
���������
	���
�������������
���	���������

� ��	����"!$#%��&'�)(*�)�+�-,.����/ ����&'���1032'����4*����&

576�879;:<9>=�9@?BAC576�DFE�GIHKJL9;:�M�=�N
OQPSR�TVUXWZY\[^]^W\]_YSW\]`Rba�c$d
egfihkjkjkjBlmWZn�PZU
emo>p^TLqsrLt

u 6�vmJ"w�8g=*x�JL9>:y6�z|{}6�E�~�x�N+?*z�N���E�G
576�9gN�x�x�:�z�NV6�9���=�9gE�HKJL9;:�v�576�9>N+G;J�v�9>:�E�6

�@��� N+v�9>8���N�x�N+v�9;:�E�6

���b���'�%�>�����g�>�S�y�>�$�>���_�b���;���Z�>�S�$ X¡�¢��
�;���y�

£�¤L¥�¦$§`¥�¨$¨_© ª�«>�y ­¬¯®b¦$¦$§

°
±�²`³�´\µI¶L·¹¸�º`»�¼\¸^½ ¾\¿^½ À¹À ÁFÂyÃkµ�¶L·\¸�º^»�¼¹¸^½ ¾\¿Z½ À\¼ ÄSÅÇÆ�Â¹ÈÊÉÊµgË�É ´FÌÍ²�ÎFÏIÈÊ³yÐÑ²�½ ÐÓÒS³�Ô^Õk½ Â�Ë\½×ÖF´

in Proceedings of ACM Conference on Human Aspects in Computing Systems InterCHI'93 (Amsterdam, 24-29 April
1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), Addison Wesley, Reading (Massachusetts),
pp. 424-429.

Encapsulating Knowledge For Intelligent Automatic
Interaction Objects Selection

Jean M. Vanderdonckt, François Bodart

Facultés Universitaires Notre-Dame de la Paix, Institut d'Informatique
Rue Grandgagnage, 21, B-5000 NAMUR (Belgium)

Tel. : +32 (0)81-72.49.75 - Fax. : +32 (0)81-72.49.67 - Telex : 59.222 FacNamB
eMail : JVANDERDONCKT@INFO.FUNDP.AC.BE, FBODART@INFO.FUNDP.AC.BE

ABSTRACT • dialog model support [1]: interaction objects should re-
flect the nature, the structure, the modality and the com-
plexity of the dialog;

TRIDENT is a set of interactive tools that automatically
generates a user interface for highly-interactive business-
oriented applications. It includes an intelligent interaction
objects selection based on three differents concepts. First, an
object oriented typology classifies abstract interaction
objects to allow a presentation independent selection. Se-
cond, guidelines are translated into automatic rules to select
abstract interaction objects from both an application data
model and a dialog model. Third, these guidelines are en-
capsulated in a decision tree technique to make the reaso-
ning obvious to the user. This approach guarantees a target
environment independent user interface. Once this speci-
fied, abstract interaction objects are mapped into concrete
interaction objects to produce the observable interface.

• user model support [1,9]: interaction objects have to be
selected by taking into account the user experience level,
the user skill to manipulate interaction media;

• related interaction objects grouping [2,9]: important
functional groups have to be identified and formed;

• screen space consideration [2]: the selection should not
generate overcrowded or cumbersome screens;

• environment independence [9,17]: the selection should
work in any target environment.

Having only a presentation-independent selection [17] is not
sufficient: the selection must be independent of presentation
tools (e.g. OSF/Motif, Open Look,...) but also independent
of the graphical window managers, UIMSs, toolkits (e.g. X-
Windows, Ms-Windows,...). Why not concentrate all the
knowledge about interaction objects selection into a such
module? This paper describes an intelligent interaction
object selection based on a decision tree technique that
addresses these problems.

KEYWORDS: Automatic User Interface Generation, Deci-
sion Tree, Intelligent User Interface, Interaction Objects,
Rule-Based System.

INTRODUCTION
Specifying the semantic of the application with a high-level
language in order to automatically generate the user interfa-
ce is a widespread approach [2,12,17,18] which implies two
activities: (i) select adequate interaction objects from the
semantic, and, (ii) lay out these objects into a more compre-
hensive one with a logical arrangement. Different authors
have identified the following requirements for an intelligent
automatic selection technique:

AUTOMATIC USER INTERFACE GENERATION
TRIDENT project [5] extends the computer-aided design
methodology IDA (Interactive Design Approach) [3,4] in
order to generate highly-interactive business-oriented appli-
cations along two dialog dimensions: the conversation from
the architecture and specifications [13], the presentation
from specifications (this is the subject of this paper). The
dialog can be either asynchronous or multi-threaded. It is
assumed that the semantic of the application is specified
within different conceptual models and that interaction
styles and modes are already given. Two conceptual models
are used for the selection :

• rule-based automatic generation [18]: this can assess
whether a user interface meets consistent selection rules;

• explicit rules [12]: built-in, code-imbedded rules are
implicit in the system and, therefore, invisible and un-
modifiable by the designer (textually or graphically);

• application semantic involvement [8]: interaction objects
should vary according to the application data structure,
not according to the presentation;

1. an information structure model provides specifications
of the data structure of the application following an
entity-relationship-attribute (ERA) way;

2. a dialog dynamic model provides a function chaining
graph (FCG) specifying the data flow during the task
performance.

The models are specified with Dynamic Specification Lan-
guage, a high-level declarative specification language, and
are then stored into local ERA and FCG data bases (fig. 1).

interactor (according to IFIP terminology), brings an abs-
tracted view of the CIO where physical characteristics are
target environment independent.

Specification editor

ERA, FCG databases

AIO Selector

AIO specifications

AIO to CIO mapper

CIO specifications

CIO Placer

UIL objects

Presentation editor

Selection rules

AIO sets AIO elements (some)
action
objects

menu, menu item, menu bar, drop-down menu,
cascade menu, submenu,...

scrolling
objects

scroll arrow, scroll cursor, scroll bar, frame

static
objects

label, separator, group box, prompt, icon

control
objects

edit box, scale, dial, check box, switch, radio
box, spin button, push button, list box, drop-
down list box, combination box, table,...

dialog
objects

window, help window, dialog box, expandable
dialog box, radio dialog box, panel,...

feedback
objects

message, progression indicator, contextual
cursor

Table 1. Table of abstract interaction objects.

Examining different target environments allows to establish
a comprehensive object-oriented AIO typology divided in 6
sets by interactive capabilities (table 1). Each AIO is
identified by an unique generic name (e.g. check box),
general and particular abstract attributes (e.g. height, width,
color, states), abstract events (e.g. value selection, mouse
click), primitive functions (e.g. Pr-EditBoxContent). By
definition, each AIO have no graphical appearance, but
each AIO is connected to 0, 1 or many CIO in different
environments with different names, presentations (fig. 2).

Figure 1. The TRIDENT approach.

By using rules, the AIO selector automatically selects abs-
tract interaction objects (AIO) from the specifications and
creates AIO specifications. Because these specifications are
target independent, the mapper transforms AIO into con-
crete interaction objects (CIO) which become target envi-
ronment dependent. The CIO Placer places them with three
techniques inspired from [9]: physical object localisation,
appropriate and aesthetic sizing and ergonomical arrange-
ment. The complete resulting interface is translated into
UIL objects which can be fully edited by a direct manipula-
tion presentation editor.

ABSTRACT AND CONCRETE INTERACTION OBJECTS
Concrete interaction objects are graphical objects for input-
ting and displaying data related to the user interactive task;
CIO are sometimes called widgets (window gadgets), con-
trols or physical interactors (according to IFIP terminology).
CIO specifications cover two major aspects :

Figure 2. The AIO check box in different environments : Check
box in Ms-Windows, XmToggleButton in OSF/Motif, BoxArray in
Garnet.

Every AIO can be either simple (described in the typology)
or composite (refinable as containing two or more simple
AIO). Scrolling, feedback, control AIO are by nature simple
whereas dialog AIO are typically composite: users may in-
put, modify, select the values which may be buffered within
the composite objects before transmission to the application.

1. the graphical appearance univocally determined by both
presentation tool (e.g. OSF/Motif) and graphical tool
(e.g. X-Windows);

2. the behaviour and constraints to be respected when the
user manipulates the object.

When selecting an object, the designer have to pay more
attention on the behaviour aspect because user interface
communication power and ease of use are vital. Defining
the presentation is an annex task to be left to a graphical
artist. This observation invites to define interaction objects
independently of the presentation, but not independently of
their behaviour. The abstract interaction object, or logical

AUTOMATIC AIO SELECTION
The first idea behind the AIO selection rests on selection
rules mapping AIO from the detailed specifications of the
semantic [1]. This approach has already been proved
successfull with CIO selection rather than AIO selection.

Data input
 S ingle data
 normal
 for a lis t
 S pecific data
 Data group
 Data lis t
Data dis play
 S ingle data
 S pecific data
 Data group
 Data lis t
AIO Grouping
 S eparation
 Grouping
Compos ite AIO
 Window
 Overlapping
 T i led
 P artially
 T otally
 Cas cade
 S ub-window
 P op-up window
 Dialog box
 Modeles s
 Modal
 E xpandable
 R epetable
 R adio dialog
Actions AIO

Figure 3. Hierarchy of TRIDENT
selection rules

MacIDA [12] selects CIO from database design: a window
is mapped as for each entity type and for each relationship,
an edit box is mapped for each attribute, a push button is
mapped for each function. NIKL [2] includes straightfor-
ward selection rules mapping graphical CIO from the appli-
cation domain model in three phases: realization, selection
and redescription. Jade [27] also promotes simple and direct
selection rules mapping a CIO from the data behaviour and
from information contained in a look-and-feel file. UIDE
[3] uses more sophisticated rules by following guidelines
provided by different style guides. UIDE's selection rules
map a CIO from attributes of the data object and from
metadata depending of the attribute type (boolean, integer,
real, enumerated and string). Observing that semantic con-
siderations play a crucial role in the CIO selection, Selectors
[8] invokes selection rules mapping a CIO from complete
task-domain variables. Humanoïd [15] interprets selection
rules as a template library mapping CIO from application
objects, command and input objects.

Five sets of rules select
simple, composite AIO
(fig. 3): rules for selecting
simple AIO for data
input, simple AIO for da-
ta display, static AIO to
separate or group (un)re-
lated data, composite AIO
depending on ERA, FCG
and actions AIO.

Sets 1,2 transform a hie-
rarchical data structure
into a hierarchy of AIO
with (not yet) unde-
termined root. The data
structure supports not
only simple attributes, but
also group and list of
attributes; arrays, trees or
others complex data
structures are assumed to
be equivalent to organi-
zations of groups and
lists, like list of groups or
group of groups. Sets 1,2
have been splitted for
input and display because
more suited AIO can be
selected for only dis-
playing the same data

Although being more and more rich and complex, we claim
that selection rules still suffer from five drawbacks :

1. the selection rules do not take plenty advantage of the
full power of guidelines and ergonomical rules: selecting
one type of CIO may not be appropriate in another
specific context;

2. the selection rules do not rely on dialog, user and screen
models as suggested in [1]: complex interactive tasks,
unexperienced or expert users, visual density have no
influence on CIO selection;

3. the selection rules always work on CIO because they are
all environment dependent: one selection rule may not
work with others environments;

than for just inputting them on the screen. UIDE [2] also
separates editing content (input) and read-only content
(display). Set 3 is responsible for introducing separators,
group boxes, prompts,... to concretize logical semantic
proximity of AIO by surrounding, delimiting and/or se-
parating to improve user guidance.

4. the selection rules are not observable by the designer:
though some design tools allow the modifiability of the
rules, all of them do not offer any mean to the designer
to see the CIO selection process working;

5. the organization of selection rules is mostly formal
(if...then rules): no graphical representation is provided.

Set 4 selects the root object which is a composite AIO
and/or any sub-composite AIO used in the hierarchy. For
example, tiled windows are preferred for simultaned tasks
and overlapping windows, for concurrent tasks, pop-up
windows for minimal sub-tasks. Radio-dialog boxes simula-
te exclusive tasks in the FCG, expandable dialog boxes
support tasks with frequent and rare sub-tasks, repetitive
dialog boxes simulate reiterative tasks with same data. Set 5
introduces dedicated push buttons from the structure of the
FCG. For example, "Ok" and "Cancel" buttons, "Help"
button for complex task, "More..." button for expandable
dialog, "Default" or "Reset" for specific data input or
with default values.

To improve points 1-3, we restarted a full study of selection
rules. Guidelines were merged from multiple style guides:
the Apple Human Interface Guidelines, the Hewlett-Packard
Interface Guide, the IBM Common User Access Style
Guide, the OSF/Motif Style Guide [11] and the Sun Open
Look Guide. They were fully rewritten in terms of AIO in
a consistent and non-redundant format. Others environment
dependent guidelines, namely for Apple // by Toggnazzini
[16] and for OSF/Motif by Kobara [10], have been
transformed in the same way. Precise others selection rules
were added from expert ergonomical rules: Arens [1],
Brown [6], Card et al. [7], Shneiderman [14]. INTELLIGENT AUTOMATIC AIO SELECTION

Selection rules generally contain four information sources:
data from the application model (all), information on these

data (e.g. metadata in UIDE [2]), others parameters (as in
Selectors [8]), user preferences (as in DON [9]). TRIDENT
employs four information sources contained in ERA and
CFG databases (fig. 1).

object (e.g. a profiled edit box for an expert, a list box for an
intermediate user, a sequence of spin buttons for a begin-
ner).

AIO SELECTION BY DECISION TREE
To solve points 4-5 above and to really produce intelligent
AIO selection, rules must be organized in a proper way
which is modifiable and observable. UIDE's [2] and DON
[9] selection rules are organized as if...then rules contained
in a file editable by the designer. Drawing a flowchart bene-
fits to the designer: this organization seems obvious (assi-
milating rules is easy), concise (the organization is intrinsi-
cally kept short and non-redundant) and rapid (following a
path is fast). Nevertheless, the flowchart fails to show the
entire space of possible values covered by each metadata.

First, every application data is specified as a quadruplet

d = (V, dt, nvc, dv)

where V is the set of all possible values of d (if known); dt
belongs to one of the implemented data types (hour, date,
logical, integer, numeric, real, alphabetic, alphanumeric);
nvc is the number of values to choose (1 for simple choice,
N for multiple choice); dv ∈ V is the default value of d (if
known). V is partitioned as V = PV ∪ SV where PV is the
sub-set of principal values and SV, the sub-set of secondary
values. This characterization allows a future presentation of
most frequently used values first, minimizing input and
scrolling. The number of principal values and secondary
values are given by npv = # PV and nsv = # SV. Maximum
data length is given by l = max(length (vi)) ∀ vi ∈ V.

Second, five metadata refine each data when relevant:
granularity- whether the data precision is low, moderate or
high; known values- whether V is well defined; ordered list-
whether the values of V are sorted according a particular
order (numerical, alphabetical, logical, temporal, physical,
by frequence); expandable list- whether the user can add
new vales to V and/or modify V; continous range- whether
the values are contained in a continous range or interval. If
there is some order in the values of V, then an appropriate
AIO is selected (e.g. a spin button for chronological data, a
scale for a bounded integer, a list box for logically ordered
alphabetical data). Figure 4. TRIDENT's AIO Selection tree (partial view).

TRIDENT so adopted a decision tree technique showing at
each node the possible values space as a partition. A deci-
sion tree graphically depicts a decision logic with arcs and
nodes. Each node consists of a current AIO selected and a
set of nodes. Each node states a simple logical condition
(e.g. is Level=5?); all arcs starting from a node cover the
space of possible values (e.g. Level<5, Level=5, Level>5 in
fig. 4; nvc=1 for a simple choice, nvc>1 for a multiple
choice). The first arcs concern the different data types
(hour, date, boolean,...). The selection tree represents the
AIO selection logic where two kinds of nodes are reached :

Third, one parameter specifies constrained display space-
whether the selection must consider screen density to avoid
too large AIO. The more constrained is the screen space, the
less large AIO is selected (e.g. a drowp-down list box in
place of a complete list box).

Level User experience
3 beginner
4 novice
5 intermediate
6 expert
7 master 1. branching nodes: node evaluating only one parameter to

determine the path to follow at lower level and providing
the AIO of the current level;

Table 2. User experience level

Fourth, a common user model is clarified by a user expe-
rience level provided by Card et al. [7] (table 2) and by a
user selection preference (low or high)- whether the use is
more skilled to select one value among a list of values or to
enter it with the keyboard. The less is the user experience
level, the more sophisticated is the guidance provided by the

2. conclusion nodes: leaf node furnishing final AIO after
evaluating the whole decision logic.

AIO on conclusion nodes are supposed to be the most ap-
propriate interaction objects, if all involved parameters are
known.

ADVANTAGES AND INCONVENIENCES On the other hand, some disadvantages have been observed:
Practical experience showed that decision tree has benefits: • rule redundancy : some identical rules are duplicated at

different places in the tree because their application is
relevant at different states;

• visibility : the designer is able to clearly visualize why a
particular AIO was choosen progressively and to un-
derstand the result of each selection rule; the tree re-
presentation has a great influence on the effort needed to
implement selection rules and to follow them;

• excessive size : the designer prefers trees with small
values spaces at each node so that it is vital to reduce the
conditions; an explicit tree representation can become
impractical for very large selection trees.• easy backtracking : applying an inappropriate rule may

delay successful user interface generation; because the
user interface development is iterative, the user can try a
rule and, if it later discovers that this rule was inappro-
priate, can go back and try another instead by using
other selection rules;

MAPPING AIO TO CIO
Once matching AIO hierarchy has been mapped from all
data structures, this AIO hierarchy is transformed to CIO
hierarchy which is target environment dependant (fig. 5).
Different AIO to CIO matching tables are defined. After
transformation, CIO hierarchy can be captured as entry of a
direct manipulation presentation editor.

• easy reasoning explanation : trees are useful for keeping
track of the intermediate application of rules;

• fast selection : this results from a breadth-first ordering
because expansion of nodes is similar at each level; this
search is guaranteed to find a shortest-length path to a
conclusion node, if such a path exists (the completeness
of selection rules is to be verified);

• high modifiability : identical sub-trees can be duplicated,
new or others AIO can be added to tailor the tree to local
conventions and user preferences;

• iterative refinement : because each node is associated to
an AIO, the designer can stop the selection at every no-
de, go back to the previous, select another rule.

Figure 6. Resulting interface in the presentation editor.

The resulting interface can then be modified by the desi-
gner, the human factors specialist using DECVuit (Visual
User Interface Tool) editor in the case of OSF/Motif (fig.
6). During this phase, the designer can replace behaviour-
equivalent CIO (semantic integrity must be preserved),
move or shift CIO whithin the tool to improve presentation,
decoration and to respect physiological human limits. This
modification is no longer made according to selection rules.

CONCLUSIONS
A decision tree-based AIO selection technique has been
introduced to solve several problems and to induce new
features which are greatly appreciated by the designers. In
order to improve the range of selection rules, many
metadata were defined and used so that this number
becomes the major inconvenience to implement reasonably
scaled trees. It seems that is the price to pay when enriching
selection rules.

Selection rules are AIO-based rules for data management
and business-oriented applications as in insurance and ban-Figure 5. CIO hierarchy in the presentation editor.

king companies for instance. Graphical application may
draw attention to the AIO typology, but their scope is ac-
tually not covered by this work (it was not the intended
purpose). The eight supported data types with their metada-
ta is the only investigation of the semantic for the selection
rules. This not claims that all important aspects of business
applications that affect the interface can be characterized by
these informations. In fact, others parts of the semantic are
passed to the interface generator in the CIO Placer: func-
tional dependencies, integrity constraints, domain cons-
traints,...

International Conference on Information Systems
Proceedings, Indianapolis, 1985.

[4] Bodart, F. and Pigneur, Y., Conception Assistée des
Systèmes d'Information, Paris: Masson, 1989.

[5] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Pro-
vot, I., Sacré, B. and Vanderdonckt, J., "The TRI-
DENT project (Tools foR an Interactive Development
ENvironmenT)", Working Conference IFIP WG 2.7,
Namur, September 1990.

[6] Brown, C.H., Human-Computer Interface Design
Guidelines, Berkeley, Ablex Publishing Corp., 1988.

[7] Card, S.K., Moran, T.P. and NEWELL, A., The
Psychology of Human-Computer Interaction, Hillsda-
le, NJ: Lawrence Erlbaum Assoc., 1985.

The current selection tree only requires forward chaining,
but a future work concerns its extension to fully backward
chaining: having a given AIO, which are the selection rules
we need to apply, and from which type of data? This
question occurs when the final user imperative requires to
use a particular AIO which is different from the AIO
selected by the tree.

[8] Johnson, J., "Selectors: Going Beyond User-Interface
Widgets", CHI'92 Conference Proceedings, Monterey,
May 1992, pp. 273-279.

[9] Kim, W. and Foley, J., "DON: User Interface Presen-
tation Design Assistant", UIST'90 Conference Procee-
dings, Snowbird, October 1990, pp. 10-20.

On the other hand, DECVuit is now under extension for
opening actual UIL object hierarchy to home-maded object
classes: some interesting CIO are separately implemented
and imported (e.g. group box, profiled edit box, option box,
simple and extended tables,...)

[10] Kobara, S., Visual Design with OSF/Motif, Hewlett-
Packard Press Series, Reading, MA: Addison-Wesley,
1991.

[11] Open Software Foundation, OSF/Motif Style Gui-
de, revision 1.0, Englewood Cliffs, NJ: Prentice Hall,
1990.ACKNOWLEDGMENTS

[12] Petoud, I. and Pigneur, Y., "An Automatic and visual
approach for user interface design", in Enginnering for
Human-Computer Interaction, Amsterdam: North-
Holland, 1990, pp. 403-420.

The auhors would like to thank all members of the TRIDENT
project Anne-Marie Hennebert, Jean-Marie Leheureux, Isabelle
Provot, Benoît Sacré (especially) and Louis Simon for their colla-
borative and participative research work. This work was supported
by the FIRST (Formation et Impulsion à la Recherche Scientifique
et Technologique) research program of "Direction Générale des
Technologies et de la Recherche du Ministère de la Région
Wallonne", Ref. RASE/SCHL319/Conv. 1487 and by the "Infor-
matique du Futur" project of "Service de la Politique et de la
Programmation Scientifique" under contract N°IT/IF/1.

[13] Provot, I. and Sacré, B., "Proposition d'un langage de
spécification de l'interface homme-machine d'une
application de gestion hautement interactive", research
report, Fac. Univ. N.-D. de la Paix, Namur, December
1991.

[14] Shneiderman, B., Designing the user interface: stra-
tegies for effective human-computer interaction, Rea-
ding, MA: Addison-Wesley, 1987.

Any opinions, findings, conclusions or recommendations expres-
sed in this paper are those of the authors, and do not necessarily
reflect the view of the Belgian Government. Copyright  1993 F.
Bodart, Jean M. Vanderdonckt. [15] Szekely, P., Luo, P. and Neches, R., "Facilitating the

Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design", CHI'92
Conference Proceedings, Monterey, May 1992, pp.
507-515.

REFERENCES
[1] Arens, Y., Miller, L. and Sondheimer, N., "Presenta-

tion design Using an Integrated Knowledge Base", in
Sullivan, J. and Tyler, S. (eds.), Intelligent User Inter-
faces, Reading, MA: Addison-Wesley, 1991, pp. 241-
258.

[16] Tognazzini, B., The Apple // Human interface
guidelines, Cupertino, CA: Apple Computer, 1985.

[17] Vander Zanden, B. and Myers, B.A., "Automatic,
Look-and-Feel Independent Dialog Creation for Gra-
phical User Interfaces", CHI'90 Conference Procee-
dings, Seattle, April 1990, pp. 27-34.

[2] de Baar, D., Foley, J.D. and Mullet, K.E., "Coupling
Application Design and User Interface Design",
CHI'92 Conference Proceedings, Monterey, May
1992, pp. 259-266. [18] Wiecha, C., Bennett, W., Boies, S. and Gould, J.,

"Generating Highly Interactive User Interfaces",
CHI'89 Conference Proceedings, Austin, May 1989,
pp. 277-282.

[3] Bodart, F., Hennebert, A.-M., Leheureux, J.-M. and
Pigneur, Y., "Computer-aided specification, evaluation
and monitoring of information systems", Sixth

