

Multi-Dimensional Context-Aware

Adaptation of Service Front-Ends

Project no. FP7 – ICT – 258030

Deliverable D.3.2.1

ASFE-DL: Semantics, Syntaxes and

Stylistics (R1)

 Due date of deliverable: 30/09/2011

Actual submission to EC date: 30/09/2011

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

Dissemination level

PU Public Yes

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA (This license is only applied when the deliverable is public).

http://creativecommons.org/licenses/by-nc-sa/3.0/

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 2

Document Information

Lead Contractor Telefónica I+D

Editor Telefónica I+D

Revision v.1.0 (30/09/2011)

Reviewer 1 W4

Reviewer 2 UCL, ISTI-CNR

Approved by Telefónica I+D

Project Officer Jorge Gasós

Contributors

Partner Contributors

TID Mari Carmen Rodríguez Gancedo,
Francisco Javier Caminero Gil

UCL Vivian Motti

ISTI-CNR Fabio Paternò, Carmen Santoro,
Lucio Davide Spano

SAP Safdar Ali

W3C Dave Raggett

CTIC Javier Rodríguez, Cristina

González, Ignacio Marín

Changes

Version Date Author Comments

0.1 02/08/2011 TID Section-headers only version of

document

0.2 14/09/2011 TID/all First contributions sent to TID

0.3 16/09/2011 TID First consolidated version

0.4 21/09/2011 W4 First internal revision

0.5 26/09/2011 TID/all Second contributions sent to TID

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 3

0.6 27/09/2011 TID Second consolidated version, final

draft

0.7 28/09/2011 W4 Final internal Revision

1.0 30/09/2011 TID/All Final version of the document

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 4

Executive Summary
This report describes the initial work in SERENOA in the field of Description Language (DL) for the User

Interfaces (UI). The deliverable presents a summarized state of the art in the field of such languages,

followed by a description of the three main ones that will inform the final DL for the project, UsiXML,

MARIA and IDEAL2. A description of the DL follows, focused in this document on the Abstract UI level of

the Cameleon framework, that is, the level which describes UIs in an abstract manner without specifying the

particulars for each context and platform. The elements that conform to the AUI description are also

discussed. The document ends with a set of conclusions and future lines of work close the document.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 5

Table of Contents
1 Introduction ... 6

1.1 Objectives .. 6

1.2 Audience .. 6

1.3 Related documents ... 6

1.4 Organization of this document... 7

2 State of the art .. 8

2.1 Cameleon framework UI levels .. 11

2.2 UsiXML ... 12

2.2.1 Metamodel ... 12

2.2.2 Transformations ... 14

2.2.3 UsiXML Applications .. 14

2.3 MARIA .. 14

2.4 IDEAL2 ... 18

3 ASFE-DL Abstract UI Level ... 21

3.1 Metamodel ... 21

3.2 Authoring Tool Support ... 24

4 Conclusion ... 26

4.1 Summary .. 26

4.2 Future work ... 26

4.3 Standardization .. 26

5 References ... 28

Acknowledgements ... 30

Glossary ... 31

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 6

1 Introduction

1.1 Objectives

In this document, we will present the first steps towards a UI Description Language (DL) for SERENOA.

This will provide the remainder of the tasks in the project with a unified approach towards the description of

the User Interfaces. The focus of the project is SFE (Service Front End) adaptation, so all the elements and

strategies that will be presented for the DL will have the easing of the adaptation process a primary objective.

In this document we will focus on the abstract level of the DL. This abstract level, based upon the

categorization presented in the Cameleon Framework [Calvary2002], refers to the first implementation level

of UIs, immediately after the conceptualization of the Tasks & Concepts to be covered in the interface. Thus,

at this level of abstraction we will define platform independent descriptions of the User Interface elements

required to fulfill these tasks and concepts. By focusing on this primary level, we will provide a starting

description point to begin other implementation tasks in the project such as the runtime or the authoring tool.

Some of the partners in the consortium have done in the past research in the field, including authoring or co-

authoring full specifications of description languages such as UCL‟s UsiXML [Limbourg2004], ISTI/CNR‟s

MARIA [Paternò2009] and CTIC‟s IDEAL2 [Cantera2010]. Thus, for the sake of efficiency, we will base

our SERENOA-DL upon them. This is reflected in the extended State of the Art sections for these languages

and also in the description of SERENOA‟s own solution.

1.2 Audience

Being a public deliverable, this document will be available outside the confines of the project‟s consortium

and is intended to be of interest to the following parties:

a) Members of the consortium, who will find here a detailed description of the fundamentals of the

Description Language that the project is to use in the future.

b) Researchers in the relevant fields: adaptation of SFEs, UI theorists, descriptive languages and

medium-scale project software engineering.

c) EC officials that will use the information in this document as an account of the activities taken in the

project tasks that inform this work.

1.3 Related documents

This document is related to the following project deliverables:

 D1.2.1 Architectural Specifications (R1), in which the architecture of the system is laid out and an

overview of how the different pieces of engineering to be produced will fit together in the final

system.

 D2.2.1 CARFO (R1), dedicated to the establishment of the first principles of an ontology for the

SERENOA framework. In this ontology, some of the concepts that will inform the elements that

conform to the SERENOA-DL are defined and their relationships discussed.

 D2.1.1 CARF and CADS (R1) in which the theoretical foundation of the project is laid out,

therefore affecting as well the definitions of some concepts that will be expressed using the DL

 D3.1.1 Reference Models Specification (R1), the main topic of which is the definition of the main

models for operation in the adaptation process for SERENOA.

 D4.5.1 Authoring Environment (R1) outlines the first concepts of the Authoring Environment for

SERENOA applications. In its due time, this module will have to use the syntax of the SERENOA-

DL to describe applications, so the discussion of concepts in this initial version is relevant in this

report.

Future revisions of the above documents and of this report will be closely related as well and these

relationships will be documented in their introductory sections.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 7

1.4 Organization of this document

In section 2, we present the state of the art in Description Languages for User Interfaces. We briefly

summarize key achievements in the field before going much deeper into the three main languages that will

inform SERENOA-DL, namely UsiXML, MARIA and IDEAL2. Upon examination of the characteristics of

the three, we go in section 3 to describe the general outline of the SERENOA-DL roughly corresponding to

its metamodel and a brief comparison with the authoring tool requirements from such a DL. In this section

we also list the elements that comprise the language itself, including interactors, compositions that may

group interactors together and finally behaviours and events that can be specified in the language for the UI

elements. We end the document in section 4 with a summary of the achieved work, some lines of the future

work to be undertaken in the project task and some short outline of the standardization efforts that are active

in SERENOA regarding this topic and with a section describing the references used in the document.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 8

2 State of the art
This section briefly revises the state of the art in User Interface Description Languages (UI-DL) and then

provides more detail regarding the three languages that compose the consortium‟s portfolio of authored and

co-authored languages in this field (UsiXML, MARIA and IDEAL2). In the coming sections we will

describe the main characteristics of SERENOA-DL which, in turn, has been influenced by the knowledge in

the consortium and these languages.

A User Interface Description Language is a set of syntactical rules, semantic symbols and stylistic

restrictions that are used to provide a framework for describing a UI. They may relate to different levels of

description, from the more abstract (the tasks that the user is to accomplish using the UI or the strategies that

are presented) to the more concrete, including fine-grained description of the layout of components and the

look and feel that they present to the user.

The UI-DLs thus present a way of separating the processing and business logic of a system from its user

experience aspects and, as such, are extremely useful in the successful definition of an application. If

adequately constructed, they also present evident engineering and industrial advantages, as the teams for

intensive algorithm programming and those that deal with user aspects may be kept separated and focused on

their main roles with minimum overlap.

As expected, a wide number of initiatives have been raised in order to produce standardized languages for

describing User Interfaces. These have been extremely varied in factors such as their scope, intended

abstraction level, market/device penetration and approach to syntax, semantics and stylistics. Here, we will

briefly present some illustrative cases, with less emphasis on completeness than on the spotting of key

aspects that may be useful for the subsequent definition of SERENOA-DL in this report.

Browser-based

The World Wide Web can be understood as an application based upon the Internet which features a UI-DL of

its own (HTML
1
) to describe the linked hypertext documents that compose it. Thus, by definition, HTML is

probably one the most used standardized UI-DL in the world. Its syntax and stylistics are based on the

Standard Generalized Mark-up Language (SGML) and its semantics are the different elements that comprise

hypertext documents on the web. In its initial versions, the layout, behaviour and look and feel aspects were

tightly wound, an aspect that was later amended through the introduction of a separate language, CSS
2
, for

stylistic and look and feel aspects and ECMAscript/Javascript
3
 as a de facto underlying language to introduce

more complex behaviours in an otherwise static UI for the upcoming HTML5.

Concern over the years about making HTML more extensible and interoperable with other mark-up

technologies and tools, as well as the need for supporting “alternate ways of accessing the Internet”
 4
 came to

a first result in the proposal of XHTML, defined by W3C as a “reformulation of HTML4 document types as

applications of XML 1.0”. Syntactic and stylistic changes were introduced such as the enforcement of the

well-formedness of the mark-up code and the use of all-lowercase characters in mark-up, respectively. The

semantics of the HTML UI description were left largely intact for cross-compatibility.

Due to differing browser implementations though, cross-platform and browser capabilities for web

applications proved to be an elusive target. In an attempt to bridge this gap and to bring developers true

cross-browser environments upon which to seamlessly build applications, a large number of frameworks

thrived after 2005 providing a uniform programming API to developers to target most major browsers, in

addition to easing access to features that previously required considerable developer effort such as the

manipulation of HTML documents commonly grouped under the DHTML (for Dynamic) umbrella term.

These very often provided functionality through AJAX
5
 techniques that combined Javascript with

asynchronous server calls to improve the responsiveness of websites and a better user experience. Among the

1
 http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt : HTML 1.2 standard

2
 http://www.w3.org/Style/CSS/ : CSS home page with links to its specifications

3
 http://www.ecmascript.org/ : ECMAScript, the standardized version of Javascript

4
 http://www.w3.org/TR/xhtml1/ : „What is XHTML?‟ World Wide Web Consortium

5
 http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications : AJAX: A new approach to web applications

http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://www.w3.org/Style/CSS/
http://www.ecmascript.org/
http://www.w3.org/TR/xhtml1/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 9

most successful of these are Dojo
6
, the Google Web Toolkit

7
 and above all jQuery

8
, which is currently on the

rise and used in nearly a majority of the top websites
9
.

With the appearance of the web as an application platform in the late 90s, a number of non-HTML based UI

toolkits were put forward as alternative means to build websites with advanced functionality not present in

standard HTML. Adobe Flash
10

 became the most ubiquitous
11

 of these and soon other alternatives followed

such as JavaFX
12

 and Microsoft Silverlight
13

. Recent development in the standards field and developer

interest in cross-platform functionality seem to indicate that HTML5 technologies have the advantage for the

future and are slowly progressing towards becoming the standard Rich Internet Application (RIA)

environment for the coming years. However, the study of these older RIA technologies might provide some

insight useful for SERENOA, as they have been pioneering in the wide introduction of topics such as UI-

DLs (e.g. Silverlight‟s XAML
14

), full featured and powerful authoring tools in widespread usage (e.g., Adobe

Flash Professional
15

) and some cross platform compatibility, mainly across the browser-desktop boundary

(e.g., Adobe Air
16

 and Silverlight out-of-browser applications
17

).

However, this functionality is built on top of standards rather than being an integral part of them.

Widget Toolkits

These are often part of the UI description process and in many cases are intermingled extensively with the

UI-DL itself, while in most cases (especially in XML or other mark-up based approaches) they are just a

target for the last-step, final UI rendering. A widget toolkit is in essence a set of concrete UI building blocks

(e.g., scroll bars, icons, sliders) along with a defined syntax for associating them together using super

structures and containers (e.g., panels, layout primitives) and lastly a programming model associated such as

event-driven programming. The look and feel part of the final UI description can be pre-defined or changed

by means of a decoupling of interactors and rendering details. The process of applying a definite look and

feel to an instantiation of a widget toolkit application is called „theming‟ or „skinning‟.

A majority of the most popular toolkits are proprietary and platform dependent, although a small number of

them have been released using open standards. Well known proprietary widget toolkits include the following:

- Microsoft Foundation Classes
18

, often known for the acronym MFC, a low level widget toolkit

typically used to program native Windows applications.

- Abstract Window Toolkit (AWT)
19

 and Swing
20

, the two initial approaches at providing the Java

Platform with a window management toolkit

- Motif
21

, one of the first standardized cross-platform toolkits, originally used for UNIX systems and

then ported to other POSIX operating systems.

- Tk
22

, a simple, straightforward widget toolkit originally used as Tcl-only toolkit, then progressed to

cross-platform and cross-language.

6
 http://dojotoolkit.org/ : The Dojo Toolkit

7
 http://code.google.com/intl/en-US/webtoolkit/ : Google Web Toolkit

8
 http://jquery.com/ : jQuery toolkit

9
 http://trends.builtwith.com/javascript/JQuery : jQuery usage statistics

10
 http://www.adobe.com/products/flashplayer/features/index.html : Adobe Flash overview

11
 http://www.adobe.com/products/player_census/flashplayer/ : Flash Player penetration in PC market

12
 http://javafx.com/ : JavaFX

13
 http://www.microsoft.com/silverlight/ : Microsoft Silverlight

14
 http://msdn.microsoft.com/en-us/library/ms752059.aspx : Microsoft XAML UI-DL overview

15
 http://www.adobe.com/products/flash.html : Adobe Flash CS5

16
 http://www.adobe.com/products/air/ : Adobe Air

17
 http://www.silverlight.net/learn/overview/out-of-browser-applications/out-of-browser-applications-(silverlight-

quickstart) : Silverlight out of browser applications overview
18

 http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.90).aspx : Microsoft Foundation Classes development

reference
19

 http://java.sun.com/products/jdk/awt/ : Java AWT
20

 http://java.sun.com/products/jfc/tsc/articles/architecture/ : Java Swing
21

 http://www.openmotif.org/ : Openmotif, lead development organization of the Motif toolkit
22

 http://www.tcl.tk/ : Tk graphical UI toolkit

http://dojotoolkit.org/
http://code.google.com/intl/en-US/webtoolkit/
http://jquery.com/
http://trends.builtwith.com/javascript/JQuery
http://www.adobe.com/products/flashplayer/features/index.html
http://www.adobe.com/products/player_census/flashplayer/
http://javafx.com/
http://www.microsoft.com/silverlight/
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://www.adobe.com/products/flash.html
http://www.adobe.com/products/air/
http://www.silverlight.net/learn/overview/out-of-browser-applications/out-of-browser-applications-(silverlight-quickstart)
http://www.silverlight.net/learn/overview/out-of-browser-applications/out-of-browser-applications-(silverlight-quickstart)
http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.90).aspx
http://java.sun.com/products/jdk/awt/
http://java.sun.com/products/jfc/tsc/articles/architecture/
http://www.openmotif.org/
http://www.tcl.tk/

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 10

- GTK+
23

 and Qt
24

, the current leading free software widget toolkits with extensive cross-platform

capabilities and industry adoption. Both are used in industry- and community-backed applications

and have extensive platform and programming language support, ranging from mobile to

workstations. There are also authoring solutions available for both, such as Glade
25

 for GTK+ and Qt

Creator
26

 for Qt.

Cross-platform general purpose UI-DLs

Over the years, a great number of general purpose UI-DLs has been put forward. They differ in a great

number of features: some have been put forward by academic researchers while others are the product of

industry consortia, or even single commercial players. A comprehensive overview of the field is beyond the

scope of this document; thus we will focus on a few particular ones that are representative of well-known

families, or maybe offer features or teachings that may be considered of interest for SERENOA.

- UIML
27

: This is an XML-based meta language intended to be used to define UI elements in

declarative terms and in an abstract manner. The language development started in 1997 by a

consortium of academic and industrial partners and over time, its control transitioned to the

Organization for the Advancement of Structured Information Standards (OASIS), an international

body specializing in the standardization of XML-based technologies, which now controls the UIML

specification and is in charge of developing standard versions of the language
28

.

The language defines a set of UI building blocks, or interactors, means to group them together and

also ways to control the behaviour of the components and bindings to user events. The concrete

details of the rendering or styling are separated from the actual definition of the elements that

conform to the UI. The language intends to be very wide-ranging, in essence being able to cover the

majority of the device families in use today.

Although UIML allows a multi-platform description of UIs, there is limited commonality between

the platform-specific descriptions when platform specific vocabularies are used. This means that the

UI designer will have to create separate UIs for each platform using its own vocabulary. Recall that

the vocabulary is defined to be a set of UI elements with associated properties and behaviour.

Limited commonality is not a shortcoming of UIML itself, but a result of the inherent differences

between platforms with varying form factors.

- XUL
29

: The XML User interface Language is a general purpose mark-up DL developed by the

Mozilla Foundation and primarily used in their open source Firefox Browser. Rather than defined by

a formal specification, it is driven by the reference implementation made by the open-sourced Gecko

rendering engine. The target of the language is desktop applications and it has a strong emphasis in

providing developers with metaphors and syntactic elements very close to those of web languages

such as dynamic HTML. Cross platform compatibility is good and several successful open source

applications (such as the Songbird
30

 media player) have used XUL to define their UIs, although the

majority of development efforts based upon it relate to the Firefox browser and its extensions.

- XAML
31

: Put forward by Microsoft, it is a general purpose UI-DL which targets a much more

concrete implementation than efforts such as UIML or UsiXML, roughly corresponding to the

Concrete UI level of the Cameleon hierarchy. It is based on web standards such as XML, XPath and

DOM and integrates descriptions of interactors, composition of interactors, stylings, animations and

23
 http://www.gtk.org/ ; GTK+ Project

24
 http://qt.nokia.com/ : Qt cross platform widget toolkit

25
 http://glade.gnome.org/ : Glade GTK+ Authoring tool

26
 http://qt.nokia.com/products/developer-tools : Qt Creator Authoring Tool

27
 http://www.uiml.org : UIML website

28
 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uiml : OASIS User Interface Markup Language TC

29
 https://developer.mozilla.org/En/XUL : Mozilla XUL

30
 http://getsongbird.com/ : Songbird media player

31
 http://msdn.microsoft.com/en-us/library/ms752059.aspx : XAML Overview

http://www.gtk.org/
http://qt.nokia.com/
http://glade.gnome.org/
http://qt.nokia.com/products/developer-tools
http://www.uiml.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uiml
https://developer.mozilla.org/En/XUL
http://getsongbird.com/
http://msdn.microsoft.com/en-us/library/ms752059.aspx

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 11

transformation, and complex behaviour with an event-driven model. This all can be done at the same

syntactic level, with XAML files able to implement all of the features of an application, or

conversely XAML can be used for the description of the UI and the other elements defined

programmatically in separate application segments written in other languages (mainly Javascript and

.NET languages such as C#, Visual Basic , ironPython and Mono). The official Microsoft

specification currently targets as a rendering subsystem either way Microsoft Silverlight for web-

based applications or the Windows Presentation Foundation subsystem in the Windows OS.

Unofficial implementations such as Moonlight
32

 target other platforms.

Microsoft also provides an authoring tool for XAML applications, called Microsoft Blend. It allows

developers and designers to build the UI of applications, but it is usually combined with the

Microsoft proprietary development platform, Visual Studio .NET, for the business logic as the

support for such logic inside Blend is very limited beyond from simple event-driven behaviours.

The language specification is open and has been published by Microsoft. However, it has drawn

criticism from the community for the alleged side effect of boosting Windows as a development

platform for web applications, as support for other OSs and architectures is not complete and less

optimal

After this preliminary overview of the existing solutions for UI description and cross-platform deployment,

let us now present briefly the Cameleon hierarchy of UI description levels, which is key for the

understanding of the UI-DL languages present in SERENOA‟s consortium portfolio, whose detailed

descriptions will follow in this section 2.

2.1 Cameleon framework UI levels

The FP5 Cameleon project
33

, whose aim was to support the definition and development of context-sensitive

software systems, had as one of its key results the definition of a conceptual framework to ease the design of

such systems for multi-platform environments. This key result, further explained in [Calvary2002], was the

cornerstone of some research efforts that followed, such as the UI-DL languages MARIA and UsiXML that

will be further discussed in this section. Here we will provide a short summarized explanation of one of the

most significant parts of the framework, the four-level hierarchy of UI implementations, according to their

level of concreteness.

The framework structures the development life cycle into four levels of abstraction, from the task

specification to the running interface:

 Task & Concepts (T&C): corresponds to the computational-independent model in MDE, it

describes the various tasks to be carried out and the domain-oriented concepts as they are required by these

tasks to be performed. These objects are instances of classes representing the concepts manipulated. It

considers the logical activities that need to be performed in order to reach the users‟ goals. Often, it is

represented hierarchically along with indications of temporal relations among them and their associated

attributes.

 Abstract UI (AUI): corresponds to the platform-independent model (PIM) in MDA; it is an

expression of the UI in terms of interaction spaces (or presentation units), independently of which interactors

are available and independently of the modality of interaction (graphical, vocal, haptic). An interaction space

is a grouping unit that supports the execution of a set of logically connected tasks. It groups subtasks

according to various criteria (e.g., task model, structural patterns, cognitive load analysis, semantic

relationships identification), a navigation scheme between the interaction spaces and selects Abstract

Interaction Objects (AIOs) for each concept so that they are independent of any context of use. An AUI

abstracts a CUI into a UI definition that is independent of any modality of interaction (e.g., graphical

interaction, vocal interaction). An AUI can also be considered as a canonical expression of the rendering of

the domain concepts and tasks in a way that is independent from any modality of interaction.

32
 http://www.mono-project.com/Moonlight : Moonlight, an open source implementation of Silverlight for Linux.

33
 http://giove.isti.cnr.it/projects/cameleon/goals.html : FP5 Cameleon Project website.

http://www.mono-project.com/Moonlight
http://giove.isti.cnr.it/projects/cameleon/goals.html

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 12

 Concrete UI (CUI): corresponds to the platform-specific model (PSM) in MDA, it expresses the UI

in terms of concrete interactors, that are dependent of the type of platform and media available, and it has a

number of attributes to define more concretely how it should be perceived by the user; it concretizes an

abstract UI for a given context of use into Concrete Interaction Objects (CIOs) so as to define widgets layout

and interface navigation. This process abstracts a FUI (Final UI) into a UI definition that is independent of

any computing platform.

 Final UI (FUI): corresponds to the code level in MDA, it consists of source code, in any

programming language or markup language, it can be interpreted or compiled, it is the operational UI i.e. any

UI running on a particular computing platform either by interpretation (e.g., through a Web browser) or by

execution (e.g., after compilation of code in an interactive development environment). Given that a piece of

code may not always be rendered in the same manner depending on the software environment (virtual

machine, browser), we consider two sublevels of the FUI: i) the source code and ii) the running interface.

Thanks to the four abstraction levels, it is possible to establish mappings between instances and objects

found at the different levels and to develop transformations that find abstractions or reifications or

combination [Limbourg et al., 2004a; Vanderdonckt et al., 2004]. Moreover, there can be also a relationship

of translation between models at the same level of abstraction, but conceived for different contexts of use

(i.e. from source to target context of use).

2.2 UsiXML

The USer Interface EXtensible Markup Language (UsiXML) is an XML-compliant mark-up language to

describe user interfaces for multiple contexts and different modalities. UsiXML allows also non-developers

to use the language to describe user interfaces, mainly because the elements of the UI can be described at a

high level, regardless of the platform of use.

The UsiXML language is currently being submitted to a standardization plan to the W3C.

UsiXML structures the development of UI in the four abstraction levels mentioned in section 2.1. The

transformation between models is done using ATL and currently, editors are being developed and published

to ease the implementation and the transformations between these models.

UsiXML provides flexibility to the user, who can choose to begin the sketching of the interface at any level.

In order to provide this flexibility, the meta-models for each abstraction layer must be independent. However,

at any level all the information necessary to build a final UI, must be available.

Each model can contain more or less details according to its abstraction level, for example the behaviour

defined at the abstract UI level is also defined at the concrete level, but it may consider details that are

specific for graphical UI for instance.

2.2.1 Metamodel

The metamodel of UsiXML for Abstract User Interfaces is composed by AbstractUIModel and by a set of

AbstractInteractionUnit that defines every abstract object. These interaction units may own an

AbstractRelationship describing the way the different interaction units of the model are related. Furthermore,

each interaction unit may have one or more AbstractListeners. These listeners allow defining the dynamics of

the model and the way the interaction units will react to the different events.

Figure 1: AUI meta-model of UsiXML (an overview)

An Abstract model describes the units, relationships and listeners of a UI, independently of concrete

interaction units available in target contexts of use. An interaction unit is the main entity of the model,

composed by every abstract object. The abstract relationships define how the units are related. And abstract

listeners define the behaviour of the units. All these concepts are further detailed with specific meta-models.

2.2.2 Transformations

Example of transformations in UsiXML:

Figure 2. UsiXML Transformations [Source: Limbourg2004b].

Figure 2 illustrates possible transformations between the abstraction levels; the application domain considers

a download button. The same task is specified at different levels of details according to the abstraction level

considered. The context of use is essential to decide which final UI will be rendered.

Meta-models were defined to implement UsiXML. These meta-models follow several principles to assure a

high-quality level such as: completeness, consistency, separation of concerns and extensibility.

The meta-models elaborated for the UI include: task model, context model, mapping model, domain model,

AUI model, CUI model, transformation model and workflow model. The main entities of the abstract UI

model are model, interaction unit, relationship and listener; and the main entities of the concrete UI model

are model, interaction unit, style and listener.

The Concrete User Interface (CUI) corresponds to the platform-specific-model in MDA; it expresses the UI

concerning concrete interaction units, which are dependent of the platform type (and also available media).

The main entities of the CUI model for UsiXML are model, interaction unit, concrete style and concrete

listener.

2.2.3 UsiXML Applications

UsiXML has been applied to many different domains, among which we highlight adaptation of user

interfaces [Desruelle2011] [Honold2011] and accessibility [Serra2011] [Bottoni2011] [Kaklanis2011].

There is a set of tools that support UsiXML, for instance: FlashiXML is a translator to Flash; SketchiXML is

an editor to draw and sketch UI; and idealXML is a tool for task analysis.

2.3 MARIA

MARIA (Model-based language for Interactive Applications), is a universal, declarative, multiple

abstraction-level, XML-based language for modelling interactive applications in ubiquitous environments.

For designers of multi-device user interfaces, one advantage of using a multi-layer description for specifying

UIs is that they do not have to learn all the details of the many possible implementation languages supported

by the various devices, but they can reason in abstract terms without being tied to a particular UI modality or,

even worse, implementation language. In this way, they can better focus on the semantics of the interaction,

namely what the intended goal of the interaction is, regardless of the details and specificities of the particular

environment considered.

MARIA allows describing not only the presentation aspects, but also the interactive behaviour. For this

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 15

purpose it has various features:

 Data Model. The interface definition contains description of the data types that are manipulated by

the user interface. The interactors (which are the elementary abstract UI objects) can be bound with

elements of the data model, which means that, at runtime, modifying the state of an interactor will

change also the value of the bound data element and vice-versa. This mechanism allows the

modelling of correlation between UI elements, conditional layout, conditional connections between

presentations, input values format. The data model is defined using the standard XML Schema

Definition constructs.

 Generic Back End. The interface definition contains a set of ExternalFunctions declarations, which

represents functionalities exploited by the UI but implemented by a generic application back-end

support (e.g. web services, code libraries, databases etc.). One declaration contains the signature of

the external function that specifies its name and its input/output parameters.

 Event Model. Each interactor definition has a number of associated events that allow the

specification of UI reaction triggered by the user interaction. Two different classes of events have

been identified: the Property Change Events that specify the value change of a property in the UI or

in the data model (with an optional precondition), and the Activation Events that can be raised by

activators and are intended to specify the execution of some application functionalities (e.g. invoking

an external function).

 Dialog Model. The dialog model contains constructs for specifying the dynamic behaviour of a

presentation, specifying what events can be triggered at a given time. The dialog expressions are

connected using CTT operators in order to define their temporal relationships.

 Continuous update of fields. It is possible to specify that a given field should be periodically

updated invoking an external function.

 Dynamic Set of User Interface Elements. The language contains constructs for specifying partial

presentation updates (dynamically changing the content of entire groupings) and the possibility to

specify a conditional navigation between presentations.

This set of new features allows having already, at the abstract level, a model of the user interface that is not

tied to layout details, but it is complete enough for reasoning on how UI supports both the user interaction

and the application back end.

The Abstract User Interface (AUI) level describes a UI by just referring to the semantics of the interaction,

without considering a particular device capability, interaction modality or implementation technology.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 16

Figure 3: MARIA AUI metamodel

Figure 3 shows the main elements of the abstract user interface metamodel (some details have been omitted

for clarity). As can be seen, an interface is composed of one data model (abstract data types managed by the

interface model and whose definition generally exploits XSD schema), a list (namely: one or more)

presentations that groups model elements and 0..n external functions.

A presentation is basically a set of model elements which are presented to the user at the same time. Such

model elements are of two types: interactor or interactor_composition. The former represents every type of

user interaction object, the latter groups together elements that have a logical relationship.

Each presentation has an attribute name, and is composed of a number of possible connections (namely,

connections with other presentation), elementary interactors, and/or interactor compositions. Moreover, the

presentation is also associated with a dialog model which provides information about the possible sequence

of interactions that can occur within the presentation itself.

A dialog model can be represented either by a reference to a handler (handler_ref), a conditional expression

or a dialog expression. A handler_ref has to specify a number of conditions, and in addition has a number of

attributes: event_name (which has string type and is optional), interactor_id (also having string type and

being optional), and an additional attribute, operator, which represents a CTT operator. Indeed, the dynamic

behavior of the events, and the associated handlers, is specified using the CTT temporal operators (for

example, concurrency or mutually exclusive choices, or sequentiality, etc.). When an event occurs, it

produces a set of effects (such as performing operations, calling services, etc.) and can change the set of

currently enabled events (for example, an event occurring on an interactor can affect the behavior of another

interactor, by disabling the availability of an event associated to another interactor). The dialog model can

also be used to describe parallel interaction between user and interface.

A connection indicates what the next active presentation will be when a given navigation is triggered. It can

be either an elementary connection (which basically occurs with a static target presentation), a complex

file:///D:/Documenti/mariae/documentazione/mariadoc/mariadoc/aui-1_4_11_xsd.html%23http___giove.isti.cnr.it_handler_expression_type_event_name
file:///D:/Documenti/mariae/documentazione/mariadoc/mariadoc/aui-1_4_11_xsd.html%23http___giove.isti.cnr.it_handler_expression_type_interactor_id
file:///D:/Documenti/mariae/documentazione/mariadoc/mariadoc/aui-1_4_11_xsd.html%23http___giove.isti.cnr.it_handler_expression_type_operator
file:///D:/Documenti/mariae/documentazione/mariadoc/mariadoc/aui-1_4_11_xsd.html%23ctt_operator_type

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 17

connection (when Boolean operators compose several connections and then the connection has a complex

target), or a conditional connection (when specific conditions are associated with it and therefore the

connection has a conditional target).

An elementary connection has a number of attributes: anchor and external, which are both optional Boolean

values, interactor_id, which is a required identifier of the interactor which connects the current presentation

with another (a navigator or an activator); presentation_name (the required, target presentation identifier),

target_composition_operator, which, if present, specifies where to load the target_presentation_name inside

the target_presentation.

Regarding interactor compositions, they can be of four types: grouping, relation, repeater,

composite_description.

A grouping is a type of interactor composition used when a logic composition of interactors is needed.

Therefore, grouping basically represents a generic group of interactor elements.

A relation is an interactor composition which expresses a relation between an interactor (or an interactor

composition) and other N interactors (or interactor compositions).

A composite_description represents a group aimed to present contents through a mixture of only_output

elements (namely: description/object/feedback/alarm) with a navigator elements, while a repeater is used to

repeat the content according to data retrieved from a generic data source.

Figure 4. The specification of the abstract interactor element in MARIA

file:///D:/Documenti/mariae/documentazione/mariadoc/mariadoc/aui-1_4_11_xsd.html%23http___giove.isti.cnr.it_elementary_conn_type_target_composition_operator

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 18

Figure 3 shows the main elements of the AUI meta-model through its class diagram, while Figure 4 shows

the specification of the hierarchy of the interactor element.

An interactor (see Figure 4) can be either an interaction object or an only output object. The first one can be

one of the following types: selection, edit, control, interactive description, depending on the type of activity

the user is supposed to carry out through such objects.

An only_output interactor can be object, description, feedback, alarm, text, depending on the supposed

information that the application provides to the user through this interactor. It represents information that is

submitted to the user, not affected by user actions. It can be a text, a Description that represents different

types of media, an Alarm, a Feedback or a generic Object.

According to the intended semantics, an interactive element belongs to one the following subtypes:

selection, edit or control.

 The selection object enables the user to select one or more values among the elements of a

predefined list. It contains the selected value and the information about the list cardinality.

According to the number of values that can be selected, the interactor can be a single_choice or a

multiple_choice. Each of them has an attribute specifying the cardinality of the possible choices (in

addition, the single_choice element has a further attribute, selected_value, for identifying whether an

option element has been selected or not). The multiple_choice element has associated a list of

elements of type selected for specifying the option items currently selected. It is worth pointing out

that further refinement of each of these objects can be done only by specifying some platform-

dependent characteristics, therefore it is specified at the concrete level whether the refinement

element on a desktop platform will be eg a radiobutton, a list, etc.

 The edit object enables the user to manually edit the object represented by the interactor, which can

be text (text_edit), a number (numerical_edit), a position (position_edit) or a generic object

(object_edit). The numerical_edit object can be further refined into two possible elements:

numerical_edit_full and numerical_edit_in_range. The latter element is characterised by the fact that

a specific interval is considered for the values (it can be refined into e.g. a spinbox element). This

interactor element has three peculiar attributes: min (the minimum value in the considered range),

max (the maximum value), and continuous (which specifies whether the range is continuous or

discrete).

 The control object enables the user to switch between presentations (navigator) or to activate UI

functionalities (activator).

It is worth pointing out that all the interaction objects have associated events: the events differ depending on

the type of object they are associated with. Indeed, we have edit_events, selection_events and control_events.

2.4 IDEAL2

IDEAL2 [Cantera2010] (Interface DEscription Authoring Language, version 2) is an XML-based language

for the declarative description of device-independent user interfaces. This language is modular, extensible

and standard-compliant, based on different W3C standards such as XForms 1.1 [XFORMS], DISelect 1

[DISELECT] or XML Events [XMLEvents].

IDEAL2 is modality dependant, oriented to graphical interfaces, and has been specifically designed to create

mobile web interfaces. For this reason, it cannot be considered at the abstract level (AUI), but at the concrete

level (CUI). It provides abstractions over the final language (FUI) that makes it suitable for defining UIs

without handling the specific features of the target devices. IDEAL2 defines abstract components, which can

be rendered in different ways by depending on the terminal capabilities and the Web browser features

identified at runtime. For instance, a select1 user interface component is intended to allow the user to select

one item among several options. It might be rendered as a drop down list, a set of radio buttons or a

navigation list with hyperlinks.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 19

Using IDEAL2, developers concentrate their efforts on describing the structure of the user interfaces instead

of programming how they should be rendered in different delivery contexts. In this way, they do not need to

be worried about the device capabilities, and the different markup languages, scripting code or CSS

properties it supports.

Aspects related to the Look & Feel and to the flow definition are out of the scope of IDEAL2. The Look &

Feel and the layout could be specified by means of CSS2 [CSS2] and some extensions, while the flow

description could be defined by using other declarative languages such as SCXML [SCXML].

Tool support

MyMobileWeb [MyMobileWeb] is an open source, standards-based software framework that simplifies the

rapid development of mobile web applications and portals. MyMobileWeb uses IDEAL2 as the authoring

language in which developers declaratively define UIs in a device independent manner. MyMobileWeb

software platform is in charge of the automatic adaptation of such UI descriptions to the target Delivery

Context (browser, device, network, location, etc.) offering a harmonized user experience.

Example

Figure 5 illustrates a UI description defined by means of IDEAL2 language. It is part of an example

application, which is supposed to provide information about the Spanish soccer league. In this case, the UI

represents a menu for selecting a specific soccer club.

The resources element includes references to external resources such as application icons or references to the

CSS style sheets. Note that the expr attribute allows the conditional inclusion of elements based on the

evaluation of delivery context properties.

The header element is intended to act as a container for the head elements. In this case, it contains an include

element which is used to specify the inclusion of contents which have been defined in other presentation in

order to avoid code duplication. In a similar way, the footer tag references contents which has been defined

in other presentation by using the include element.

The main section of the UI represents a menu that renders information coming from the application context.

The developer is in charge of storing all the information related to the soccer clubs inside the application

context under the corresponding key. The most important attribute for rendering context information is

repeat-nodeset. In this example, this attribute takes the value clubList which is a context variable containing

the items (clubs) to be displayed by the menu. In this menu, the developer aims to show the club name, an

associated image and a link to the details page for each team.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 20

Figure 5. IDEAL2 UI description

The above UI description (completed with the addition of CSS style sheets) might be rendered by an

adaptation framework in different ways, depending on the delivery context. Figure 6 shows how

MyMobileWeb renders the UI defined in Figure 5 on different devices.

Figure 6: An IDEAL2 UI description rendered by MyMobileWeb on different devices

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 21

3 ASFE-DL Abstract UI Level
The Abstract User Interface (corresponding to the Platform-Independent-Model – PIM in MDE) expresses

the UI regarding its presentation units, independently of the interactors available and of the modality of

interaction (graphical, vocal, haptic). A presentation unit groups a set of logically connected interactors.

3.1 Metamodel

In this section, we describe the first version of the Advanced Service Front-End Description Language

(ASFE-DL). This language will enable the development and authoring of SFEs in accordance with the

Reference Model described in SERENOA‟s deliverable D3.1.1. The interfaces modelled with such language

will be adapted to the context exploiting the rules defined through the Advanced Adaptation Logic

Description Language (AAL-DL), which will be defined in deliverable D3.3.1.

In this first version, we focused on the creation of an AUI meta-model, starting from the CNR and UCL

experience respectively in MARIA [Paternò2009] and UsiXML [UsiXML]. The idea is to create a unified

and more complete language, combining the strengths of the two languages, unifying concepts and adding

new features that will allow this language to meet the SERENOA requirements and to go beyond the state of

the art in this field.

In order to achieve this goal, we analysed the metamodels of both languages. Afterwards, we have identified

an initial set of concepts than can represent a first basis for ASFE-DL (the Serenoa AUI language) to be

further refined in the next future within the project. By analyzing the AUI metamodels of MARIA and

UsiXML, a number of situations were handled in order to come up with a preliminary shared proposal for the

ASFE-DL.

In some cases, there were concepts directly corresponding to each other between metamodels (apart from

slightly different names used in the two originated languages). For instance, the original UsiXML elements

of types AbstractOrdering, AbstractHierarchy and AbstractRepetition (corresponding to for MARIA‟s

Ordering, Hierarchy, and Repeater entities) have been basically kept in the shared SERENOA proposal

respectively as Ordering, Hierarchy, and Repetition. The same occurred for the UsiXML

AbstractRelationship concept, which was easily identified as modelling the same concept as

Interactor_composition existing in MARIA language (eventually, we decided to keep the UsiXML naming

and to then have the AbstractRelationship element in the ASFE-DL language). Furthermore, both languages

supports a clear separation of concerns between the UI specification and the description of data handled in it,

by including a specific element for handling data: this was called DomainModel in UsiXML and DataModel

in Maria (the latter name was eventually selected for the ASFE-DL) .However, in other situations, the

correspondence between both languages/models was not so direct. For instance, this is the case when the

same concept is modelled in a slightly different way, as for the event objects. Indeed, in UsiXML the

different types of events are not connected to specific types of interactors, while in MARIA this is the case.

Therefore, in the ASFE-DL, we preferred to keep the MARIA approach as it enables a more controlled

handling of the specific events associated to each particular type of abstract interactor.

Finally, there were concepts appearing in just one metamodel, which we judged useful to bring in the ASFE-

DL. For instance, it was the case of the Connection elements (existing in MARIA language), which allow

specifying how it is possible to move from one abstract interaction unit to another one.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 22

Figure 7: ASFE-DL AUI metamodel (UML View)

Figure 7 shows the UML class diagram for this preliminary version of the ASFE-DL at the abstract level. We

used different colours in order to highlight different parts of the metamodel: sky-blue for the main structure

of the interface, green for the interactor hierarchy, red for the classes that model the relationships between

interactors and yellow for the classes that model the UI behaviour.

The class that represents an abstract user interface model is called AbstractUIModel. It contains the entire

specification of both the UI structure and behaviour. The interface contains an optional DataModel, which

defines the set of objects and variables. The data model contains all the data types that are manipulated by

the UI in order to allow interaction with the user. The composition relation between the DataItem and the

DataModel class represents such collection of data types. A DataItem indeed represents a single data type

element.

An AbstractUIModel consists of a composition of AbstractInteractionUnits. Each instance of this class

represents a part of an application user interface that should be presented to the user at once. Each

AbstractInteractionUnit has two attributes: a unique identifier (id attribute) and a name (which is the name of

the abstract interaction unit).

An AbstractInteractionUnit is composed of AbstractInteractors and AbstractRelationships. The first one

among these AbstractInteractionUnits will be the starting point for interaction.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 23

It is possible to model the navigation among the different abstract interaction units defining instances of the

Connection class. A connection (which has a unique identifier, id attribute) specifies the target abstract

interaction unit and the interactor (or interactors) that triggers such navigation. It is also possible for the

connection to specifiy more than one target interaction unit. In this case, the specification will contain also

the condition (see the related attribute in the specification of the Connection element) for the dynamic

selection of the target among the specified set of abstract interaction units.

The abstract class AbstractInteractor defines a generic interactor, which represents a generic user interface

object. Its subclasses create a partition, which defines a set of different categories according to the interaction

semantics. These categories are:

 Selection. This abstract class of interactors represents objects that allow the user to select one or

more values from a predefined set of choices. The two refinements SingleChoice and MultipleChoice

represent respectively interactors that allow the selection of only one value among the choices, and

interactors that allow the selection of more than one value. The UI objects having such a type have a

number of attributes: selected, for identifying the selected value; and cardinality, for specifying the

cardinality of the value set.

 Edit. This class represents interactors that allow the input of manually edited values. Such an object

has the value attribute to identify the currently edited object.

 OnlyOutput. This class represents interactors that show information to the user.

 Control. This abstract class represents interactors that allow the user to perform actions, submit data

or navigate the user interface. The refinements Activator and Navigator distinguish the objects

mainly devoted to performing actions from the ones to perform UI navigation.

Each AbstractInteractor can be optionally connected to a DataItem, specifying that it represents the

referenced data item in the user interface. Each AbstractInteractor has also a number of attributes:

 Id: the unique interactor‟s identifier;

 Enabled: a Boolean value specifying whether the interactor can respond or not to the user

interaction;

 Focus: a Boolean value specifying whether the user is actually interacting with this object;

 Hidden: if it is true, the interactor is not presented to the user;

 Continuous_update: a value specifying whether the content can be continuously updated.

The interactors usually have logical connections that allow the user to focus on different UI parts according

to the task he is performing. The AbstractRelationship abstract class represents the base type for all the

possible logical connections among the interactors. An abstract relationship consists of a composition of

other abstract relationships and abstract interactors. It is possible to specify the following relationship types:

 Grouping: this class represents a generic group of interactors, which share a logical connection

 Ordering: this class represents a set of interactors that have an ordering relation among the elements.

There also is the ordering_value attribute, which represents the value for an ordered presentation of

the content

 Hierarchy: this class represents a set of interactors where different levels of importance can be

identified. There also is the hierarchy_value attribute, which is used for providing a hierarchical

presentation of the content.

 Repetition: this class represents a template for a list of interactors that have to be repeated in order to

represent a dynamic list of items, coming from a data source.

 Dependency: A dependency is used when we want to model a dependency relation between 1

interactor/interactor group and other N interactors/interactor groups.

An AbstractRelationship element has a number of attributes:

 Id: the interactor identifier

 Hidden: true if the element is not presented to the user

The AbstractDialogModel class defines the behaviour of the UI. It contains a composition of a set of

AbstractEventCompositions, which consist of Events, connected using CompositionOperators. Each

CompositionOperator has an identifier, determining the type of composition that can occur on sets of events.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 24

Such compositions define the set of events observed by the UI in a given state. Example of event

compositions can be e.g. concurrency, sequential enabling, etc. Event is the abstract class that models all

abstract asynchronous notifications about the changes on the state of the interactors or user inputs.

To each generic Event, it is possible to associate a list of EventHandlers, which specifies all the actions that

have to be performed as a reaction to a certain event. Each EventHandler has its own name, and can be also

guarded by a condition, which defines constraints for the reactions.

The generic event class is refined into SelectionEvent, EditEvent and ControlEvent classes:

 The SelectionEvent is associated to the selection abstract interactors and represents the notifications

about the change of the selected value (or values) performed by the user.

 The EditEvent notifies the changes performed by the user through the associated edit abstract

interactor.

 The ControlEvents notifies the activation of some UI functionalities (e.g. executing some script in a

web page), or the switching between presentations, respectively through the activator or navigator

abstract UI interactors.

3.2 Authoring Tool Support

In task 4.5, we develop authoring environments and their accompanying analysis tools that will simplify the

development of adaptive SFEs for all the above-described layers, and will make it easier and efficient for

designers and programmers to design, build and deploy adaptive SFEs using the languages, i.e. ASFE-DL

provided by this work package. We plan to develop a set of tools in the form of plug-ins of some widely used

development tool, such as Eclipse, as well as an HTML5 browser based tool to facilitate web based

authoring.

The authoring tools will help the designers, engineers and web authors to easily create context-sensitive

SFEs for different platforms, which may also use different interaction modalities, e.g. graphics, voice, touch

etc. The authoring tools will provide support for editing not only the model-based descriptions at both

abstract and concrete levels, but also the context-dependent transformations rules.

Figure 8 shows how the authoring tools fit into the overall SERENOA architecture at different stages of UI

development, starting from AUI to CUI. The authoring environment facilitates the developers to fully utilize

the CARFO ontology in order to craft not only the desired adaptation rules, but also the AUI description as

well, using the respective description languages that will be developed in this work package 3

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 25

Figure 8: Adaptation Data Flow. Blue lines represent concept definitions while green lines represent exchanged streams of

data

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 26

4 Conclusion

4.1 Summary

In the „big picture‟ of the SERENOA project, the need to define an adequate reference language upon which

to base the rest of the adaptation work is crucial and hence consumes resources in T3.2 all through the

duration of the project. During the first months of this task, work has been focused on laying out solid

foundations for the language in itself, but also keeping track of the activity in related areas of the project,

such as the theoretical basis in deliverables D2.1.1 and D3.1.1, the ontology work in D2.2.1 and also more

real-world issues such as the architecture for the system (D1.2.1) and the first forays into the design of

SERENOA prototypes as described in D5.2.1. It is our goal to deliver a UI-DL that will allow enough

expressivity to build relevant applications, but not at the expense of making a custom language with little or

no practical use beyond the realms of the project – for that regard we have also made contact with the

standardization activities running in SERENOA and it is envisaged that this will continue and parts of the

work of this task will be subject to a standardization process. This is further explained in section 4.3.

To fulfil these aims, we have chosen to start small and lay out the most general framework we can at this

stage, using knowledge from past projects and languages, as outlined in the State of the Art section,

especially from the languages that members of the consortium have authored or co-authored. By leveraging

on their joint experience and past work, we hope to come up with a UI-DL which is more complete and

relevant than its ancestors. Besides, this reuse of existing software tools was one of the concerns mentioned

by the members of the SERENOA Industrial Advisory Board (see D6.3.1) during the meeting that was held

in Paris on September 17
th
 2011. It was then explicitly advised to reuse work done on the UsiXML project as

much as possible.

In addition to this preliminary study of the state of the art and current consortium portfolio of languages, we

have begun to specify our own SERENOA-DL. In this document, we have specified its core concepts at the

Abstract UI level. This specification will be complemented in the future with the upper levels of the

Cameleon taxonomy.

4.2 Future work

Work in T3.2 will continue for the remaining part of the project. We will continue to specify our SERENOA-

DL in more concrete terms: the AUI specification here contained will be complemented with CUI and FUI

descriptions that will be progressively geared towards particular platforms and implementations. In order to

remain consistent with regards to the adaptation aims of the project, work will be done in parallel with the

rest of the development of the SERENOA framework, especially taking into account the following:

 The Advanced Adaptation Logic Description Language (AAL-DL) to be specified in task T3.3. This

language will be used to specify the adaptations that will be applied upon the UI-DL for the

realization of UIs in applications under specific context constraints. Coordination work with this task

will be necessary so that the two description languages grow in parallel and share as much semantic,

syntactic and stylistic features as possible.

 The runtime implementation, which will have to combine the aforementioned UI-DL and AAL-DL

to produce actual views for the SFE.

 The target prototypes themselves, whose requirements will be key to evaluating the progress of the

SERENOA-DL in terms of completeness and expressivity.

 Last but not least, we will continue surveying the industrial and research communities for similar

approaches to UI-DL. These will be explored and their features incorporated to SERENOA if they

are appropriate, so that the SERENOA-DL remains as much at the cutting edge of technology as

possible.

4.3 Standardization

This report covers work that we expect to submit for standardization at the World Wide Web Consortium

(W3C) with a view to encouraging inter-operable formats between model-based user interface design tools,

thereby increasing competition between such tools, and a larger potential market as the benefits of model-

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 27

based UI design is brought to a wider audience. This is especially valuable in the context of an increasing

variety of devices on which applications need to be supported. Model-based UI design makes for a better

separation of concerns for developing such applications, allowing designers to focus on what they are best at,

and at the same time making it easier to test early versions of designs for their usability.

W3C is in the process of launching a new working group focusing on model-based UI, and at the time of

writing this report, has just completed the Advisory Committee review of the proposed working group

charter. Despite many years of research, model-based approaches to UI design are still at an early stage of

deployment in industry, and standards are needed to encourage investment in authoring tools. This report

covers work by a number of existing model-based authoring projects, and describes a synthesis of the best

ideas based upon the pooled expertise across SERENOA partners. The next step will be to reach out to

authoring tool vendors, and corporate and other organizations, with a shared interest in UI design to ensure

their involvement in the standards process.

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 28

5 References
[Bottoni2011] Bottoni, P., Borgia, F., Buccarella, D., Capuano, D., De Marsico, M., Labella, A., Levialdi, S.:

"Issues in Model-Driven Development of Interfaces for Deaf People", Proceedings of the Workshop on

Software Support for User Interface Description Language (UIDL 2011), Lisbon, Portugal, September 2011

[Calvary2002] The CAMELEON Reference Framework, G. Calvary, J. Coutaz, D. Thevenin, L. Bouillon,

M. Florins, Q. Limbourg, N. Souchon, J. Vanderdonckt, L.Marucci, F.Paternò, and C.Santoro, CAMELEON

Project, September 2002.

[Cantera2010] IDEAL2 Core language. José M. Cantera, C. Rodriguez, José L. Díaz. MyMobileWeb

Working Draft, 31 December 2010. Available at http://files.morfeo-

project.org/mymobileweb/public/specs/ideal2/ideal2-20101231/. Latest version: https://files.morfeo-

project.org/mymobileweb/public/specs/ideal2.

[CSS2] Cascading Style Sheets, level 2 (CSS2) Specification. Ian Jacobs; et al. W3C Recommendation, 11

April 2008. URL: http://www.w3.org/TR/2008/REC-CSS2-20080411. Last version:

http://www.w3.org/TR/CSS2/.

[Desruelle2011] Desruelle, H., Blomme, D., Gionis, G., Gielen, F.: "Adaptive User Interface Support for

Ubiquitous Computing Environments", Proceedings of the Workshop on Software Support for User Interface

Description Language (UIDL 2011), Lisbon, Portugal, September 2011

[DISelect] Content Selection for Device Independence (DISelect) 1.0, R. Merrick, R. Lewis, M. Froumentin.

W3C Work in Progress, 29 June 2010. Available at: http://www.w3.org/TR/2010/NOTE-cselection-

20100629/. Latest version: http://www.w3.org/TR/cselection/.

[Honold2011] Honold, F., Poguntke, M.,Schüssel, F., Weber, M.: "Adaptive Dialogue Management and

UIDL-based Interactive Applications", Proceedings of the Workshop on Software Support for User Interface

Description Language (UIDL 2011), Lisbon, Portugal, September 2011

[Kaklanis2011] Kaklanis, N., Moustakas, K., Tzovaras, D.: "An Extension of UsiXML Enabling the Detailed

Description of Users Including Elderly and Disabled", Proceedings of the Workshop on Software Support for

User Interface Description Language (UIDL 2011), Lisbon, Portugal, September 2011

[Limbourg2004] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Florins, M., UsiXML: A User

Interface Description Language Supporting Multiple Levels of Independence, in Proceedings of Workshop

on Device Independent Web Engineering DIWE'04(Munich, 26-27 July 2004), M. Lauff (Ed.), Munich,

2004.

[Limbourg2004a] Limbourg, Q.,Vanderdonckt, J., Michotte, B., Bouillon, L., Víctor López Jaquero,

UsiXML: a Language Supporting Multi-Path Development of User Interfaces, Proc. of 9th IFIP Working

Conference on Engineering for Human-Computer Interaction jointly with 11th Int. Workshop on Design,

Specification, and Verification of Interactive Systems, EHCI-DSVIS'2004 (Hamburg, July 11-13, 2004),

Lecture Notes in Computer Science, Vol. 3425, Springer-Verlag, Berlin, 2005, pp. 200-220

[MyMobileWeb] MyMobileWeb framework. URL: http://mymobileweb.morfeo-project.org/.

[Paternò2009] F. Paternò, C. Santoro, L.D. Spano, "MARIA: A Universal Language for Service-Oriented

Applications in Ubiquitous Environment", ACM Transactions on Computer-Human Interaction, Vol.16, N.4,

November 2009, pp.19:1-19:30, ACM Press.

[SCXML] State Chart XML (SCXML): State Machine Notation for Control Abstraction , J. Barnett, K.

Reifenrath, M. Helbing, N. Rosenthal, R. Auburn, R. Akolkar, D. C. Burnett, J. Carter, S. McGlashan, T.

Lager, M. Bodell, R. A. Hosn, T. V. Raman. W3C Working Draft, 26 April 2011. Available at

http://www.w3.org/TR/2011/WD-scxml-20110426/. Latest version: http://www.w3.org/TR/scxml/.

[Serra2011] Serra, A., Navarro, A., Naranjo, J.-C: "UsiXML Extension for Avatar Simulation Interacting

within Accessible Scenarios", Proceedings of the Workshop on Software Support for User Interface

Description Language (UIDL 2011), Lisbon, Portugal, September 2011

[UsiXML] UsiXML website: www.usixml.org

http://files.morfeo-project.org/mymobileweb/public/specs/ideal2/ideal2-20101231/
http://files.morfeo-project.org/mymobileweb/public/specs/ideal2/ideal2-20101231/
https://files.morfeo-project.org/mymobileweb/public/specs/ideal2
https://files.morfeo-project.org/mymobileweb/public/specs/ideal2
http://www.w3.org/TR/2008/REC-CSS2-20080411
http://www.usixml.eu/sites/default/files/06_D.Blomme_UIDL2011.pdf
http://www.usixml.eu/sites/default/files/06_D.Blomme_UIDL2011.pdf
http://www.w3.org/TR/2010/NOTE-cselection-20100629/
http://www.w3.org/TR/2010/NOTE-cselection-20100629/
http://www.usixml.eu/sites/default/files/09_N.Kaklanis_UIDL2011.pdf
http://www.usixml.eu/sites/default/files/09_N.Kaklanis_UIDL2011.pdf
http://www.lilab.be/BCHI/members/qli/
http://www.lilab.be/BCHI/members/jva/index.htm
http://www.lilab.be/BCHI/members/bmi/index.htm
http://www.lilab.be/BCHI/members/lbo/index.htm
http://www.lilab.be/BCHI/members/mfl/index.htm
http://www.myclipboard.net/icwe04/
http://www.lilab.be/BCHI/members/qli/
http://www.lilab.be/BCHI/members/jva/index.htm
http://www.lilab.be/BCHI/members/bmi/index.htm
http://www.lilab.be/BCHI/members/lbo/index.htm
http://www.dsi.uclm.es/personal/VictorManuelLopez/mipagina/
http://www.se-hci.org/ehci-dsvis04/
http://www.w3.org/TR/scxml/
http://www.usixml.org/

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 29

[Vanderdonckt2004] Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D., Florins, M.,

UsiXML: a User Interface Description Language for Specifying Multimodal User Interfaces, in Proc. of

W3C Workshop on Multimodal Interaction WMI'2004 (Sophia Antipolis, 19-20 July 2004).

[XForms] XForms 1.1. J. Boyer. W3C Recommendation, 20 October 2009. Available at:

http://www.w3.org/TR/2009/REC-xforms-20091020/. Latest version: http://www.w3.org/TR/xforms11/.

[XMLEvents] XML Events. Shane McCarron et al. W3C Recommendation, 14 October 2003. Available at:

http://www.w3.org/TR/2003/REC-xml-events-20031014/. Latest version: http://www.w3.org/TR/xml-

events2/.

http://www.lilab.be/BCHI/members/jva/index.htm
http://www.lilab.be/BCHI/members/qli/
http://www.lilab.be/BCHI/members/bmi/index.htm
http://www.lilab.be/BCHI/members/lbo/index.htm
http://www.lilab.be/BCHI/members/dtr/
http://www.lilab.be/BCHI/members/mfl/index.htm
http://www.w3.org/2004/02/mmi-workshop-cfp.html
http://www.w3.org/TR/2003/REC-xml-events-20031014/
http://www.w3.org/TR/xml-events2/
http://www.w3.org/TR/xml-events2/

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 30

Acknowledgements

 TELEFÓNICA INVESTIGACIÓN Y DESARROLLO, http://www.tid.es

 UNIVERSITE CATHOLIQUE DE LOUVAIN, http://www.uclouvain.be

 ISTI, http://giove.isti.cnr.it

 SAP AG, http://www.sap.com

 GEIE ERCIM, http://www.ercim.eu

 W4, http://w4global.com

 FUNDACION CTIC http://www.fundacionctic.org

http://www.tid.es/
http://www.uclouvain.be/
http://giove.isti.cnr.it/
http://www.sap.com/
http://www.ercim.eu/
http://w4global.com/
http://www.fundacionctic.org/

 FP7 – ICT – 258030

SERENOA ASFE-DL: Semantics, Syntaxes and Stylistics (R1) Page 31

Glossary
A SERENOA-wide glossary of terms can be found online at:

http://serenoa.morfeo-project.org/glossary-of-terms

http://serenoa.morfeo-project.org/glossary-of-terms

