
The TERESA XML Language for the Description of
Interactive Systems at Multiple Abstraction Levels

Silvia Berti, Francesco Correani, Fabio Paternò, Carmen Santoro

{silvia.berti, francesco.correani, fabio.paterno, carmen.santoro}@isti.cnr.it
ISTI-CNR

Via G.Moruzzi 1
Pisa, Italy

ABSTRACT
The purpose of this paper is to report on the use of XML
languages to support the TERESA tool. This is a tool for
model-based design of multi-device interfaces. It considers
three levels of abstractions (task model, abstract user
interface and concrete user interface). For each of them a
specific language has been defined and used. In addition,
since the lowest abstract level (the concrete interface) is
platform-dependent, there are different variants for each
platform considered.

Keywords
Model-based design, XML user interface languages, tools.

INTRODUCTION
With the advent of the wireless Internet and the rapidly
expanding market of smart devices, designing interactive
applications supporting multiple platforms has become a
difficult issue. The main problem is that many assumptions
that have been held up to now about classical stationary
desktop systems are being challenged when moving
towards nomadic applications, which are applications that
can be accessed through multiple devices from different
locations. Consequently, one fundamental issue is how to
support software designers and developers in building such
applications: in particular, there is a need for novel
methods and tools able to support development of
interactive software systems that adapt to different targets
while preserving usability.
Model-based approaches [4] could represent a feasible
solution for addressing such issues: the basic idea is to
identify useful abstractions highlighting the main aspects
that should be considered when designing effective
interactive applications. Our approach extends previous
work in the model-based design area in order to support
development of nomadic applications. In particular, we
have designed and developed the TERESA
(Transformation Environment for inteRactivE Systems
representAtions) tool providing general solutions that can
be tailored to specific cases. This tool supports
transformations in a top-down manner, providing the
possibility of obtaining interfaces for different types of

devices from logical descriptions. It differs from other
approaches such as UIML [1], which mainly consider low-
level models. XIML [6] has similar goals but there is no
publicly available tool supporting it.

THE METHOD
Our method for model-based design is composed of a
number of steps that allow designers to start with an overall
envisioned task model of a nomadic application and then
derive concrete and effective user interfaces for multiple
devices:
• High-level task modelling of a multi-context

application. In this phase designers develop a single
model that addresses the possible contexts of use and
the various roles involved and also a domain model
aiming to identify all the objects that have to be
manipulated to perform tasks and the relationships
among such objects. Such models are specified using
the ConcurTaskTrees (CTT) notation [4], which also
allows designers to indicate the platforms suitable to
support each task.

• Developing the system task model for the different
platforms considered. Here designers have to filter the
task model according to the target platform and, if
necessary, further refine the task model, depending on
the specific device considered, thus, obtaining the
system task model for the platform considered.

• From system task model to abstract user interface.
Here the goal is to obtain an abstract description of the
user interface composed of a set of presentations that
are identified through an analysis of the task
relationships. Each presentation is structured by means
of interactors composed of various operators.

• User interface generation. In this phase we have the
generation of the user interface. This phase is
completely platform-dependent and has to consider the
specific properties of the target device.

THE TOOL
TERESA is intended to provide a complete semi-automatic
environment supporting a number of transformations useful
for designers to build and analyse their design at different
abstraction levels and consequently generate the user
interface for various types of platforms.
A number of main requirements have driven the design and
development of TERESA:
• Mixed initiative; we want a tool able to support different

levels of automation ranging from completely automatic
solutions to highly interactive solutions where designers
can tailor or even radically change the solutions proposed
by the tool.

• Model-based, the variety of platforms increasingly
available can be better handled through some abstractions
that allow designers to have a logical view of the
activities to support.

• XML-based, each abstraction level considered can be
described through an XML-based language.

• Top-down, this approach is an example of forward
engineering. So, designers first have to create more
logical descriptions, and then move on to more concrete
representations until the final interface is obtained.

• Different entry-points, our approach aims to be
comprehensive and to support various possibilities,
including also when different set of tasks can be
performed on different platforms. However, there can be
cases where only a part of it needs to be supported and,
for example, designers want to start with a logical
interface description and not with a task model.

• Web-oriented, we decided that Web applications should
be our first target. However, the approach can be easily
extended to other environments (such as Java
applications, Microsoft environments, …) by just
modifying only the last transformation (from concrete
interface to final interface).

The TERESA tool offers a number of transformations and
provide designers with an integrated environment for
generating XHTML interfaces for desktop, mobile phones
and VoiceXML user interfaces. With the TERESA tool, at
each abstraction level the designer is in the position of
modifying the representations while the tool keeps
maintaining forward and backward the relationships with
the other levels. For example, it maintains links between
abstract interaction objects and the corresponding tasks in
the task model so that designers can immediately identify
their relations. This results in a great advantage for
designers in maintaining a unique overall picture of the
system, with an increased consistence among the user
interfaces generated for the different devices and
consequent improved usability for end-users.

Figure 1: The TERESA tool.

Once the elements of the abstract user interface have been
identified, every interactor has to be mapped into
interaction techniques supported by the particular device
configuration considered (characterised by the modalities
supported, the screen size, …), and also the abstract
operators have to be appropriately implemented by
highlighting their logical meaning: a typical example is the
set of techniques for conveying grouping relationships in
visual interfaces by using presentation patterns like
proximity, similarity and continuity. However, different
techniques for grouping elements are used in case of vocal
interfaces, such as using a specific sound to delimit a set of
elements.

How XML-based Languages are Used in the Tool
TERESA is a transformation-based tool that supports the
design of an interactive application at different abstraction
levels and generates the concrete user interface for various
types of platforms. By platform we mean a class of systems
that share the same characteristics in terms of interaction
resources. Such transformations exploit a number of XML
languages. The main transformations supported in
TERESA are:
• Presentation task sets and transitions generation.

From the XML specification of a CTT task model
concerning a specific platform, it is possible to obtain
the Presentation Task Sets (PTSs), sets of tasks which
are enabled over the same period of time according to
the constraints indicated in the model and transitions
specifying the conditions allowing moving across PTSs.
Such sets, depending on the designer’s application of a
number of heuristics (general criteria used to merge
together two or more PTSs) supported by the tool, can
be grouped together so identifying the groups of tasks
that should be supported by each user interface
presentation.

• From task model -related information to abstract user
interface. The goal of this phase is mapping the task-
based specification of the system onto an interactor-
based description of the related abstract user interface.
Both the XML task model and Presentation Task Sets
specifications are the input for the transformation
generating the associated abstract user interface.
Currently, each basic task that manipulates a user
interface element is associated with an interactor in the
abstract interface. The specification of the abstract user
interface, in terms of both its static structure (the
“presentation” part) and dynamic behaviour (the
“dialogue” part), is saved for further analyses and
transformations. It is worth pointing out that using
TERESA it is also possible to access the inverse
mapping, since for each interactor the tool is able to
automatically identify and highlight the related task, so
that designers can immediately spot such a relation.
This is particularly useful especially when it comes to
specifying the properties of each interactor, as the
knowledge of the task it supports is an important
indication of its meaning and goal, so it helps designers
to position the interactor within the overall application
and decide on the most appropriate settings.

• From abstract user interface to concrete interface for
the specific platform. This transformation starts with the
loading of a XML abstract user interface specification
previously saved and yields the related concrete user
interface for the specific media and interaction platform
selected, which is saved in the associated XML
language. Currently, there is a one-to-one mapping
between abstract and concrete interactors. A number of
parameters related to the customisation of the concrete
user interface are made available to the designer.

• Automatic UI Generation. The tool automatically
generates the final UI for the target platform. The
starting point can be the single-platform task model,
using a number of default configuration settings related
to the user interface generation, or the abstract or the
concrete user interface.

THE TASK MODEL
The task model is represented by the ConcurTaskTrees
(CTT) notation [4], which supports a hierarchical
description of task models with the possibility of specifying
a number of temporal relations among them (such as
enabling, disabling, concurrency, order independence,
suspend-resume). In addition, for each task it is possible to
specify what objects need to be manipulated for its
accomplishment (it is possible to consider both user
interface and domain objects), as well as a number of
additional attributes (such as frequency) (see Figure 3).

Figure 2: How XML Languages are used in TERESA.

The notation is tool supported. Initially the idea was to
facilitate the development of task models and support
saving them in XML format. It was the first notation for
task models described in XML format (this feature has
been available since 1998). It is currently used also in other
environments (such as [2]) for user interface design and
development.

RootTask
TaskModel

NameTaskModelID : CDATA
1 11 1

SubTask

0..*

1

0..*

1

Category Type
0..*

1

0..*

TemporalOperator
name : SequentialEnabling | Disabling |
 Interleaving | Synchronization | SuspendResume |
 Choice | OrderIndependency | SequentialEnablingInfo

Platform

SiblingLeft
name : CDATA

SiblingRight
name : CDATA

Parent
name : CDATA

Object
name : CDATA
class : Text | Numerical | Graphic | Image | Position | null
type : Perceivable | Application | null
access_mode : Access | Modification | null
cardinality : Low | Medium | High | null

0..*

1

0..*

Task
name : PCDATA
identifier : CDATA
description : PCDATA
iterative : Boolean
optional : Boolean
frequency : CDATA
part of coop : Boolean

1..*

1

1..*

1

0..* 10..* 1

1

1

1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..*1 0..*1

0..1
1

0..1
1 0..1

1

0..1

1

0..1

1

0..1

1

0..*

1

0..*

1
1

1

Figure 3: Class diagram representing the concepts of the
ConcurTaskTrees notation.

In order to support this approach we needed to extend the
notation in such a way to be able to capture the specific
aspects of task models for nomadic applications. The
platform attribute has been added in each task
specification; its purpose is to indicate the types of
platforms that are suitable to support it. It is worth noting
that at this level –the task level- sets of devices sharing
certain similarities are considered, rather than specific
devices. So, in our framework we provide for typical
sample device clusters as mobile phones and PDAs are,

XHTMLXHTML

XML spec.
of

operators
&

abstract
interactors

XML spec. XML spec.
of of

operatorsoperators
& &

abstractabstract
interactorsinteractors

WML

HTML
Mobile

WML

HTML
Mobile

VoiceXMLVoiceXML

XML spec
of CTT
task

model

XML spec
of CTT
task

model

XML
specof
Enabled
Task
Sets

XML
spec of
Enabled
Task
Sets

……
AbstractAbstract UserUser

InterfaceInterface

XML spec.
of

Concrete
User

Interface

XML spec. XML spec.
of of

Concrete Concrete
UserUser

InterfaceInterface

XHTMLXHTML

XML spec.
of

operators
&

abstract
interactors

XML spec. XML spec.
of of

operatorsoperators
& &

abstractabstract
interactorsinteractors

WML

HTML
Mobile

WML

HTML
Mobile

VoiceXMLVoiceXML

XML spec
of CTT
task

model

XML spec
of CTT
task

model

XML
specof
Enabled
Task
Sets

XML
spec of
Enabled
Task
Sets

……
AbstractAbstract UserUser

InterfaceInterface

XML spec.
of

Concrete
User

Interface

XML spec. XML spec.
of of

Concrete Concrete
UserUser

InterfaceInterface

together with the possibility for designers to define their
own platforms. This has proved to be both feasible and
flexible to tackle the problem of dealing with the disparate
devices that our approach has to consider. Nevertheless,
additional levels of refinement within the same cluster are
considered in the last phase of the method, when knowing
the specific characteristics of the devices considered
becomes useful for producing effective final user
interfaces.
The platform attribute has also been associated with the
objects manipulated during task accomplishment. Indeed,
CTT allows designers to specify for each task what objects
should be manipulated during its performance.

THE ABSTRACT USER INTERFACE
An abstract user interface is composed of a number of
presentations and connections among them. Each
presentation defines a set of presentation and interaction
techniques perceivable by the user at a given time. The
connections define the dynamic behaviour of the user
interface. More precisely, they indicate what interactions
trigger a change of presentation and what the next
presentation is. They can be associated with conditions in
case a specific combination of interactions should trigger
the change of presentation.

Figure 4: The Structure of the Abstract User Interface
Language.

The structure of the presentation is defined in terms of
interactors (abstract descriptions of interaction objects
classified depending on their semantics) [5] and their
composition operators (see Figure 4). It is possible to
distinguish between interactors supporting user interaction

(interaction elements) and those that present results of
application processing (only_output elements). The
interaction elements imply an interaction between the user
and the application. There are different types of interaction
elements depending on the type of task supported. We have
selection elements (to select between a set of elements),
edit (to edit an object), control (to trigger an event within
the user interface, which can be useful to activate either a
functionality or the transition to a new presentation).
Differently, an only_output element defines an interactor
which implies an action only from the application. There
are different types of only_output elements (text, object,
description, feedback) depending on the type of output the
application provides to the user: a textual one, an object, a
description, or a feedback about a particular state of the
user interface.
The composition operators can involve one or two
expressions, each of them can be composed of one, several
interactors or, in turn, compositions of interactors. In
particular, the composition operators have been defined
taking into account the type of communication effects that
designers aim to achieve when they create a presentation
[3]. They are:

• Grouping (G): indicates a set of interface elements
logically connected to each other;

• Relation (R): highlights a one-to-many relation
among some elements, one element has some
effects on a set of elements;

• Ordering (O): some kind of ordering among a set
of elements can be highlighted;

• Hierarchy (H): different levels of importance can
be defined among a set of elements.

CONCRETE GRAPHICAL INTERFACE
In this section we describe the XML language for two
graphical platforms: the desktop and the mobile phone. In
both cases the structure is designed to be similar to the
structure of the abstract user interface language. In this
way, passing through these levels in the UI generation
process, we are always able to easily recognize the
interactor hierarchy.
Implementation details are mostly provided by a deeper
tree representation, with leaf nodes defining concrete
information. Differences among concrete user interface
specifications belonging to different devices, thus, can be
mainly found in the lowest levels of the hierarchical
structure.
A concrete desktop user interface is defined by a number of
presentations and default settings to be used in the
generation phase.

<!ELEMENT concrete_desktop_interface
(default_settings, presentation+) >

controlcontrol

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

controlcontrol

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

controlcontrol

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

<!ELEMENT default_settings (background, font_settings,
operators_settings, interactors_settings)>

Mobile devices also require specifying further data
regarding expressive capabilities of the target phone.

<!ELEMENT concrete_mobile_interface (device_type,
default_settings, presentation+)>
<!ELEMENT device_type (big | medium | small)>
<!ELEMENT big EMPTY>
<!ATTLIST big graphic_support (%option;)
#REQUIRED>
<!ELEMENT medium EMPTY>
<!ATTLIST medium graphic_support (%option;)
#REQUIRED>
<!ELEMENT small EMPTY>
<!ATTLIST small graphic_support CDATA #FIXED
"no">

As usual, each presentation contains information about
interactor organization and connections to other
presentations, but specific properties, like title, header etc.,
are also described.

<!ELEMENT presentation (presentation_properties,
connection*, (interactor | interactor_composition))>
<!ELEMENT presentation_properties (title, background,
font_settings, top)>

Connection and interactor composition are defined as in the
AUI language for each type of target platform.

<!ELEMENT connection (conn_type)>
<!ATTLIST connection presentation_name IDREF
#REQUIRED>
<!ELEMENT conn_type (elementary_conn |
complex_conn)>
[…]
<!ELEMENT interactor (interaction | only_output)>
<!ELEMENT interactor_composition (operator,
first_expression+, second_expression?)>
<!ELEMENT operator (grouping | ordering | hierarchy |
relation)>

In the Interactor specification the deeper we proceed, the
more concrete details we get. For instance, let us consider
how we can describe single selection interactors with our
desktop CUI notation.

<!ELEMENT interaction (selection | editing | control)>
<!ELEMENT selection (single | multiple)>
<!ELEMENT single (radio_button | list_box |
drop_down_list)>
<!ATTLIST single cardinality (%cardinality_value;)
#REQUIRED>
<!ELEMENT radio_button (choice_element+)>
<!ATTLIST radio_button label CDATA #REQUIRED>
<!ELEMENT choice_element EMPTY>
<!ATTLIST choice_element
 label CDATA #REQUIRED
 value CDATA #REQUIRED>
[…]

Differences among other CUIs consist of different concrete
elements associated to a given type of interactor; e.g. let us
consider the previous example for mobile devices, list
boxes are not usable in this context so they are not allowed.
<!ELEMENT single (radio_button | drop_down_list)>
[…]

Each CUI formalizes the expressive power of a given
device type in terms of concrete interactors and operators
available in that platform. While in desktop environments
grouping operators can be implemented by combining
several techniques, in mobile phones, because of the
limited screen dimensions, we can choose only one
implementation technique from a limited set.

It can happen that some abstract interactor is related to the
same concrete elements even in different CUI. In this case,
differentiation is granted by allowing different attributes
values for the same concrete object.
For instance we can refer to the text edit objects: they can
be implemented with a text field in both desktop and
mobile cases.

<!ELEMENT text_edit (textfield)>
<!ELEMENT textfield EMPTY>
<!ATTLIST textfield
 label CDATA #REQUIRED
 length (%length_value;) #REQUIRED
 password (%option;) #REQUIRED>

However, the reduced screen capabilities of mobile devices
are considered, thus allowing lower length values.
Desktop CUI

<!ENTITY % length_value "8 | 9 | 10 | 11 | 12 |13 | 14 | 15 |
16 | 17 | 18 |19 | 20">
Mobile CUI
<!ENTITY % length_value "4 | 5 | 6 | 7 | 8 | 9 | 10">

CONCRETE VOCAL INTERFACE
Like graphical interfaces, in vocal interfaces a concrete
user interface is composed of some default settings and a
set of presentations corresponding to the presentations of
the abstract user interface language. The difference is that
in this language, interactors and their compositions are
obtained through techniques specific for the vocal
interface, so they have different attributes.
The default settings are applied to the entire vocal
application and are important for supporting the user
interactions.
<!ELEMENT default_settings (name_application,
welcome_msg, def_commands?, synthesis_properties,
recognition_properties, bargein, operator_settings+)>
<!ELEMENT name_application EMPTY>
<!ATTLIST name_application value CDATA
#REQUIRED>

The welcome message allows users to understand the
current context and that they are talking to a computer that
accepts a well defined language. In this case is possible to
use some default message (short, medium or long) or to
define a new message (new). Another useful parameter of
this element is onlyOnce that allows skipping a welcome
message when the user visits the main presentation for the
second time.
<!ELEMENT welcome_msg EMPTY>
<!ATTLIST welcome_msg

type (short | normal | long | new) #REQUIRED
msg CDATA #REQUIRED
onlyOnce (%boolean;) #REQUIRED>

Other general settings regard: the property of synthesis or
recognition engine, the barge-in option that allows the user
to interrupt a prompt in order to speed up the dialog
sequence and some default commands that allow users to
disable the device input and/or to exit from voice
application.
<!ELEMENT synthesis_properties EMPTY>
<!ATTLIST synthesis_properties

pitch (%pitch_value;) #REQUIRED
 rate (%rate_value;) #REQUIRED
 volume(%volume_value;) #REQUIRED>
<!ELEMENT recognition_properties EMPTY>

<!ATTLIST recognition_properties
confidence CDATA #REQUIRED
sensitivity CDATA #REQUIRED

 completetimeout CDATA #REQUIRED
 incompletetimeout CDATA #REQUIRED>

<!ELEMENT def_commands (exit?, disable?)>
<!ELEMENT disable EMPTY>
<!ATTLIST disable

cmd_dis CDATA #REQUIRED
cmd_activ CDATA #REQUIRED>

<!ELEMENT exit EMPTY>
<!ATTLIST exit msg_to_exit CDATA #REQUIRED>
<!ELEMENT bargein EMPTY>
<!ATTLIST bargein active (%boolean;) #REQUIRED>

The structure of each presentation is defined in terms of
some general properties similar to those considered in the
default settings but in this case they concern one specific
presentation, the dynamic behaviour of the user interface,
the vocal properties of interactors, and the vocal techniques
exploited to represent the composition operators.
<!ELEMENT presentation (presentation_properties,
connections*, (interactor | interactor_composition))>
<!ATTLIST presentation name ID #REQUIRED>
For example, the vocal properties of selection interactor
concerns three types of menu:
<!ELEMENT selection (single | multiple)>
<!ELEMENT single (dtmf_menu | enumerate_menu |
message_menu)>
<!ELEMENT multiple (dtmf_menu | enumerate_menu |
message_menu)>
The meaning of the possible values is:

• <dtmf_menu>: in this case in the vocal interface
the user can perform the selection only through
the keypad and so the message of synthesizer will
be “If you want a coffee, press 1; if…”

• <enumerate_menu>: in this case in the vocal
interface the synthesizer produce a list of option as
“Do you want: coffee, tea, milk…”.

• <message_menu>: in this case in the vocal
interface the synthesizer generate an elaborated
message like “if you prefer coffee, say coffee;
if…”

In any case, the selection interactors can define a feedback
message to confirm if a command is correctly understood
or how to manage some events such as no input or no
match or help or define a reply message in order to listen
again the choices.

In the concrete user interface composition operators can be
represented through different vocal techniques according to
their logical meaning and communication goals. Grouping
can be represented through four techniques:
<!ELEMENT grouping (Insert_sound | Insert_pause |
Change_volume | Keywords)>
<!ELEMENT Insert_sound EMPTY>
<!ATTLIST Insert_sound
 src_audio_file CDATA #REQUIRED>
The technique inserts a sound at the beginning and at the
end of the grouped elements and, in this case, the audio file
is specified.
<!ELEMENT Insert_pause EMPTY>
<!ATTLIST Insert_pause
 lenght_pause CDATA #REQUIRED>
This technique inserts a pause at the end of the grouped
elements and in this case is specified the duration of pause.
<!ELEMENT Change_volume EMPTY>
A specific volume can be used during the speech synthesis
of the grouped elements.
<!ELEMENT Keywords EMPTY>
The keywords technique inserts some words to highlight
the grouping operator (for examples: “In this Application
you can choose one of this option: If you would like some

general information, say information… if you would like to
book a ticket, say ticket. Alternatively if you would…”).
Ordering can be represented by two techniques: arranging
objects in alphabetical order, and keywords techniques that
insert some words to highlight the operator order (for
example: “In this presentation at the beginning you should
say a name, after the sound say password and lastly say go
in order to proceed”).
<!ELEMENT ordering
(Arrange_objects_in_alphabetical_order | Keywords)>
<!ELEMENT Arrange_objects_in_alphabetical_order
EMPTY>
<!ELEMENT Keywords EMPTY>

The Relation operator supports a vocal input that enables a
change in context by moving to another presentation. This
type of operation can be useful to navigate within the
presentation.
<!ELEMENT relation (Change_context)>
<!ELEMENT Change_context EMPTY>

The Hierarchy operator is represented through two
techniques: increasing or decreasing the volume of the
synthesized voice.

Figure 5: The Task Model for the Desktop version of the example.

AN EXAMPLE
In this section we show an example of this approach in
order to better understand how the various abstraction
levels are exploited. We consider a museum application.
Figure 5 shows the task model for the desktop version.
After the automatic transformation of the task model first
into an abstract user interface and then into a concrete user
interface, some attributes have been edited in order to

obtain the concrete version for a desktop system and we
obtain the result shown in Figure 6.
It is possible to see that the user interface is structured into
nine presentations automatically identified. The structure of
the first presentation is currently presented by the tool.
There are two grouping compositions of interactors: one
aims to group three navigator interactors allowing the
access to the various parts of the application, the second

one groups the first grouping with a description interactor.
The element currently selected in the control panel is the
second grouping interactor. The associated attributes and
the corresponding values are displayed in the bottom part.

Figure 6: The Structure of the User Interface of the
example.

Figure 7 shows the corresponding user interface. In the
bottom part we can see the navigator interactors which are
lined up in a horizontal manner with consistent appearance,
thus implementing the grouping operator. In the top part
there is the implementation of the description element
aiming to introduce the Marble Museum and its artworks.
The resulting interface implements the indications
contained in the task model. Indeed, in the model the first
is a system task aiming to introduce the museum showing
the home page. Such task can be disabled by three
interactive tasks whose purpose is to enable different types
of high-level tasks (access to general information,
artworks, and ticket reservation). These four basic tasks
are those associated with the first presentation in the
abstract and concrete user interface.

CONCLUSIONS
The TERESA environment supports design and
development of multi-platform user interfaces through a
number of transformations that can be performed either
automatically or through interactions with the designer.
To this end, a number of XML languages that capture the
relevant information at different abstraction levels are used.
Such languages are introduced in this paper along with a
discussion of how they are used in the environment.

Figure 7: The interface of the first page of the example.

The tool can be freely downloaded at
http://giove.cnuce.cnr.it/teresa.html.
Future work will be dedicated to supporting generation in
further multimodal user interface languages. We also plan
to support importing of CAMELEON XML representations
in order to ease exchange of information with other tools
and facilitate integration of forward and reverse
engineering environments

ACKNOWLEDGMENTS
We gratefully acknowledge support from the EU IST
CAMELEON project (http://giove.cnuce.cnr.it/
cameleon.html) and the EU SIMILAR NoE
(www.similar.cc).

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.,

Williams, S., Shuster, J. UIML: An Appliance-
Independent XML User Interface Language,
Proceedings of the 8th WWW conference, 1999.

2. K.Luyten, K.Conix, An XML-based runtime user
interface description language for mobile computing
devices. Proceedings DSV-IS 2001, pp.20-29, Springer
Verlag.

3. Mullet, K., Sano, D., Designing Visual Interfaces.
Prentice Hall, 1995.

4. Paternò, F., Model-Based Design and Evaluation of
Interactive Application. Springer Verlag, ISBN 1-
85233-155-0, 1999.

5. Paternò, F., Leonardi, A. A Semantics-based Approach
to the Design and Implementation of Interaction
Objects, Computer Graphics Forum, Blackwell
Publisher, Vol.13, N.3, pp.195-204, 1994.

6. Puerta, A., Eisenstein, XIML: A Common
Representation for Interaction Data, Proceedings ACM
IUI’01, pp.214-215.

