
Models, Tools and Transformations for
Design and Evaluation of Interactive Applications

Fabio Paternò, Laila Paganelli, Carmen Santoro

CNUCE-C.N.R.
Via G.Moruzzi, 1

Pisa, Italy
fabio.paterno@cnuce.cnr.it

SUMMARY
This paper discusses a framework to address issues re-
lated to the design and evaluation of interactive systems
in current technological settings characterised by wide
variability of context of use. The basic idea is that effec-
tive solutions can be provided only if a meaningful set of
models are identified along with transformations that al-
low moving from one model either to another model or
to an implementation system and vice versa. In such a
framework, the environment calls for the support of a set
of tools able to ease model development and analysis
and possible transformations.

KEYWORDS : Models, Transformations, Tools.

INTRODUCTION
The quickly increasing availability of a large spectrum
of interaction devices that can be accessed from many
types of environments risks creating chaos because de-
signers of interactive applications have difficulties in
managing all the relevant factors. Whenever there is
some complexity to manage, humans tend to create mod-
els to highlight the important aspects to consider. In
human-computer interaction a number of models have
been used to support user interface designers and devel-
opers by highlighting relevant aspects that they should
take into account and providing logical descriptions of
such features. For example, task, user, domain, context,
presentation, and dialogue models, as well as scenarios
have widely been used. Such models can also be useful
to address the new challenges, such as those raised by
the increasing platform variability. However, we need at
least two key elements to take advantage of them: auto-
matic tools and transformations for moving from one
model to another or to the system implementation and
vice versa. The basic idea is that the design and evalua-
tion process can be effective if it is supported by a flexi-
ble set of tool-supported transformations [5]. There are
many potential transformations but we do not need all of
them in all situations. The choice of which transforma-
tion to perform depends on the current goals, the mate-
rial and time available, the characteristics of the applica-
tion domain, and so on. For example, in some cases de-
signers have to start from scratch and so they need to

envision the main features of the new system, whereas in
other cases there is an existing system for which the un-
derlying abstractions must be identified in order to
evaluate it and determine suggestions for improvements.
The goal of this paper is to give an introduction to these
problems and their possible solutions, and to provide a
number of examples of transformations and tools sup-
porting them, most of them developed at the HCI group
of CNUCE-C.N.R.. In particular, the discussion is di-
vided into three parts: an introduction to the logical
framework proposed based on the use of models, trans-
formations and tools and a discussion of two instances of
this framework, one dedicated to supporting the design
of nomadic application, the other to the remote usability
evaluation of web sites.

Regarding models for interactive applications, we pay
particular attention to task models, how to represent
them (including representations for cooperative applica-
tions), analyse their content, and support the develop-
ment of such models using information taken from in-
formal descriptions, such as scenarios. We will also dis-
cuss how to use information provided by task models to
derive user interfaces for heterogeneous interaction plat-
forms.

Next, we will move on to discuss how inverse transfor-
mations can be useful for usability evaluation: starting
with logs of user interactions with the actual system, it is
possible to identify how users perform tasks and com-
pare this with the system task model in order to check
potential mismatches that can generate usability prob-
lems.

MODEL-BASED DESIGN OF NOMADIC APPLICA-
TIONS
Particular attention is to be paid to the wide variety of
devices currently available, which is bound to increase
in the coming years, because it poses a number of issues
for the design cycle of interactive software applications.
Model-based approaches for the design of nomadic ap-
plications aim to enable each interaction device to sup-
port appropriate tasks that users expect to perform and

help designers to develop the various device specific ap-
plication modules in a consistent manner.

In a recent paper, discussing the future of user interface
tools, Myers, Hudson, and Pausch [1] indicate that the
wide platform variability encourages a return to the
study of some techniques for device-independent user in-
terface specification, so that developers can describe the
input and output needs of their applications, so that ven-
dors can describe the input and output capabilities of
their devices, and so that users can specify their prefer-
ences. Then, the system might choose appropriate inter-
action techniques taking all of these into account. The
basic idea is that instead of having separate applications
for each device that exchange only basic data, there is
some abstract description and then an environment that
is able to suggest a design for a specific device that
adapts to its features and possible contexts of use.

This problem is a novel challenge for model-based de-
sign and development of interactive applications. The
potentialities of these approaches have been addressed in
a limited manner. In the GUITARE Esprit project a user
interface generator has been developed that takes Con-
curTaskTrees (CTT) task models and produces user in-
terfaces for ERP applications according to company
guidelines. However, completely automatic generation is
not a general solution because design is a complex proc-
ess; many factors must be taken into account, and the
weight of each factor can vary depending on many pa-
rameters (type of application, users, devices, …). Semi-
automatic processes can be more general. It means that
there are tools that help designers move from models to
concrete user interfaces by choosing from several avail-
able criteria.

UIML is an appliance-independent XML user interface
language. While the language proposed is ostensibly in-
dependent of the specific device and medium used for
the presentation, it does not seem to take into account
the research work carried out in the last decade on
model-based approaches for user interfaces. For exam-
ple, the language provides no notion of task, it mainly
aims to define an abstract structure. The approach takes
an interesting path, but the declarative language needs
improvement. This confirms the need for a universal
XML Human-Computer Interaction language able to
represent all the aspects that should be considered when
supporting the rendering of user interfaces in heteroge-
neous environments. The W3C consortium has recently
delivered the first version of a new standard (XForms)
that presents a description of the architecture, concepts,
processing model, and terminology underlying the next
generation Web forms. It is based on the separation of
the purpose from the presentation of a form. Once again
this shows the importance of separating conceptual de-

sign from concrete presentation, but it also highlights the
need for meaningful models to support such approaches.

More generally, the issue of applying model-based tech-
niques to the development of UIs for mobile computers
has been addressed at a conceptual and research level,
but there are still many issues that should be solved to
identify systematic, general solutions that can be sup-
ported by automatic tools. Our approach provides de-
signers with support for the design and development of
nomadic applications: these applications manage users'
access both to their own personal information as well as
to the public domain. Such access should be ubiquitous
and independent of specific devices. The aim is to find
general solutions that can be tailored to specific cases,
whereas current practise is to develop ad hoc solutions
with few concepts that can be reused in different con-
texts.

The design of multi-platform applications has to take
into account various aspects. It is possible to support the
same type of tasks with different devices. In this case,
what has to be changed is the set of interaction and pres-
entation techniques to support information access while
taking into account the resources available in the device
considered.

Figure 1: Example of same task, different interface.

However, often interaction devices are suitable to sup-
port different sets of tasks. For example, phones are
more likely to be used for quick access to limited infor-
mation, whereas desktop systems better support brows-
ing through large amounts of information. To complicate
matters, it must be borne in mind that even within the
same class of devices there are different presentation
models that need to be handled. For example, more and
more, cellular phones are being used to access remote
applications, and currently access is provided by WAP
phones. There are many usability issues that are limiting
their spread. While in desktop systems we have mainly
two well-known browsers with some compatibility is-
sues (even though such issues often create some prob-
lems), in WAP-enabled phones a number of micro-
browsers tend to accept slightly different versions of

WML, assume to interact with slightly different phones
(for examples, phones with a different number of soft-
keys) and interpret the softkeys interactions differently.

More precisely our method [3] is composed of a number
of steps (see Figure 2) that allow designers to start with
an overall envisioned task model of a nomadic applica-
tion and then to derive concrete and effective user inter-
faces for multiple devices:

High-level task modelling of a multi-context application.
In this phase designers need to think about what logical
activities have to be supported and identify the logical
relationships among them. Here they develop a single
model that addresses the various possible contexts of use
and the various roles involved. This model should de-
scribe all the activities users may want to perform in the
possible contexts. In the task model we consider also
how changes in the users' environment can either trigger
or stop some activities. Various techniques (such as sce-
narios or use cases) can be used to gather information
relevant for the development of this model. Along with
the task model, we also develop a domain model aiming
to identify all the objects that have to be manipulated to
perform tasks and the relationships among such objects.

Developing the system task model for the different plat-
forms considered. Here designers have to filter the task
model according to the target platform. It is possible to
consider any type of target platform including wearable
computers, augmented reality and so on. This involves
creating task models in which the tasks that cannot be
supported meaningfully in a given platform are re-
moved. It also implies adding the navigational tasks
deemed necessary to interact with the considered plat-
form. For example, selecting one element from a list of
options is something that should be supported differently
if we consider a desktop system, a PDA or a Wap phone.
Thus, we obtain the system task model for the platform
considered. These task models are specified using the
ConcurTaskTrees notation (CTT) [4] because it allows
description of flexible behaviours and is tool supported
(http://giove.cnuce.cnr.it/ctte.html). In this notation it is
possible to graphically represent the hierarchical logical
structure of the task model and specify a number of
flexible temporal relationships among such tasks (con-
currency, enabling, disabling, suspend-resume, order-
independence, optionality, …) and for each task it is
possible to indicate the objects that it manipulates and a
number of attributes. The notation also allows designers
to indicate how the performance of the task should be al-
located (to the user, to the system, to their interaction)
through different icons.

From system task model to abstract user interface. Here
the goal is to obtain an abstract description of the user

interface that provides greater detail about the structure
of the user interface. The abstract description is com-
posed of a set of abstract presentations that are identified
with the support of the enabled task sets. The main pur-
pose of the enabled tasks sets is to help in identifying
when the interaction techniques supporting the tasks
should be enabled. Then, still with the help of the task
model, we identify the possible transitions among the
presentations considering the temporal relationships that
the task model indicates. We indicate the structure of
each presentation using operators such as grouping (a set
of interaction techniques should be grouped somehow).
Analysing task relationships can be useful for structuring
the presentation. For example, the hierarchical structure
of the task model can be considered to identify interac-
tion techniques to be grouped, for example, those that
have the same parent task and are thus logically more re-
lated to each other. Likewise, concurrent tasks that ex-
change information can be better supported by highly in-
tegrated interaction techniques (to some extent, merged),
as happens when using adjacent techniques, so that users
can better follow their mutual dependencies. At this
point we also obtain a refined description of the basic in-
teraction tasks that have to be supported, such as selec-
tion, control, editing, as well as their attributes, such as
frequency, and related objects (including their cardinal-
ity). The classification of the basic task should be as re-
fined as possible. So, for example, it can be better to in-
dicate, not only that there is a selection task, but whether
it should be a single or a multiple selection with low or
high cardinality of choices.

Figure 2: Approach proposed for design of nomadic applica-
tions.

User interface generation. In this phase we have the
generation of the user interface. This phase is completely
platform-dependent and must consider the specific prop-
erties of the target device. It is not sufficient to say, for
example, that we want to consider a cellular phone;
rather, we need to consider the type of microbrowser
supported, the number and the types of softkeys avail-
able. If we consider PDAs, we need to know whether
they support colour and audio output or not. Likewise, if
we consider desktop systems, we need to know if they

 Envisioned task model for nomadic applications

System task model
Cellular phone

System task model
P.D.A.

System task model
Desktop system

......

Abstract user interface Abstract user interface Abstract user interface

Phone . com Nokia ... Palm Pilot Compaq ... Multimedia
PC

Graphical
PC

Low resolution
PC

..

Envisioned task model for nomadic applications

Cellular phone
System task model

P.D.A.
System task model

Desktop system

......

Abstract user interface Abstract user interface Abstract user interface

Phone . com Nokia ... Palm Pilot Compaq ... Multimedia
PC

Graphical
PC

Low resolution
PC

..

have good multimedia features and, in the case of a
graphics-only desktop system, the display's resolution
and size.

We have started development of tool support for this
method. To date, we have defined XML versions of the
language for task modelling (ConcurTaskTrees), enabled
task sets (sets of tasks enabled over the same time) and
the language for modelling abstract interfaces. We aim
to tightly integrate this new tool for interface prototyping
for multiple platforms with a previously developed tool
for task modelling and analysis.

REMOTE USABILITY EVALUATION OF WEB SITES
In the previous section we have seen a chain of possible
transformations able to derive user interfaces from task
models of nomadic applications. Now, we consider how
we can support usability evaluation of web sites. In par-
ticular, we will discuss what can be analysed with tool
support by starting with logs of user interactions. To this
end, we will need to transform the log events into task-
related information.

Creating a Web site allows millions of potential users
with various goals and knowledge levels to access the in-
formation that it contains. For this reason, interest in us-
ability evaluation of Web sites is rapidly increasing. In
general terms, many methods for usability evaluation
have been proposed: they range from inspection-based
methods based on the ability of the evaluators (such as
heuristic evaluation or cognitive walkthrough) to meth-
ods based on users involvement (such as usability testing
or cooperative evaluation) or to others that use model-
ling techniques for example to predict time performance
(such as GOMS-based methods).
There are many motivations for automatic tools able to
support evaluation process. The total or partial automa-
tion of usability evaluation can reduce the time required
and costs and release evaluators from repetitive and te-
dious tasks. A number of tools for usability evaluation of
traditional graphical applications have been proposed,
however, the different nature of Web interfaces requires
specific tools. Here we discuss a method and a relative
tool (WebRemUSINE [2]) to detect usability problems
in Web interfaces through a remote evaluation. Our ap-
proach combines two techniques that usually are applied
separately: empirical testing and model-based evalua-
tion. The reason for this integration is that models can be
useful to detect usability problems but their use can be
much more effective if they can be related to the actual
use of a system.
In empirical testing the actual user behaviour is analysed
during a work session. This type of evaluation requires
the evaluator to observe and record user actions in order
to perform usability evaluation. Manual recording of
user interactions requires a lot of effort thus automatic

tools have been considered for this purpose. Some tools
support video registration but also video analysis re-
quires time and effort (usually it takes five times the du-
ration of the session recorded) and some aspects in the
user interaction can still be missed by the evaluator. In
model-based evaluation, evaluators apply user or task
models to predict interaction performance and identify
possible critical aspects. For example GOMS (Goals,
Operators, Methods and selection rules) has been used to
describe an ideal error-free behaviour. Model-based ap-
proaches have proven to be useful but the lack of con-
sideration for actual user behaviour can generate results
that can be contradicted by the real user behaviour. It
becomes important to identify a method that allows
evaluators to apply models in evaluation still considering
information empirically derived. To this end the main
goals of this environment are:

• To support remote usability evaluation where users
and evaluators are separated in time and/or space;

• To analyse possible mismatches between actual user
behaviour and the design of the Web site repre-
sented by its task model in order to identify user er-
rors and possible usability problems;

• To provide a set of quantitative measures (such as
execution task time or page downloading time), re-
garding also group of users, useful for highlighting
some usability problems.

Our tool is able to analyse the possible inconsistency be-
tween the actual user interactions and the task model of
the Web site that describes how its concrete design as-
sumes that activities should be performed. To support
remote evaluation, we have developed a technique that
allows recording user actions during a site visit. The
analysis of the logged data is based on the comparison of
the traces of actions performed with the temporal con-
straints described in the task model. This analysis pro-
vides evaluators with a number of results that are related
to the tasks that users intend to perform and the Web
pages and their mutual relationships.
The starting point was RemUSINE, an automatic tool
based on the use of task models to support evaluations of
graphical applications. This tool was not suitable for web
applications whose specific aims are to support tasks re-
lated to retrieving and accessing information, and navi-
gation is based on links to remote pages. In RemUSINE
to identify errors (useless actions for the current task),
the possible enabling and disabling of user interface ac-
tions was considered. Then, if users try to perform an ac-
tion, this means that they want to perform the associated
task, and if the action is disabled, then an error is per-
formed. For example, suppose the user has to perform
some actions and then save the data. If the user tries to

save the data before terminating the sequence of actions
planned, then this action would be disabled, and the er-
ror can be automatically detected. During Web site
evaluation it is not possible to apply this concept because
usually links are always enabled. Thus, in this context it
is difficult to automatically identify user intentions. The
solution that we have adopted to capture this information
is to display the high-levels tasks that are supported by
the Web site asking the user to indicate explicitly what
task they want to perform (See Figure 3). During the
testing, since we perform remote evaluation without di-
rect observation of the user interactions, it is important
to obtain logs with detailed information. We have de-
signed and implemented a logging tool able to record a
set of actions wider than those contained in server logs.
WebRemUSINE compares the logs with the task model
and provides results regarding both the tasks and the
Web pages supporting an analysis from both viewpoints.

Figure 3: The interface during the test session.

The method is composed of three phases:

• Preparation, it consists in creating the task model of
the Web site, collecting the logged data and defining
the association between logged actions and basic
tasks;

• Automatic analysis, where WebRemUSINEs exam-
ines the logged data with the support of the task
model and provides a number of results concerning
the performed tasks, errors, loading time, …

• Evaluation, the information generated is analysed
by the evaluators to identify usability problems and
possible improvements in the interface design.

The environment is mainly composed of three modules:
the ConcurTaskTrees editor developed in our group; the
logging tool that has been implemented by a combina-
tion of Javascript and applet Java to record user interac-
tions; WebRemUSINE, a java tool able to perform an
analysis of the files generated by the logging tool using
the task model created with the CTTE tool.

The logging tool is able to store various events detected
by a browser. The Javascripts are encapsulated in the
HTML pages and are executed by the browser. When the
browser detects an event, it notifies the script for han-
dling it. By exploiting this communication, the script can
capture the events detected by the browser and add a
temporal indication. Our tool works for the two main
Web browsers (Micorosft IE and Netscape Communica-
tor). Then, a Java applet stores the log files directly in
the application server.

WebRemUSINE performs an automatic evaluation of a
Web site providing the evaluator with a set of measures,
concerning also group of users, useful to identify usabil-
ity problems. The input for the tool are the task model
and the log files recorded during the test sessions. We-
bRemUSINE is composed of two submodules:

The preparation module, this module filters the informa-
tion recorded during the testing, then the evaluator has to
associate each basic task with the corresponding event
(see Figure 4). All the event-basic task associations are
recorded in a file.

Figure 4: The part of the tool supporting the preparation
phase.

The evaluation module, it has three inputs: the task
model, the log files and the event-basic tasks associa-
tions. This information is useful to analyse the logs with
the support of the task model and identify errors per-
formed by the user during the navigation. By following
the sequence of events stored in the log it is possible to
identify the corresponding tasks (through the event-basic
tasks association) and comparing the sequence with the
temporal relationships among the tasks it is possible to
identify the tasks performed correctly and those that
generate errors (see Figure 5). It is also possible to calcu-
late the completion time for the relative tasks (see Figure
6). All results are displayed by WebRemUSINE in vari-
ous formats both textual and graphical.

Applet
and

list of tasks

Web
Site
pages

Figure 5: Automatic analysis of a user session.

The WebRemUSINE analysis can point out usability
problems such as tasks with long performance or tasks
not performed according the task model corresponding
to the Web site design. These elements are useful to
identify the pages that create problems to the user. As
previously explained, log files store both user interac-
tions (mouse movements, keyboard input, link selection)
and browser behaviour (start and end of page loading).
The events corresponding to user interactions are associ-
ated with interaction tasks whereas the internal browser
events are associated with system tasks.

Figure 6: Example of display of task performance analysis.

The evaluation performed provides information concern-
ing both tasks and Web pages. These results allow the
evaluator to analyse the usability of the Web site from
both viewpoints, for example comparing the time to per-
form a task with that for loading the pages involved in
such a performance. WebRemUSINE also identifies the

sequences of tasks performed and pages visited and is
able to identify patterns of use, to evaluate if the user has
performed the correct sequence of tasks according to the
current goal and to count the useless actions performed.
In addition, it is also able to indicate what tasks have
been completed, those started but not completed and
those never tried. This information is also useful for
Web pages: never accessed web pages can indicate that
either such pages are not interesting or that are difficult
to reach. All these results can be provided for both a sin-
gle user session and a group of sessions. The latter case
is useful to understand if a certain problem occurs often
or is limited to specific users in particular circumstances.

CONCLUSIONS
There are many possible transformations useful to sup-
port design and evaluation of interactive applications.
Here we have introduced the current potentials of such
an approach and discuss examples of tools and methods
addressing some of the open issues.
There is a need for widely accepted modelling languages
to exploit the potentialities of this approach. In this way,
we could obtain a wide range of tools enabling easy de-
velopment of models, providing meaningful metrics for
the analysis of such models and supporting transforma-
tions in other environments. Then, designers could
choose the set of tools most suitable to their specific
goals.
ACKNOWLEDGEMENTS
Support from the European IST Project CAMELEON
(http://giove.cnuce.cnr.it/cameleon.html) is gratefully
acknowledged.

BIBLIOGRAPHY
1. B. Myers, S. Hudson, R. Pausch. Past, Present, Fu-

ture of User Interface Tools. Transactions on Com-
puter-Human Interaction, ACM, 7(1), March 2000,
pp. 3-28.

2. Paganelli L. and Paternò F., Remote Analysis of
User Sessions for Usability Evaluation of web Sites,
CNUCE-C.N.R. Internal Report 2001-013, Septem-
ber 2001.

3. Paternò F. and Santoro C. One Model, Many Inter-
faces. CNUCE-C.N.R. Internal Report, July 2001.

4. Paternò F., Model-Based design and Evaluation of
Interactive applications, Springer Verlag, ISBN 1-
85233-155-0, 1999.

5. Weicha C., Szekely P., Transforming the UI for
anyone, anywhere, Proceedings CHI 2001 Extended
Abstracts, pp.483-484.

