
 1

Supporting Interactions with Multiple Platforms Through User
and Task Models

L.Marucci, F.Paternò, C.Santoro

ISTI-CNR

Via G.Moruzzi 1
Pisa, Italy

Fax: +39 050 3138091
{l.marucci, f.paterno, c.santoro}@cnuce.cnr.it

Abstract
In this chapter we describe an approach to supporting the interaction design of nomadic
applications, which are applications that can be accessed through multiple devices from different
locations. This approach is based on the use of task modelling techniques at design time. In addition
we use user modelling techniques at run-time to adapt an application to the interaction device, user
preferences and user knowledge. With this method it is also possible to adapt the navigation,
presentation and content of the user interface to different interaction platforms.

Keywords – Nomadic Applications, Model-based Design, Task and User model, Multi-platform
Interfaces, Adaptability, Adaptivity.

1. Introduction

With the advent of the wireless Internet and the increasing variety of devices appearing regularly on
the market, designing interactive applications supporting multiple platforms has become a difficult
issue. The devices have new capabilities and exploit features of novel generations of
communication technology, and they are often enabled for mobile use and handled by an increasing
variety of users. As such, many assumptions that have been held up to now about classical
stationary desktop systems are no longer valid due to the wide range of possibilities currently
available.

In recent years, interest in model-based approaches has been increasing. The basic idea of such
approaches is to identify useful abstractions highlighting the main aspects that should be considered
when designing effective interactive applications. UML [BRJ99], the most common model-based
approach in software engineering, has paid very little attention to supporting the design of the
interactive component of software. Therefore, specific approaches have been developed for
interactive system design. Of the relevant models, task models play a particularly important role
because they indicate the logical activities that an application should support. A task is an activity
that should be performed in order to reach a goal. A goal is either a desired modification of state or
an inquiry about the current state.

For the generation of multiple user interfaces, task models play a key role in the adaptation to
different contexts and platforms. The basic idea is to capture all the relevant requirements at the
task level and then use this information to generate effective user interfaces tailored for different
types of platforms. Information about the design of the final user interface can be derived from
analysing task models. For example, the logical decomposition of a task can provide guidance for
the generation of the corresponding concrete user interface. The task structure is reflected in the

 2

graphical presentation by grouping together interaction techniques and objects associated with the
same sub-task. We have identified a number of possibilities for how tasks should be considered in
the generation of multi-platform user interfaces, for example:

• When the same task can be performed on multiple platforms in the same manner.
• When the same task is performed on multiple platforms but with different user interface.

objects or domain objects.
• When tasks are meaningful only on specific platforms.

In addition to adapting interfaces at the design phase, it is possible to adapt them at run time by
considering users’ preferences and environment (location, surrounding, etc.). Preference and
environment information is used to adapt the navigation, presentation and content of the user
interface to different interaction platforms (see Figure 1).

User modelling [B96] supports adaptive interfaces that change according to user interaction. It can
also be helpful in designing for multiple interaction platforms. User models represent aspects such
as knowledge level, preferences, background, goals, physical position, etc. This information
provides user interfaces with adaptability, which is the ability to dynamically change their
presentation, content and navigation in order to better support users’ navigation and learning
according to the current context of use. Several types of user models have been used. For example,
some models use information about the level of users’ knowledge for the current goals; other
models employ user stereotypes and evaluate the probability of their relevance to the current user.

Various aspects of user interfaces can be adapted through user models. Text presentation can be
adapted through techniques such as conditional text or stretch-text (text that can be collapsed into a
short heading and when selected is expanded). User navigation can also be adapted using
techniques such as direct guidance and adaptive ordering and hiding of links. Adaptive techniques
have been applied in many domains. Marucci and Paterno [MP01] describe a Web system
supporting an adaptive museum guide that provides virtual visitors with different types of
information related to the domain objects presented (introduction, summary, comparison,
difference, curiosity) according to their profile, knowledge level, preferences and history of
interactions.

User

Figure 1: User model support for multiple platforms

 3

To date, only a few publications have considered user modelling to support the design of multi-
platform applications, and there are still many issues that need to be solved in this context. For
example, Hippie [OS00] describes a prototype that applies user modelling techniques to aid users in
accessing museum information through either a web site or a PDA while in the museum. In our
approach we also consider the use of mobile outdoor technologies and provide user models
integrated with task models developed in the design phase.

In this chapter we first introduce a detailed scenario to illustrate the type of support that we have
designed. Then we describe our method, how the user model is structured and how such
information is used to obtain an adaptive user interface. We also discuss the types of rules for using
information in the user model to drive adaptive behaviour. Finally, we provide some concluding
remarks.

2. An example scenario
In this section we provide the reader with a concrete example of the type of support that our
approach provides. The scenario describes an application that provides an interactive guide to a
town.

From a desktop computer at the hotel, John visits the Carrara Web site. He finds it interesting. In
particular, he is interested in marble sculptures located close to Piazza Garibaldi. He spends most
of his time during the virtual visit (Fig.2, part a) accessing the related pages and asking for all the
available details on such art works.

Figure 2: Spatial information provided through the desktop (a) and the cell phone (b)

The next day, John leaves the hotel and goes to visit the historic town centre. When he arrives he
accesses the town’s Web site through his PDA via phone.

 4

Figure 3: Cell phone support during the visit to the historical town

The system inherits his preferences and levels of knowledge from the virtual visits performed in the
hotel. Thus, it allows him to access information on the part of the town interests him most (Figure 3,
part a), and navigation is supported through adaptive lists. These lists are based on a ranking
determined by the interests expressed in the previous visit using the desktop system. During the
physical visit he sees many works of art that impress him, but there is no information available
nearby, so he annotates them through the phone interface (Figure 3, parts b and c).

When he is back in the hotel, in the evening, John again accesses the town web site through his
login. The application allows him to access an automatically generated guided tour of the town
(Figure 4) with an itinerary based on the locations of the works of art that impressed him. He can
modify the tour if he no longer finds some of the proposed works of art interesting. This way, he
can perform a new visit of the most interesting works of art, receiving detailed information about
them.

Figure 4: The user interface to the desktop version after an access through the phone version

 5

3. General description of the approach
In order to support the development of systems that adapt to the current user, device and context,
we use the models shown in Figure 5. In this diagram we consider both the static development of
interactive systems for a set of platforms and the dynamic adaptation of interactive systems to
changes in context in real time.

• In the static case, a system specification in terms of the supported tasks is used to create an
abstract version of a user interface (including both abstract presentation and dialogue design);
from the abstract user interface, a concrete user interface is derived, in which the abstract
interaction mechanisms are bound to platform-specific mechanisms.

• In the dynamic case, external triggers lead to the real-time reconfiguration of the interactive
system during use. These triggers can be user actions (e.g., connecting a PDA to a mobile phone
to provide a network connection) or events in the environmental (e.g., changing noise and light
level as a train enters a tunnel, or network failure).

In order to better describe the static development and the dynamic reconfiguration of systems, we
refer to a number of models:

• The Task Model describes a set of activities that users intend to perform while interacting with
the system. We can distinguish two types of task models: the system task model, which is how
the designed system requires tasks to be performed, and the user task model, which is how users
expect to perform their activities. A mismatch between these two models can generate usability
problems.

• The Domain Model defines the objects that a user can access and manipulate in the user
interface. This model also represents the object attributes and relationships according to
semantically rich expressions.

• Interactors [PL94] describe the different interaction mechanisms independent of platform (e.g.,
the basic task an interactor is able to support). The interactor model operates primarily at the
level of the abstract description of the user interface.

The Platform Model describes the physical characteristics of the target platforms, for example
characteristics of the available interactive devices such as pen, screen, voice input, video cameras.

• The Environment Model specifies the user’s physical environment.
• The User Model describes information such the user’s knowledge, interests, movements and the

personal preferences.

W
m
a
t
s

I
T
g
r

4
T
t
i
r
d
m
s
d
c
e
b

6

Figure 5: Models considered in our approach at design time and run-time

e have identified a set of design criteria for using logical information in the models to generate
ultimedia user interfaces adapted to a specific user, platform and context of use. For a given task

nd device, these design criteria indicate, for example, which interaction and presentation
echniques are the most effective in a specific configuration setting, and how the user interface
hould adapt to a change of device or environmental conditions.

n the following sections we will show how these models take part in the overall design process.
he discussion will focus on the task model and user model, describing the role they play in the
eneration of user interfaces that adapt to changes in context. Afterward, we will describe their
elationships in more detail, and we will present an example that helps to explain the approach.

.Role of the Task Model in Design
he design of multi-platform applications can follow different approaches. It is possible to support

he same type of tasks with different devices. In this case, what has to be changed is the set of
nteraction and presentation techniques to support information access while taking into account the
esources available in the device considered. However, in some cases designers should consider
ifferent devices also with regard to the choice of the tasks to support. For example, phones are
ore likely to be used for quick access to limited information, whereas desktop systems better

upport browsing through large amounts of information. Because the different devices can be
ivided in clusters sharing a number of properties, the vast majority of approaches use to consider
lasses of devices rather than single devices. On the one hand, if this approach tends to limit the
ffort of considering all the different devices, on the other hand different device types might need to
e handled because of the heterogeneity of devices even belonging to the same platform.

 7

The fact that devices and tasks are so closely interwoven in the design of multiplatform interactive
applications is a central concern running through our method, which is composed of a number of
steps allowing designers to start with an overall envisioned task model of a nomadic application and
then derive effective user interfaces for multiple devices (see Figure 6). The approach involves four
main steps:

1. High-level task modelling of a multi-context application. In this phase, designers define the
logical activities to be supported and the relationships among them. They develop a single
model that addresses the various contexts of use and roles; they also develop a domain
model to identify the objects manipulated in tasks and the relationships among such objects.
Such models are specified using the ConcurTaskTrees (CTT) notation. The CTT
Environment tool [MPS02] publicly available at http://giove.cnuce.cnr.it/ctte.html supports
editing and analysis of task models using this notation. The tool allows designers to
explicitly indicate the platforms suitable to support each task.

2. Developing the system task model for the different platforms. Here designers filter the task
model according to the target platform and, if necessary, further refine the task model for
specific devices. In this filter-and-refine process, tasks that cannot be supported on a given
platform are removed and the navigational tasks necessary to interact with the platform are
added. In other cases it is necessary to add supplementary details on how a task is
decomposed for a specific platform.

3. From system task model to abstract user interface. Here the goal is to obtain an abstract
description of the user interface. This description is composed of a set of abstract
presentations that are identified through an analysis of the task relationships. These abstract
presentations are then structured by means of interactors (see Section 3 for definition). Then
we identify the possible transitions among the user interface presentations as a function of
the temporal relationships in the task model. Analysing task relationships can be useful for
structuring the presentation. For example, the hierarchical structure of the task model helps
to identify interaction techniques and objects to be grouped together, as techniques and
objects that have the same parent task are logically more related to each other. Likewise,
concurrent tasks that exchange information can be better supported by highly integrated
interaction techniques.

4. User interface generation. This phase is platform-dependent and device-dependent. For
example, if the platform is a cellular phone, we also need to know the type of micro-browser
supported and the number and types of soft-keys available in the specific device considered.

Figure 6: Deriving multiple user interfaces from a single task model

 8

In the following sections we discuss these steps in detail. We have defined XML versions of the
language for task modelling (ConcurTaskTrees), and the language for modelling abstract interfaces
and developed automatic transformations among these representations.

4.1 FROM THE TASK MODEL TO THE ABSTRACT USER INTERFACE
The task model is the starting point for defining an abstract description of the user interface. This
abstract description has two components: a presentation component (the static structure of the user
interface) and a dialogue component (the dynamic behaviour).

The shift from task to abstract interaction objects is performed through three steps:

1. Calculation of Enabled Task Sets (ETS): The ETSs are sets of tasks enabled over the same
period of time according to the constraints indicated in the task model. They are
automatically calculated through an algorithm that takes as input (i) the formal semantics of
the temporal operators of the CTT notation and (ii) a task model. For example, if two tasks
t1 and t2 are supposed to be concurrently performed they belong to the same ETS: they can
be performed in any order so their execution will be enabled over the same period of time. If
they are supposed to be carried out following a sequential order (first t1 then t2), they cannot
belong to the same ETS since the performance of t2 will be enabled only after the execution
of t1, so they will never be enabled during the same interval of time. The need for
calculating ETS is justified by the fact that the interaction techniques supporting the tasks
belonging to the same enabled task set are logically candidates to be part of the same
presentation. In this sense, the ETS calculation provides a first set of potential presentations
Furthermore, the calculation of the ETS implies the calculation of the conditions that allow
passing from ETS to ETS we called them “transitions”.

2. Heuristics for optimising presentation sets and transitions: These heuristics help designers
reduce the number of presentations considered in the final user interface. This is
accomplished by grouping together tasks belonging to different ETSs. In specific, once the
ETSs have been defined, we specify rules (heuristics) to reduce their number by merging
two or more ETSs into new sets, called Presentation Task Sets (PTS). Depending on the
task model, the number of ETSs can sometimes be high. As a rule of thumb, the number of
ETSs is of the same order as the number of enabling operators in the task model.

3. Mapping presentation task sets and their transitions onto sets of abstract interaction objects
and dialogue: A number of rules have been identified in order to perform the mapping
between a task and a suitable abstract user interface object. Such rules are based on the
analysis of the multi-dimensional information associated with tasks – for example, the goal,
the objects manipulated and the frequency of the task. Every dimension functions as a sort
of condition during the visit of the tree-like structure of the language describing interactors
(see Figure 7), in order to appropriately elect the most suitable one. On the other hand, the
transitions between different presentation sets are directly mapped into connections linking
the different presentations of the abstract user interface.

All these transformations are supported by our TERESA tool [MPS03] publicly available at
http://giove.cnuce.cnr.it/teresa.html).

4.1.1 The Language for Abstract User Interfaces
The set of presentation sets obtained in the previous step is the initial input for building the

abstract user interface specification. This specification is composed of interactors or Abstract
Interaction Objects (AIOs) associated with the basic tasks. Such interactors are high-level

interaction objects that are classified first by type of basic task supported, then by type and
cardinality of the associated objects and lastly by presentation aspect.

F
i
c
m
c
o
p
e

F
T
o

T
f
c
w

9

Figure 7: The tree-like representation of the language for specifying the abstract user interface

igure 7 provides a tree-like representation of the abstract language for specifying the abstract user
nterface. An interface is composed of one or more presentations and each presentation is
haracterised by an aio or an aio_composition and 0 or more connections. In fact, there are two
ain types of objects in the abstract user interface: elementary abstract interaction objects (aio) and

omplex expressions (aio_composition) derived from applying the operators to these interaction
bjects. While they describe the static organisation of the user interface (in the next section we
rovide more detail on these operators), the set of connections describe how the user interface
volves over the time, namely its dynamic behaviour.

rom Presentation Task Sets to Abstract User Interface Presentations
he abstract user interface is mainly defined by a set of interactors and the associated composition
perators.

he type of task supported, the type of objects manipulated and their cardinality are useful elements
or identifying the interactors. In order to compose such interactors we have identified a number of
omposition operators for designing usable interfaces. These composition operators are associated
ith communication goals that designers aim to achieve [MS95]:

• Grouping (G): The objective is to group together two or more elements, so this operator
should be applied when the involved tasks share some characteristics. A typical situation is
when the tasks have the same parent task. This is the only operator for which the position of
the different operands is irrelevant.

• Ordering (O): This operator is applied when some kind of sequential order exists amongst
elements. The most typical order one is the temporal order. The order in which the different
elements appear within this operator reflects the order within the group.

• Relation (R): This operator is applied when a relation exists between n elements yi, i=1,…, n
and one element x. In the task model, a typical situation is when a leaf task t is at the right-
hand side of a disabling operator. In this case all the tasks that could be disabled by t (at
whatever task tree level) are in relation to t. This operator is not commutative.

• Hierarchy (H): This operator means that a hierarchy exists among the involved interactors.
The importance level associated with the operands identifies the degree of visual

 10

prominence that the associated interaction objects should have in the user interface. The
degree of importance can be derived from the frequency of access or from details of the
application domain. Various techniques can be used to convey importance. In graphical user
interfaces one method is allotting more screen space to objects that are hierarchically more
important.

Such operators will be applied to tasks belonging to the same PTS, depending on the temporal
relationships existing amongst those tasks, which are derived from the task model in the following
manner: if the two concerned tasks are siblings, the temporal relationship is represented by the CTT
operator existing between them; if this is not the case (e.g. the two concerned tasks have different
task parents) the temporal relationship will be easily derived considering that temporal relationships
between tasks are inherited by their subtasks.

The Dialogue Component
In specifying the dynamic behaviour of the abstract user interface, an important role is played by
abstract interaction objects associated with the transitions. For each presentation task set P,
transition(P) specifies the conditions allowing for the transition of the abstract user interface from
the current presentation set P into another presentation set P’. The transitions can directly
correspond to tasks, or, alternatively, can be expressed by means of a Boolean expression. For
example, when we want to express that more than one task has to be executed in order to trigger the
activation of a different presentation, an AND operator combines the prerequisite tasks.

4.2 FROM THE ABSTRACT USER INTERFACE TO ITS IMPLEMENTATION

Once the elements of the abstract user interface have been identified, each interactor is mapped
onto interaction techniques supported by the specific device configuration (operating system,
toolkit, etc.). For example if the object of the abstract user interface allows for a single selection
from a set of objects, various implementations are available to the designer depending on the
capabilities of the platform or device in question; these can include radio button menus, pull-down
menus, list menus, etc.

In addition, since relationships between interactors are expressed with the composition operators,

they have to be appropriately implemented in order to convey their logical meaning in the final user
interface and to this aim, we have identified several techniques. For instance, in graphical user
interfaces, a typical example is the set of techniques for conveying groupings by using classical
presentation patterns such as proximity, similarity and continuity. If a different modality is used, the
meaning of the same operators should be conveyed through different mechanisms. For example, in
audio user interfaces, we would convey groupings with aural attributes such as pitch and volume.

As another example, a hierarchy operator for textual objects in a graphical user interface could
represent important objects with larger fonts, whereas in an audio-based user interface, the
hierarchy operator could represent important verbal information with a higher volume.

5. Relations between Task and User Models
In our approach we assume that a model-based method has been followed in the design of the multi-
platform application. As noted earlier in this chapter, the ConcurTaskTrees notation [P99] allows
designers to develop task models of nomadic applications. This means that in the same model,
designers can describe tasks to be performed on different platforms and their interrelationships
[PS02]. From this high level description it is possible to obtain first the system task model

 11

associated with each platform and then the corresponding device-level user interface. The task
model can also be expressed in XML format

In our case we use the XML specification as input for the creation of the user model that will be
used for adaptivity at run time. The two models share some information, but also contain different
elements. This means that some elements of the task model are removed and others added in order
to make the two models compatible. In addition, the user model is mainly characterised by values
that are updated dynamically according based on users’ interactions with the interface. For each
user, the user model is updated when the user interacts with any of the available platforms. A run-
time support algorithm uses the user model to modify the user interface presentation, navigation and
content by applying previously defined adaptivity rules.

One advantage of this approach is that the task model developed at design time already provides
useful information for run-time adaptive support. This information from the task model at design
time includes:

• The temporal dependencies among tasks performed on different platforms
• The tasks that can be performed through multiple platforms
• The association of tasks with domain objects and related attributes
• The definition of objects and attributes accessible through a given platform.

Figure 8: Relationships between task model and user model

The performance of some tasks (from either phone or desktop) can change the level of interest
associated with some domain objects (for example the preferred city zone), and this information can
also be used to adapt the presentation support for a platform different from that currently in use (for
example, the order of the links in a list).

 12

6. The User Model
In our approach, the user model is structured in such a way as to indicate user preferences and
acquired knowledge depending on the user’s accesses to the application. Referring to the scenario
of use of the Carrara Web site in section 2:

• User preferences can include, for example, the preferred city zone, navigation style, theme or
features of an artwork.

• Acquired knowledge can include, for example, the level of knowledge about an author, an
historical period or a material.

The general format of the user model (in XML file format) includes:

Figure 9: Information contained in the user model and its relation with the task model.

As we can see in Figure 9, the user model is tightly related to the task model. It contains
information that is dynamically updated such as the number of times that a task has been performed
or that an object has been accessed. It also contains fields that allow dynamic modification of the
availability of performing a specific task : Mergeable indicates whether to merge the execution of a
task along with a different task, Hideable indicates whether to hide its performance in another, more
general task, and Disabled indicates whether to completely disable it for the current user.

An example of a Task Model is provided in Figure 10.

 13

Figure 10: Example of a task model

For each task, all the attributes listed above can be defined (through a dedicated tool), including the
properties related to adaptive support. After this step, the tool generates the XML file in the
following general form (Figure 11):

<Task Identifier="Select zone" Category="Interaction"
Iterative="true" Optional="false" Hidable="true"
Mergable="true" Disabled="true"
PartOfCooperation="false" Frequency="null">

 <Name>null</Name>
 <Type>null</Type>
 <Description>null</Description>
 <AccessedNumber>3</AccessedNumber>

 …
Figure 11: An excerpt of the XML file containing information about task models

This file is updated during the user session. From analysis of the file, the system is able to
determine the tasks performed by the user and their sequence, as well as the object classes and
related subclasses. From this user input, the system computes the navigation preferences by
analysing information such as the sequence of tasks, the tasks never performed and the tasks most
frequently performed. The system also evaluates the presentation preferences by analysing the
objects classes and subclasses.

The location is an attribute related only to mobile interactive platforms. For example if the user has
accessed the system by mobile phone, then after the user selects an item from the Materials list, the
system offers the option of displaying only the artworks made of local materials.

The domain model is structured in terms of object classes and related subclasses that are
manipulated during task performance. The relationships between tasks and domain objects are
represented in the user model. The association between tasks and object instances can be either
static or dynamic. For example, in the task of selecting an element from a list of predefined values,
the association is static, whereas in the task of displaying information on a work of art whose name
is provided by the user, the association is dynamic.

 14

The domain objects that can be accessed and manipulated vary by device. In general, domain
objects that can be manipulated by phone are more limited than those accessible via desktop
computers and have different spatial attributes related to the user position, such as closeness.

Likewise, the supported tasks depend on the interaction platform. For example some tasks are
associated with a virtual visit on a desktop computer and others are associated with access by
mobile phone. In addition, performance of certain tasks on one platform may depend on the
accomplishment of other tasks through other devices (for example the desktop task of reviewing an
itinerary previously annotated with a phone device).

In response to the user’s behaviour in real time, the user model dynamically updates user
knowledge and preferences. This has the effect of updating objects, attributes and task performance
frequencies. The application can dynamically change the supported navigation according to
frequency of performance of certain tasks and frequency of use of certain objects.

7. Adaptive Rules
This section describes the rules that are used to drive the adaptivity of the user interface. In the next
subsection we will explain how these rules are handled, and how they result in adaptive navigation
and presentation as a function of the users’ interactions with the system on different platforms. In
particular we will examine examples of the adaptation of navigation, presentation and content of the
user interface. The following tables show when a rule comes into force and the effect on interactive
system behaviour. It is possible to relate such rules to the identification of interaction patterns
directly from the end-user experience [SJ93].

If… Then…

The user always performs the same sequence of
tasks in order to reach a goal

Change the navigation support so as to reduce
the time required to achieve the goal

The user performs a task on one platform and
then accesses the application through another
platform

Change the user model state to enable or disable
certain tasks

The user never selects a task (for example, a link
selection) during one or more sessions on any
platform

Hide the task support from all platforms (for
example, remove link)

Mobile context: The user is near an object of
interest in the physical world

Advise users through their mobile device

Mobile context: The user is following a
physical path in the environment

Determine the next object of interest for users t
based on their preference and location

The user often selects a domain object set that
satisfies a given rule (for example belonging to a
city zone, with the same characteristics, etc.)

Change navigation modality so as to enable the
related tasks.

The user never selects a domain object set that
satisfies a given rule (for example belonging to a
city zone, with the same characteristics, etc.)

Change navigation modality so as to disable the
related tasks.

Table 1: Rules for Adaptive Navigation

 15

If… Then…
The user often selects a domain object
(independently of the task order and platform)

Provide access to this object or attribute in a
high priority position.

The user never selects a domain object
(independently of the task order and platform)

Provide access to this object or attribute in a low
priority position.

The user often performs the same type of tasks Change the presentation according to the most
frequently used task types

Table 2: Rules for Adaptive Presentation

If… Then…
The user has already seen a specific domain
object and then accesses a similar object

Change the content so as to explain the
difference or similarity as compared to the
previously seen object

The user shows advanced knowledge of a
certain topic

Increase the detail in the description of the
elements of interest, within the constraints of the
current device

Table 3: Rules for Adaptive Content

7.1 Navigation as a Function of Task Frequency

Here we discuss how the system handles the situations where the user always repeats the same
sequence of tasks. For example, we can consider when the user selects a set of domain objects
associated with a general topic and then a more refined subset iteratively (see Figure 12).

Figure 12: Example of a task model for two-stage selection of objects

The recurrent selection of a specific type of artwork (e.g. made of bronze, defined as full relief
sculpture, etc.), followed by a more specific selection (e.g. bronze artworks from the XX Century,
full relief sculpture by the artist Vatteroni, etc.) causes the appearance in the interface of a new link
for direct access to the subclass: “Bronze artworks in XX Century” or “Vatteroni’s full relief
sculpture”. This link will appear until the user has visited all the artworks belonging to that subset
and/or until the system detects different preferences.

We can follow the corresponding changes in the user model: for each task there is an attribute that
represents the possibility of that task’s being “merged”, an indication of the task to which it can be

 16

connected and the new name to be given to this unified task as well as the number of accesses,
object instance and object subsets selected.

In the previous example (the recurrent selection of bronze artworks and then bronze artworks from
the XX Century) this will generate a link “Bronze artworks in XX Cen.”, in both the desktop and
phone interfaces in which the user can select the material. During dynamic generation of the user
interface, the system first analyses the XML file content and then generates the links.

Another example is when the user never performs certain tasks during a session or during different
sessions. In this case the system will remove the tasks in question. Thus, the task can be disabled
(by setting the corresponding attribute) if it is never performed (over one or more sessions) in any
platform (presuming the task is defined for multiple platforms).

7.2 Navigation as a Function of Task Performance

Tasks performed in a specific platform can generate a change in the task model for another
platform. For example, let us consider a scenario where the user previously selects a tour on a
desktop computer, indicates preferences for a city zone and then accesses the application through a
cell phone.

When the user selects a tour on the desktop computer, via either a map or the predefined link, the
task “Follow the desktop selected route” in the user model will be modified (see Figure 13). The
corresponding Disabled attribute, previously set to true, will be set to false, and the corresponding
object instance will be the tour chosen by the user.

Figure 13: Access to the application for the first time, after desktop visit and tour selected and
after desktop visit but no tour selected.

For the reverse case, from the mobile platform the user chooses the option of selecting the artworks
seen during the visit so as to later view descriptions and details when using the desktop computer at
home. This will enable the task “More Information about artworks visited” in the desktop platform,
and each of the artworks selected will be added as the objects corresponding to that task.

7.3 Modification of Presentation

The following example demonstrates a change in presentation for a task whose objects are the
artworks located in the historical city centre. The user can access these artworks by choosing one of
the following alternatives: Streets, Buildings, Churches, or Squares. Suppose that the user often

 17

chooses “Streets”. The user model contains the choice task whose objects correspond to the
artworks of the city, along with the specific platforms from which each object can be accessed.

More generally, the user model also contains the objects manipulated by each task as well as the
platforms supporting each object. For each user choice, the system stores the objects selected in the
user model. In the example mentioned above, the user first selects “artworks in Carrara city” and
then the object “Streets”. The recurrent choice of this attribute will cause a change in the order of
items in the corresponding list (see Figure 14).

Figure 14: Example of an adaptive list

In summary, if the user selects an object on one platform, this will cause a change in the sequence
of all lists containing that object, across all platforms.

7.4 Modification of Content Presentation

In one rule in Table 1, if the user accesses frequently a domain object, this causes a modification of
the content presentation and an updating of the user’s knowledge level (while maintaining the same
navigation path). For example, we can consider a scenario where the user accesses the description
of an artwork and frequently asks for more information about that work.

The solution consists of introducing the ability to perform the same low-level task in the task
hierarchy without performing the intermediate tasks. In the example in Figure 15, this means that
the user can directly access detailed information regarding a work of art.

 18

Figure 15: The user frequently asks for more information, the system automatically generates
the information

Figure 16 shows the resulting task model. For each task that can be Hideable and is performed
multiple times, we can conceal that task within the Show Artwork task. In the example, this means
that when the system shows information on the artwork, it already includes detailed information. At
the same time, the knowledge level of the user is updated (the user always accesses more
information). When the user accesses the system from any platform, the knowledge level will be
inherited.

Figure 16: The task model corresponding to the example

In order to avoid user misunderstandings or confusion because of the adaptive support, it is possible
to clearly indicate what part of the user interface is adaptive. For example, in a cell phone, a soft
key can highlight the individual adaptive links or call up an adaptive list of frequently accessed
links.

 19

Conclusions
This chapter discussed how to provide adaptive support for multiple platforms based on task and
user modelling techniques. The method was illustrated through a case study in the museum
application domain.

In particular, this chapter addressed the use of task models at design time and their relationships
with user models. A set of rules was introduced, based on the user model, for modifying
presentation and dialogue as a function of users’ interactions on different platforms. These rules
allow applications to better support users’ goals.

Future work will be dedicated to analysing in more detail whether adaptivity, especially in mobile
phones, can sometimes disorient users. We will perform studies to determine how to introduce
adaptivity in a way that avoids disorientation.

Acknowledgements
This work has been partially supported by the CAMELEON project
(http://giove.cnuce.cnr.it/cameleon.html).

References
[B96] Brusilovsky P Methods and techniques of adaptive hypermedia, User Modelling and User
Adapted Interaction, v 6, n 2-3, pp.87-129, 1996 URL:
http://www.cntrib.andrew.cmu.edu/plb/UMUAI.ps
[BRJ99] Booch, G., Rumbaugh, J., Jacobson, I., Unified Modeling Language Reference Manual,
Addison Wesley, 1999
[MP01] Marucci L., Paternò F., Design and Evaluation of an Adaptive Virtual Guide for Web
Applications, Universal Access in the Information Society, Vol.1, N.3, June 2002, pp.163-175,
Springer Verlag.
[MPS02] G. Mori, F. Paternò, C. Santoro, “CTTE: Support for Developing and Analysing Task
Models for Interactive System Design”, IEEE Transactions on Software Engineering, pp. 797-813,
August 2002 (Vol. 28, No. 8), IEEE Press.
[MPS03] Mori, G., Paternò, F., Santoro, C., “Tool Support for Designing Nomadic Applications”,
Proceedings ACM IUI’03, Miami, , pp.141-148, ACM Press.
[MS95] Mullet, K., Sano, D., Designing Visual Interfaces. Prentice Hall, 1995.
[OS00] Oppermann, R., Specht M. (2000): A Context-sensitive Nomadic Information System as an
Exhibition Guide. Proceedings of the Handheld and Ubiquitous Computing Second International
Symposium, HUC 2000, Bristol, UK, September 25-27, 2000, 127 - 142.
[P99] F.Paternò, Model-based Design and Evaluation of Interactive Applications, Springer Verlag,
ISBN 1-85233-155-0, 1999.
[PL94] Paternò, F., Leonardi, A. A Semantics-based Approach to the Design and Implementation of
Interaction Objects, Computer Graphics Forum, Blackwell Publisher, Vol.13, N.3, pp.195-204,
1994.
[PS02] F.Paternò, C.Santoro, One Model, Many Interfaces, Proceedings CADUI 2002, Kluwer,
2002.
[SJ03] A.Seffah, H.Javahery, Multiple User Interfaces: Definitions, Challenges and Research
Opportunities, in this book.

http://www.cntrib.andrew.cmu.edu/plb/UMUAI.ps
http://giove.cnuce.cnr.it/teresa.html

	Supporting Interactions with Multiple Platforms Through User and Task Models
	
	
	
	Abstract

	1. Introduction
	2. An example scenario
	3. General description of the approach
	4.Role of the Task Model in Design
	4.1 FROM THE TASK MODEL TO THE ABSTRACT USER INTERFACE
	
	4.1.1 The Language for Abstract User Interfaces
	From Presentation Task Sets to Abstract User Interface Presentations
	The Dialogue Component

	4.2 FROM THE ABSTRACT USER INTERFACE TO ITS IMPLEMENTATION

	5. Relations between Task and User Models
	6. The User Model
	7. Adaptive Rules
	
	
	
	If…

	7.1 Navigation as a Function of Task Frequency
	7.2 Navigation as a Function of Task Performance
	7.3 Modification of Presentation
	7.4 Modification of Content Presentation

	Conclusions
	Acknowledgements
	References

