
Platform Awareness in Dynamic
Web User Interfaces Migration

Renata Bandelloni, Fabio Paternò

ISTI-CNR,Via G.Moruzzi 1, 56100 Pisa, Italy.
{r.bandelloni , f.paterno}@isti.cnr.it

Abstract. The goal of this work is the design of an environment for supporting
run time migration of Web applications among different platforms. This allows
users interacting with a Web application to change device and continue their in-
teraction from the same point. The migration takes into account the runtime
state of the interactive application and the different features of the devices in-
volved. We consider Web applications developed through a multiple-level ap-
proach using: the definition of the tasks to support, the abstract description of
the user interface, and the actual code. The runtime migration engine exploits
information regarding the application runtime state and higher level informa-
tion on the available target platforms. Runtime application data are used to
achieve interaction continuity, while information on the different platform
types involved are deployed to adapt the application’s appearance and behav-
iour to the specific device.

1 Introduction

A wide variety of devices is now available on the market, and people are more and
more likely to operate in a multiplatform environment where different platforms have
different interaction capabilities. Many efforts are currently aimed at allowing users
to interact through multiple devices. A framework discussing the issues associated
with applications that can be spread over different surface areas, each supporting
diverse user interaction techniques, is discussed in [1]. In our work we focus on Web-
enabled platforms. For example, a user browsing the net with a PDA touch screen or
a mobile phone keypad would be more comfortable using the mouse and keyboard of
a stationary PC. Conversely, a user may be entering private data through a stationary
PC and wish for the greater privacy afforded by a PDA. In both cases, a multiplat-
form migration service would be necessary, by which the user could interact with
web applications while changing devices and still maintaining interaction continuity.
There are two main issues concerning this kind of service. Firstly, the diversity in
features of the platforms involved in migration, like different screen size, interaction
facilities, processing power and energy supply, can make a Web application devel-
oped for a desktop, unsuitable for a PDA and vice versa. Thus, an application cannot
migrate as it is from one device to another, and must be adapted at runtime, taking
into account the diversity of the devices involved [2]. The second issue concerns

interaction continuity. Users who want the application to migrate, do not want to have
to restart the application on the new device; they want to continue their interaction
from the same point where they left off, without having to re-enter the same data and
going through the same long series of links to get to the page they were visiting on
the previous device [3]. Two main kinds of information are relevant in performing
migration: static information refers to the features of the devices, whereas runtime
information refers to the state of the migrating application that can be summarised by
the history of user interactions with the application, including visited pages, submit-
ted data and results of previous data processing. There are several techniques for
migrating user interfaces to different devices, in particular to small screens, and most
of them rely on size reduction and data summarisation [4], with the risk of making the
application unusable because objects on the page are difficult to recognise. Herein we
focus on interaction continuity and device adaptation at runtime that takes into ac-
count usability principles. We consider different platform-specific versions of the
same application, starting with a general task model [5] from which we generate the
actual application by means of the TERESA tool [6]. We take into account the migra-
tion of TERESA-generated applications, for which a description of the pages and the
interactions that they support, are produced by the tool itself, at different abstraction
levels. Runtime data on the state of the application for which migration is required
will be collected locally from the platform requesting migration. This information is
transmitted to the server in order to recreate the corresponding state in the application
for the target device.

2 Generating Device Aware Web Applications.

We consider Web applications developed through a multiple-level approach able to
obtain versions suitable for different kinds of devices and platforms. The starting
point is the task model of a nomadic application that can be accessed through differ-
ent platforms. The general model is refined for each of the specific platform that must
be supported by the application and by means of the TERESA tool, different imple-
mentations are generated fitting different platform features and according to usability
principles. The main levels involved in the generation process are:

1. Task Model (TM): describes the logical activities that must be performed by

users in order to reach their goals. A set of attributes is defined for each task
and tasks are composed by semantic and temporal relations.

2. Abstract User Interface (AUI): defines the main characteristics of the inter-
action objects supporting task performance, abstracting from low level de-
tails. AUIs are defined in terms of presentations identifying the set of user
interface elements perceivable at the same time. These elements are repre-
sented as interactors being Abstract Interaction Objects (AIO) described in
terms of their main semantic effects.

3. Concrete User Interface (CUI): this is the implementation level, the actual
user interface produced for a specific device in a given implementation lan-
guage as Java, XHTML and so on.

3 Runtime Migration Cases.

Different types of runtime migration can be identified, along with different levels of
complexity for each one of them:

• Total Migration: the client application migrates totally from a device to the
other.

• Control Migration: the client application is divided into two parts, one for
user interaction (control part) and one for information presentation
(presentation part). The control part remains on one device, while the pres-
entation one migrates to the other device, or vice versa [7].

• Mixed Migration: the client application is split into several parts, concerning
both control and presentation and different parts are distributed over two or
more devices.

In our work, we focus on Total Migration, with the goal to support a runtime migra-
tion that takes into account the differences between the two platforms involved.
TERESA structures an interactive application into presentations and transitions
among them. When we migrate a presentation from a platform to another one the
runtime support first identifies the closest presentation in the target platform. The
difference between presentations in different platforms is calculated in terms of the
number of logical tasks supported. A task can be supported through different interac-
tion techniques. However, the logical meaning of the task is still the same. Taking
into account interactive applications developed by means of TERESA we can identify
the following situations concerning the runtime migration of a presentations between
two platforms:

• The migrating presentation corresponds to one target presentation support-
ing:

o Same number of tasks.
o Lower number of tasks.
o Higher number of tasks

• The migrating presentation corresponds to multiple target presentations that
make an exact partition of the task set associated with it.

• Multiple presentations in the source platform correspond to one presentation
in the target platform.

4 Our Migration Solution

Information concerning the platform asking for migration, and the state of the appli-
cation running over it, is collected and elaborated in order to activate the application
on the target platform without losing interaction continuity. Since the presentation
number and the tasks supported by the various platforms can be different, it is not
possible to create a one-to-one correspondence between presentations for different
platforms. Source and target platform versions are generated by TERESA separately,
using the information contained in the two corresponding task models. One important
issue is how to identify the presentation for the target platform corresponding to the

one active on the platform requesting migration while maintaining the state of its
interaction objects. The run-time state, consisting of the visualized page and the state
of its objects, is mapped first onto the corresponding abstract presentation and then
onto the corresponding set of tasks. The page to be visualized on the target device
will be identified using the inverse process: from the set of tasks to support the tool
identifies the most similar abstract presentation and then the corresponding page in
the application version for the target platform. Similarity is calculated in terms of
tasks supported, the more the tasks associated to the two presentations are similar, the
more the presentations are similar. Presentation similarity is the basic criterion to be
considered, but under particular conditions it cannot be enough. When the migrating
presentation supports a task set that is associated with multiple presentations in the
target version, each of them supporting the same number of tasks, similarity degree
will be the same for each potential target presentation. Thus, a further criterion should
be used to decide which target presentation to activate. To this end, we use the identi-
fication of the target presentation supporting the task associated with the interaction
object last modified by the user, since it is more bound to continue interaction from
that point.
Once the corresponding presentation has been identified, it is necessary to calculate
the state of the objects contained in the page that will be sent to the target device. For
this purpose, runtime data referring to the runtime state of the application will be
associated to the corresponding AIOs and adapted to the object implementation for
the target device.

5 Migration Service Architecture

We aim at supporting Web application migration for a wide variety of devices like
desktops, laptops, PDAs, cellular phones and generally any device able to access the
Internet through a browser. Our migration service relies on a server machine working
both as a Web server storing the platform specific implementations of the application,
making them accessible to client platforms, as well as a migration server, managing
context information to support migration requests. Client platforms use the migration
client loaded from the server in order to enabling or disabling the possibility of re-
ceiving incoming applications and migrating Web applications. References to all
platforms, which enabled the reception of incoming applications, are stored in the
server. When a platform asks for migration, the request sent by the locally running
migration client, reaches the migration server, which will deploy both runtime and
static context data to perform the presentation mapping process as described in Sec-
tion 4. The corresponding page and its runtime context for the target device will be
finally sent to the migration client that will open locally a browser window allowing
the user to continue its interaction (the sequence of functionalities to perform is indi-
cated in Figure 1).

Figure 1. The Migration Process.

6 Conclusions and future work.

We have discussed an architecture to support migratory Web interfaces. A first proto-
type for total migration of applications obtained through the TERESA tool has been
developed. We are now improving the collection of run-time state data in order to
make it more complete and improve the support of interaction continuity. Future
work will be dedicated to extending this approach in order to address other types of
user interface migrations.
This work has been supported by the CAMELEON project
(http://giove.cnuce.cnr.it/cameleon.html). We thank colleagues for useful discussions.

References

1. J.Coutaz, C. Lachenal, S. Dupuy-Chessa. Ontology for Multisurface Interaction. Proceed-
ings INTERACT 2003. IOS Press. Zurich, September 2003.

2. A. Kaikkonen and V.Roto. Navigating in a Mobile XHTML application. In Proceedings of
CHI 2003. Ft. Lauderdale, Florida, April 5-10, 2003. Vol.5, pp. 329-336.

3. H. Song, H. Chu, S. Kurakake. Browser Session Preservation and Migration. In Poster
Session of WWW 2002, Hawai, USA. 7-11. May, 2002. pp. 2.

4. B. MacKey. The gateway: A Navigation Technique for Migrating to Small Screens. Doctoral
Consortium, CHI 2003. Ft. Lauderdale, Florida, April 5-10, 2003. pp. 684-685.

5. F.Paternò, C.Santoro, A Unified Method for Designing Interactive Systems Adaptable to
Mobile and Stationary Platforms, Interacting with Computers, Vol.15, N.3, pp 347-364, El-
sevier, 2003.

6. G. Mori, F. Paternò, and C. Santoro. Tool support for designing nomadic applications. In
Proceedings of IUI 2003 . ACM Press, 2003. pp. 141–148.

7. J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld, M. Pignol.
Generating remote control interfaces for complex appliances. Proceedings ACM UIST’02.
October 27 – 30. Paris, France. Vol.4, pp.161-170.

