains. In the domain of Human-Computer Interaction (HCI), for instance,

such algorithms can be applied to adapt the user interfaces (UI), e.g. by matching context information with

appropriate adaptation rules according to the users, based on their profiles or interaction history. By learning

with previous experiences acquired within a specific task, these algorithms evolve, improving their

performance and accuracy, and becoming more efficient, for instance while classifying data or

recommending contents.

 When applied to the HCI domain, ML can support context-aware adaptation (CAA), mainly by

identifying the context of use, handling its complexity to decide the more appropriate changes, and finally

adapting the system in response to specific events or context information.

 There are several ML algorithms that are capable of supporting CAA in its different phases and

scenarios. Clustering can be used to identify relationships among context information, regression can be used

to associate evaluation criteria, classification can be used to group contexts of use, and decision trees can

support the selection of adaptation rules.

2.1 Techniques

In this deliverable we explain the application, and analyse the following algorithms:

 Regression

 Clustering

 Decision Trees

2.1.1 Regression

Definition. Regression is a technique to model and analyse data, mainly used to identify the relationship

between a dependent and an independent variable. Thus, the analysis of such relationship helps to understand

the variation of one value according to another. Regression analysis is also used to understand which

independent variables are related to the dependent one.

One of the main applications of regression is prediction, overlapping with machine learning domain. The

goal of applying regression analysis is to develop a model that can be used to predict similar associations for

future experiments. In the CAA context such a model could guide developers in selecting more appropriate

adaptations, for instance according to quality metrics (e.g. ergonomics).

Modelling. Examples of dimensions that can be considered for the regression in the domain of advanced

adaptation logic include:

 the number of widgets (pondered by their respective dimensions)

 the number of colors, shapes, widget types

 screen dimensions (weight, height, diagonal)

A linear regression can be modelled to identify the following knowledge (taking into account a sample of UIs

with high ratings of usability and ergonomics):

 Is there a correlation between ergonomic metrics and specific dimensions?

 Is there a regression equation that can be taken into account to guide the adaptation process? E.g.

classifying samples as over (or under) aligned, balanced, dense, etc?

Application. Application scenarios include: (i) the implementation of an automatic evaluation tool (by

taking a UI as an input, analysing its characteristics, extracting parameters of interest, calculating its position

in the graphic and defining the evaluation results), the regression can be used also to support the decision of

which techniques for adaptation are the most appropriate ones; (ii) recognizing the relationship between UI

figures (e.g. number of widgets, size) and context information (e.g.: screen size, aesthetic metrics); (iii)

associating quality measures (e.g. ergonomics, aesthetics) and UI design (e.g. widget sizes).

Such scenarios can benefit of taking a large sample of UIs and analysing them regarding the pre-defined

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 8

criteria. E.g. the relationship between balance and the amount and dimensions of UI elements is useful to

guide the adaptation of UI elements.

2.1.2 Clustering

Definition. Clustering has been largely applied as a technique for data mining and statistical data analysis to

support pattern recognition, image analysis and information retrieval. It consists in grouping instances in

clusters (groups) according to their similar characteristics.

Modelling. To implement a clustering algorithm the following steps must be respected:

- each instance (e.g. user) must be described in a model containing its characteristics (e.g. age, gender,

preferences, etc);

- each instance must be associated with a certain weight (calculated based on the model);

- each weight is associated with a normalised descriptor (e.g. 1, 2 or 3)

- then, a filtering algorithm may be applied

o first calculating the distance between each pair of instances (e.g. Fowlkes-Mallows index1 or

Jaccard index2), quantifying the similarities between two datasets;

o then selecting similar profiles;

o and finally, predicting relevant concepts according to the similarities identified.

Application. Based on selected properties of different instances, clustering identifies a standard profile that

connects them. To model platforms or users for examples, classes of instances can be found and applied to

support the CAA, e.g. for collaborative filtering algorithms. When user profiles are compared, their

similarity can be extracted according to their behaviour or preferences, enabling the system to make relevant

recommendations based on similar profiles.

2.1.3 Decision Trees

Definition. A decision tree is a way of representing and classifying data. It resembles the tree structure

consisting of a set of nodes and a set of directed edges that connect the nodes, as a directed acyclic graph.

The internal nodes stand for questions (or conditions) that can be evaluated, the edges correspond to answers

to those questions, and the leaf nodes represent the final answer – also called decision [Gomez, 2009].

Modelling. In general, two steps are necessary for modelling a decision tree: the conditions that will be

evaluated in each node must be defined (in an association involving a given instance, an operator, and a

specific value), then the leaves of the tree must be defined, usually in terms of classes (for classification

tasks) or in terms of actions (for a recommendation scenario). The conditions, or nodes, can be manually

defined or vary dynamically according to the context of use, application domain and training with real data.

Application. In the domain of HCI, and more specifically of context-aware adaptation, decision trees can be

applied to suggest relevant contents, appropriate UI elements, or pertinent adaptation techniques in a given

scenario.

2.2 Scenarios

2.2.1 Justification

The main benefits of applying machine learning consist in taking intelligent decisions based on defined

examples. Such examples can be used to find characteristics of interest (discovering), for instance by

recognizing potential associations or patterns that are useful for predicting something.

2.2.2 Learning

In the domain of artificial intelligence, the learning process occurs when the system is able to analyse data in

order to either abstract some concepts or to find patterns. Learning goals consist in an attempt to optimize or

1 Fowlkes and Mallows (1983) proposed a method for comparing clusters
2 The Jaccard index, or similarity coefficient, is defined by the size of an intersection between partitions A and B,
divided by the size of the union of the sample sets

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 9

simplify the processing or the interaction. When applied to the domain of HCI a system can learn based on

the history of the user (e.g. when a specific set of tasks is always executed in the same order, a system can

‘learn’ the standard path of the interaction of the user), or based on the preferences of the user (e.g. when the

end users always configure the same setting for their interaction, the system can ‘learn’ their preferences, for

instance regarding the volume of an audio content or the preferred brightness level of the screen).

Learning can be a supervisioned or a non-supervisioned activity:

- In supervisioned learning, there is a set of data previously gathered, that is available for the system

to analyse, the so-called training examples. By analysing such examples the system is able to

perform classification or regression. According to the two examples mentioned above, training data

consists in the history of interaction of several users for a given set of tasks, or the configuration

settings of several users. With the training examples, the system is able to look for and identify some

patterns and co-relations, if they exist.

- In non-supervisioned learning, there is no parameter to evaluate the potential solution, the

techniques involved try to summarize and explain data, for instance by finding groups of end users

with similar profiles or behaviours (Clustering).

Regardless of the activity type, a machine learning algorithm can also have the support and collaboration of a

human, i.e. instead of performing all the data analysis alone, the human intuition can be applied to better

adjust the performance of an algorithm.

2.3 Template

In order to obtain a unified description of algorithms presented in this deliverable the following template was

defined:

Algorithms presentation: provides a brief description about the algorithm

Advantages: provides a list of strong points of the algorithm

Disadvantages: defines the disadvantages of such algorithm

The template includes the name of the algorithm, required input, expected outputs as well as the pseudo-code

itself.

Algorithm #: Algorithm_name

Input:

/* comments */

Output:

Begin

/*pseudo-code*/

End

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 10

3 Scenario 1: Task model to AUI model

3.1 Formal Definition of the Problem

This application scenario consists in applying machine learning algorithms to help to support the decisions

taken while transforming a task model into an abstract user interface (AUI) model, within a given context of

use and application domain.

3.2 Related Works

Several works have been applied in the same context and they were reported in the literature. For instance:

o Roam Transformation Manager (by Chu et al., 2003)

o Dygimes (by Coninx et al., 2003)

o MOBI-D (Puerta and Maulsby, 1997)

o CTT to Graph

3.3 Algorithms

In this section we describe in details the algorithms mentioned above, they were classified according to the

possibility or not of the user to intervene in the algorithm.

3.3.1 Roam

Algorithms presentation: ROAM enables device independent components to be transformed at runtime to

fit the target device capabilities. It provides a device independent GUI toolkit that a developer can use to

build user interface (UI) components. At migration time or runtime, these device-independent UI

components are transformed to run on the target device.

Reference: Chu et al., 2003

Advantages: ROAM application show that SGUI toolkit can generate consistent presentations across

different platforms in term of three aspects of consistencies: task consistency, layout consistency, and

transformation consistency

Disadvantages: It is difficult to customize a device independent representation for a particular device. It

does not support migration for real-time applications: a real-time constraint on migration latency.

Algorithm 01: Roam Transformation Manager

Input: tt:task tree (CTT) , P:platform

Output: UI components

 Local variable: v:node

Begin

vlist:= Lowest-level-unsplittbal-node(tt)

foreach v in vlist do

widget-list:= styl-app (v.child(),P)

Apply-grid-bag-layout(widget-list)

PS=page-size-cacul()

if PS > P.screensize() /*over-filled page treatment */

 Apply-flow-layout()

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 11

3.3.2 Dygimes

Algorithms presentation: Dygimes is a framework for dynamically generating User Interfaces for

embedded systems and mobile computing devices. Runtime transformations of UIs for adaptation to the

target device are also supported. Dygimes supports different methods to carry out the specified interactions.

The Direct Method Invocation (DMI) is used, ensuring performance, and combined with the use of web

service messaging protocols enabling Remote Procedure Calls (RPC) in an XML-syntax to invoke

application functionalities.

Reference: Coninx et al., 2003

Advantages: The system eases the creation of consistent, reusable and easy migratable UIs. The UIs can

automatically adapt to new devices, offering the same functionality, without being redesigned. The Dygimes

framework is already successfully used in the SEESCOA project.

Disadvantages: The system does not support multiple or mixed modalities, and can not migrate from one

device to another device.

 PS=page-size-cacul()

 if (PS > P.screensize() & v.is-splittable())then

 allocate-new-page()

 else

 if (PS > P.screensize() & not(v.is-splittable()))then

 widget-list :=trasform-widget(v,P)

 Apply-flow-layout(widget-list)

 PS=page-size-cacul()

 else

 if (PS > P.screensize())then

 delete-overfitt-widgets()

 end

 end

 end

else /*under-filled page treatment */

repeat

v:= parent(v)

widget-list.add (child(v),P)

Apply-grid-bag-layout(widget-list)

PS=page-size-cacul()

Untill (PS > P.screensize())

End

If (PS = P.screensize())then

allocate-new-page()

end

End

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 12

3.3.3 MOBI-D

Algorithms presentation: End users can describe the set of tasks, then formal models are built based on

users’ tasks and domain objects. The system supports the development of presentation and dialog

specification, based on the models, enabling the visualization of interface designs.

Reference: Puerta and Maulsby, 1997

Advantages: The algorithm allows the definition of the different possible abstract user interface according to

human factors. It aims at optimizing the structure of abstract containers. The decision support mechanisms

in MOBI-D use the user-task and domain models to make recommendations for presentation and interaction

techniques.

Disadvantages: Given that the algorithm was defined in 1997, period of a different technological landscape,

it is possible that some of its concepts are obsolete, as such updates are needed, for instance regarding the UI

elements and contexts of use were not previously considered

Algorithm 02: Dygimes

Input: CTT : annotated task model

Output: generated UIs

Begin

Calculate-ETS (ctt); // content of dialog windows

Define-STN ();// provide navigation

ETS-verification ()// designer review

End

Algorithm 03: MOBI-D

Input: task tree,

Output: recommendations for UI elements, models

Begin

Terms = Parsing(task_tree, key_objects, key_actions)

For each (term){

Edit (term)

Refine (term)

}

Generate(structured_task_description,term)

Generate(user_task)

Generate(domain_mpdel)

Integrate(models)

End

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 13

3.3.4 TOMATO-L

Algorithms presentation: AUI generation based on graph theory and searching methods, the tasks

properties (order and grouping) are defined according to their type, weight, and also according to the context

(platform description and users’ profile)

Reference: Limbourg and Vanderdonckt, 2004

Advantages: The algorithm allows the definition of the different possible abstract user interface according to

human factors, it is flexible, reusable, and covers a general-purpose. It aims at identifying an optimal abstract

container partition. The proposed algorithm differs in term of considered constraints and the way of

exploring them. In the discussion section we give more details about constraints and their uses.

Disadvantages: some abstraction effort is required by the person who is responsible to incorporate the

design knowledge.

3.4 Discussion

This sections presented a set of algorithms dedicated to support the transformation between task trees and

abstract UI models. As a taxonomy for possible tasks that are considered, we highlight: convey, create,

reinitialize, filter, delete, duplicate, navigate, perceive, move, modify, mediate, select, trigger, stop, and

toggle. Then, as possible metrics that are relevant to weight such tasks, we mainly consider: their workload

(measure in terms of the physical and mental requirements associated), cognitive (mental efforts),

computational (in terms of resources and processing), physical space (dimensions of the UI), time (on

average that an end user needs to conclude to the task), and resource consumption (e.g. requests needed).

In order to measure the workload, Nasa-TLX defines important factors that directly impact it. For instance,

the mental demand is characterized by the mental and perceptual activities that are required from the end

user (such as: thinking, deciding, calculating, remembering, looking, and searching). Their complexity and

easiness are also involved. The physical demand refers to the requirements in terms of physical activities,

such as: pushing, pulling, turning, controlling or activating. The temporal demand refers to the need of time

that is required. The performance refers to the success and satisfaction of the end user in accomplishing his

Algorithm 05: TOMATO-L (by Limbourg and Vanderdonckt, 2004)

Input: ctt: a taks tree, dm: domain model, V : root task, PM :

platform model

Output: abstract UI

Begin

/*analyse the task tree, resulting in a semi ordered list

according to tasks hierarchy, their type and weight*/

TasksFlow:= TreeTraverse(ctt,V)

/*define container based on platform description and human factor

as criteria*/

 S:=Split(tasksFlow, PM)

 /*in order to explore the neighbordhood space to find more

solutions several strategies can be adopted (e.g. merging, drop-

add, add-Drop, oscillation), to decide one, an evaluation step is

applied, according to the constraints defined to select feasible

solutions */

 neighbordshipExploration(S);

End

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 14

or her tasks. The effort refers to how difficult it is for the end user to conclude his or her tasks. And the

frustration level refers to the users’ feelings of: insecurity, discouragement, irritation, stress and annoyance.

The workload of a task can be identified and used by the system in a given context of use in order to adapt a

task tree, i.e. by calculating and analysing this criteria a system is able to better select a task or a group of

tasks that are more appropriate within a specific context of use.

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 15

4 Scenario 2: Decision Trees in the Widget Selection

4.1 Formal Definition of the Problem

In this scenario the Concrete User Interface (CUI) model is considered. Machine learning algorithms are

applied within this context to help and to support the decision of which widgets are the most appropriate

ones in a given context of use based on several parameters. Widgets that have equivalent goals, can be

considered for the selection. For instance users in a distracted environment (e.g. while driving) must have a

highly efficient interaction (i.e. high performance, quick interaction). Thus the algorithms can help in

selecting a widget that requires the minimum time for interaction. Mainly we describe and discuss the

application of decision trees to support this activity.

4.2 Related Works

Several works have been reported in this domain. We mainly highlight:

o TRIDENT (by Vanderdonckt and Bodart, 1993)

o TIMM (by Eisenstein & Puerta, 2000)

o TRIAD (by Martinez et al., 2010)

o Leiva (2012)

4.3 Algorithms

In this section we present the algorithms that enable the users to intervene in the processing, usually by

accepting, evaluating or rejecting the algorithm’s decision. According to Eisenstein and Puerta (2000) there

is ample reason to believe that machine learning also benefits from end users’ advice.

4.3.1 TRIDENT (by Vanderdonckt and Bodart, 1993)

Algorithms presentation: it provides a decision tree (see Figure 1) that takes into account a broad set of

discriminants and represent progress towards automated user interface design. TRIDENT is a set of

interactive tools that automatically generates a user interface for interactive applications. It includes an

intelligent interaction objects selection based on three different concepts. First, a typology classifies abstract

interaction objects to allow a presentation independent selection. Second, guidelines are translated into

automatic rules to select abstract interaction objects from both an application data model and a dialog model.

Third, these guidelines are encapsulated in a decision tree technique to make the reasoning obvious to the

user. This approach guarantees a target environment independent user interface. Once this specified, abstract

interaction objects are mapped into concrete interaction objects to produce the observable interface.

Figure 1. A partial view of the TRIDENT’s AIO Selection Tree

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 16

Advantages: decision trees are easier to visualize and understand for designers, the user can choose rules

and adjust the generation process of the UI, the approach is flexible since the tree can be easily modified,

refinements can be performed to reach the best possible solution.

Disadvantages: they do not incorporate adaptation, some identical rules may be duplicated in the tree (at

different stages), and the decision tree can become very large depending on the application scenario.

4.3.2 TIMM (by Eisenstein and Puerta, 2000)

Algorithms presentation: a decision tree classify data according to a given criteria (Figure 2). The criteria

determine for which class the data will be sorted. Each level of the tree corresponds to a specific criterion, in

this case based on the context information. The leaf of the tree defines a recommendation of a widget, based

on the selection performed.

Figure 2. A simple decision tree for Interactor Selection [Eisenstein and Puerta, 2000].

Advantages: Decision trees are easy to read, to understand and to predict its effects. The algorithm is

Algorithm 05: TRIDENT

Input:

AIO, application data model, dialog model

Output:

User Interface

Begin

Select_abstract_interaction_objects();

For each (AIO_selected) {

Create_AIO_specification();

Transform(AIO, CIO);

}

UI_generation();

End

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 17

sensitive to a small number of examples, easy to understand, refined according to the use, and it focuses on

important design aspects. The authors believe this algorithm provides significant performance gains and it

serves for a general-purpose i.e. can be also applied in other domains.

Disadvantages: Overfitting may occur (when one new rule is created to consider each example of use),

affecting the performance of the algorithm. The authors discuss three possible solutions to avoid it: more

discriminants, a sensitive threshold or taking the user advice. Some complexity problems can be expected

too, since the algorithm searched the entire space of possible changes for the most advantageous alteration in

the decision tree. Since the algorithm looks ahead only one step to search for the most beneficial operations,

it is likely that a local minima issue may occur.

4.3.3 TRIAD

Algorithm Presentation: algorithm for generating UIs of different abstraction levels in a RIA (rich internet

application) context. TRIAD defines the application as a hierarchy of tasks, in which the leaf nodes are

atomic tasks. Temporal operators define task types: sequential, concurrent and choice.

Advantages: This algorithm takes into account contextual information (the platform, temporal relationships

between tasks and vicinity of the tasks). The resulted designs could be refined multiple times (different

scenarios) in order to explore new configurations. A set of metrics has been proposed and reviewed.

Disadvantages: Metrics seem complex but do not compulsorily ameliorate the process of finding the UI

Algorithm 06: TIMM (by Eisenstein and Puerta)

Input: A

set of widgets, context of use

Output:

Recommendation about the most appropriate widget within a given

scenario

Begin

take_standart_recommendations();

record_user_selections();

loop {

make_recommendations();

count_errors();

if (errors==0) break;

find_best_operation();

if (error_gain > min_threshold) {

apply_operation();

next;

}

else break;

}

End

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 18

structure. Besides this, the algorithm do not give optimized solution it just presents a plausible scenario.

4.3.4 Leiva (2012)

Algorithms presentation: Leiva (2012) proposes the re-design of the UI components (widgets), based on

the user interaction. Thus the style of the widget is adapted according to the behaviour of the user.

First, a JSON configuration is parsed, then the object keys are used to select marked widgets (e.g. buttons,

table cells or text paragraphs). Then, a list of event is created as hash tables to log the interaction data at run

time (e.g.: mousemove, click or keydown event lists). Interaction scores values are associated with each

widget, and the more the user interacts with it, the higher its score. Adaptations are incrementally applied.

Advantages: this approach is technology-independent (since the data hierarchical structure and style sheets

are used), the changes are gradually presented to the end user avoiding a significant disruption.

Disadvantages: only the user interaction is considered as context for the adaptation; only numerical

properties of the CSS can be adapted (e.g. dimensions and colors)

Algorithm 07: TRIAD (by Martinez et al., 2010)

Input: CTT: task tree

Output: the final UI

Begin

/*recovery of sub tree*/

Repeat

Create-next-Container (anchor, layer)

Until (anchor-node== root)

For each container C do

Apply-generation-schema (subTreeStructure)

Configuration-selection ()

Define-navigation ()

Algorithm 08: Leiva (2012)

Input: a set of widgets and their properties subjected to

adaptation

Output:

UI with adapted widgets

Begin

Read_and_Parse_JSON_Widgets_Set();

Select(widgets_set);

Track_user_interaction(widgets_set, local_DB);

For each (widget) {

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 19

4.4 Discussion

As presented in this section, there are some works dedicated to investigate and to apply machine learning

algorithms in the selection of widgets. By analysing such works, it is possible to identify concrete scenarios

of application, potential widgets for adaptation in this context, and also a set of criteria that are relevant in

the selection decision.

As relevant widgets we can highlight: edit fields, scroll bars, combo box, radio box, list box, buttons, radio

buttons. The main requirement is that the widget is able to perform the original task. Moreover, as relevant

criteria to define the selection, we highlight: the number of values to choose, the total amount of possible

values, the nature of the data (e.g.: continuous, discrete, numeric, literal), and the density of the UI,

The most important requirement for the widget selection consists in defining widgets that have the same

capabilities, i.e. enable users to perform the same task but in an equivalent manner. Then, for each of the

widgets considered, they must be associated with specific weights (e.g. the spatial dimension required in a

UI, the time to interact with it, the necessary precision, etc.). Finally, based on these weights of each widget

and the context of use (in general), the algorithm is able to support the adaptation decision, by defining the

most appropriate element in a given scenario.

Further information, can also be considered to support this decision, for instance quality metrics. Quality

metrics (as the ones specified in the D2.4.2 Evaluation Criteria) can also be taken into account in such

algorithms, for instance by orienting the selection of widgets according to usability or ergonomics and

aiming to achieve better adaptation results.

Moreover, besides guiding the adaptation according to quality metrics, it is also important to enable some

sort of collaboration between end users and system, to permit users to intervene in the process, either by

accepting, rejecting, or even adapting the adaptation itself, aiming also to improve the results achieved by the

adaptation.

Update_score(widget);

}

Adapt(widgets,user_interaction);

End

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 20

5 Final Remarks
This deliverable presented a set of potential algorithms of machine learning that can be successfully applied

to adapt the user interface according to the context of use. Each algorithm was illustrated by means of a

standard template, its description, advantages and limitations were presented.

In the first release of this deliverable, more specific techniques for adaptation were presented. In this

document we focus on how to optimize the use of such techniques by considering further reasoning and

inference that is not possible by a simple rule.

5.1 Discussion

Although a limited set of algorithms and scenarios was presented above, we believe that they provide an

interesting overview about the current possibilities and scenarios for optimizing the context-aware adaptation

of user interfaces with the application of machine learning algorithms.

While performing adaptation with machine learning one important trade-off must be considered, i.e. the

benefits of performing such adaptation may overcome the costs that calculating it may have, e.g. if a

significant performance impact is expected, the benefits for the usability must compensate such delay. This

trade-off must be carefully analysed and discussed within each application scenario.

5.2 Summary

As potential algorithms for adaptation, we propose mainly: clustering, decision trees and regression.

Two scenarios were defined to illustrate possible applications: the transformation between task trees to AUI

models, and the selection of widgets.

For the first scenario, we highlight a set of important tasks and defined some relevant criteria for their

adaptation (i.e. grouping, selection, ordering): their workload, temporal demand, cognitive demand, physical

demand and mental demand.

For the scenario of selection of widgets, we also presented a set of algorithms that have been proposed to

support this task, and we highlight as important criteria to support the selection: the profile of the user (e.g.

age, impairments, attention level), the characteristics of the screen (e.g.: dimensions, touch-based interaction,

pen-based), the devices available (e.g. keyboard, mouse), and some characteristics of the environment in

which the interaction occurs (e.g. stress level, stability, etc).

5.3 Future Work

As a future work we plan to analyse in depth the trade-offs posed by applying machine learning for adapting

UIs. Mainly we would like to define some specific thresholds that indicate the association between costs and

benefits in this scenario.

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 21

6 References
Hao-hua Chu , Henry Song, Candy Wong, Shoji Kurakake, Masaji Katagiri, Roam, a seamless application framework,

The Journal of Systems and Software (2003)

K. Coninx, K. Luyten, C. Vandervelpen, J. Van den Bergh and B. Creemers, Dygimes: Dynamically Generating

Interfaces for Mobile Computing Devices and Embedded Systems, Human-Computer Interaction with Mobile Devices

and Services ,Lecture Notes in Computer Science, 2003, Volume 2795/2003

Fowlkes, E. B., and C. L. Mallows.1983. A method for comparing two hierarchical clusterings. J. Am. Stat.

Assoc. 78:553-569.

D. Fréard, E. Jamet, O. Le Bohec, G. Poulain and V. Botherel, Subjective Measurement of Workload Related to a

Multimodal Interaction Task: NASA-TLX vs. Workload Profile, Human-Computer Interaction. HCI Intelligent

Multimodal Interaction Environments, Lecture Notes in Computer Science, 2007, Volume 4552/2007, 60-69, DOI:

10.1007/978-3-540-73110-8_7

J. M. Gómez, “A Survey on Approaches to Adaptation on the Web,” System, pp. 137–153, 2009.

González-Calleros, J.M., Guerrero-García, J., Vanderdonckt, J., Muñoz-Arteaga, J., Towards Canonical Task

Types for User Interface Design, Proc. of Joint 4th Latin American Conference on Human-Computer

Interaction-7th Latin American Web Congress LA-Web/CLIHC'2009 (Merida, November 9-11, 2009), E.

Chavez, E. Furtado, A. Moran (Eds.), IEEE Computer Society Press, Los Alamitos, 2009, pp. 63-70.

Jacob Eisenstein and Angel Puerta. 2000. Adaptation in automated user-interface design. In Proceedings of

the 5th international conference on Intelligent user interfaces (IUI '00). ACM, New York, NY, USA, 74-81.

DOI=10.1145/325737.325787 http://doi.acm.org/10.1145/325737.325787

Q. Limbourg, J. Vanderdonckt, Transformational Development of User Interfaces with Graph

Transformations, (2004) Proc. of the 5th International Conference on Computer-Aided Design of User

Interfaces CADUI’2004, Madeira, Kluwer Academics Publishers, Dordrecht, 2004.

Luis Leiva. 2012. Interaction-based user interface redesign. In Proceedings of the 2012 ACM international

conference on Intelligent User Interfaces (IUI '12). ACM, New York, NY, USA, 311-312.

DOI=10.1145/2166966.2167028 http://doi.acm.org/10.1145/2166966.2167028

Francisco Javier Martínez-Ruiz. 2010. The triad-based design of rich user interfaces for internet applications.

In Proceedings of the 2nd ACM SIGCHI symposium on Engineering interactive computing systems (EICS

'10). ACM, New York, NY, USA, 345-348. DOI=10.1145/1822018.1822077

http://doi.acm.org/10.1145/1822018.1822077

McCracken & Aldrich taxonomy: McCracken, J. H. & Aldrich, T.B., 1984, Analysis of selected LHX

mission functions: Implications for operator workload and system automation goals. (Technical Note

ASI 479-024-84(b)), Fort Rucker, AL: Anacapa Sciences, Inc

Angel R. Puerta and David Maulsby. 1997. MOBI-D: a model-based development environment for user-

centered design. In CHI '97 extended abstracts on Human factors in computing systems: looking to the future

(CHI EA '97). ACM, New York, NY, USA, 4-5. DOI=10.1145/1120212.1120215

http://doi.acm.org/10.1145/1120212.1120215

S. Rubio, E. Díaz, J. Martín and J. M. Puente, Evaluation of Subjective Mental Workload: A Comparison of SWAT,

NASA-TLX, and Workload Profile Methods, APPLIED PSYCHOLOGY: AN INTERNATIONAL REVIEW, 2004, 53

(1), 61–86

SEESCOA, Software Engineering for Embedded Systems Using a Component Oriented Approach,

httap//www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/SEESCOA/

Vanderdonckt, J. M. and Bodart, F. Encapsulating Knowledge for Intelligent Automatic Interaction Objects

Selection, in Proc. of InterCHI'93. 1993: ACM Press.

Wickens, C.D. (1984). Processing resources in attention. In R. Parasuraman & D.R. Davis (Eds.), Varieties of attention

(pp. 63–102). Orlando, FL: Academic Publishers.

http://www.springerlink.com/content/?Author=Karin+Coninx
http://www.springerlink.com/content/?Author=Kris+Luyten
http://www.springerlink.com/content/?Author=Chris+Vandervelpen
http://www.springerlink.com/content/?Author=Jan+Van+den+Bergh
http://www.springerlink.com/content/?Author=Bert+Creemers
http://www.springerlink.com/content/tyvnu028wqmupwc9/
http://www.springerlink.com/content/tyvnu028wqmupwc9/
http://www.springerlink.com/content/978-3-540-40821-5/
http://www.springerlink.com/content/978-3-540-40821-5/
http://www.springerlink.com/content/0302-9743/
https://springerlink3.metapress.com/content/?Author=Eric+Jamet
https://springerlink3.metapress.com/content/?Author=Olivier+Le+Bohec
https://springerlink3.metapress.com/content/?Author=G%c3%a9rard+Poulain
https://springerlink3.metapress.com/content/?Author=Val%c3%a9rie+Botherel
https://springerlink3.metapress.com/content/761v36u42j15rk10/
https://springerlink3.metapress.com/content/761v36u42j15rk10/
https://springerlink3.metapress.com/content/978-3-540-73108-5/
https://springerlink3.metapress.com/content/978-3-540-73108-5/
https://springerlink3.metapress.com/content/0302-9743/

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 22

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 23

Acknowledgements

 TELEFÓNICA INVESTIGACIÓN Y DESARROLLO, http://www.tid.es

 UNIVERSITE CATHOLIQUE DE LOUVAIN, http://www.uclouvain.be

 ISTI, http://giove.isti.cnr.it

 SAP AG, http://www.sap.com

 GEIE ERCIM, http://www.ercim.eu

 W4, http://w4global.com

 FUNDACION CTIC http://www.fundacionctic.org

http://www.tid.es/
http://www.uclouvain.be/
http://giove.isti.cnr.it/
http://www.sap.com/
http://www.ercim.eu/
http://w4global.com/
http://www.fundacionctic.org/

 FP7 – ICT – 258030

SERENOA D4.2.2 Advanced Adaptation Logic Page 24

Glossary

 http://www.serenoa-fp7.eu/glossary-of-terms/

