
Intelligent Analysis of User Interactions with Web
Applications

Laila Paganelli & Fabio Paternò
CNUCE - C.N.R.

Pisa, Italy
{laila.paganelli, fabio.paterno}@cnuce.cnr.it

Abstract
In this paper, we describe a tool able to perform intelligent
analysis of Web browser logs using the information
contained in the task model of the application. We show
how this approach supports remote usability evaluation of
Web sites.

Keywords
Remote evaluation, Usability, Task models, Tools.

INTRODUCTION
Creating a Web site allows millions of potential users with
various goals and knowledge levels to access the
information that it contains. For this reason, interest in
usability evaluation of Web sites is rapidly increasing.

There are many motivations for automatic tools able to
support the evaluation process [7]. The total or partial
automation of usability evaluation can reduce the time and
costs involved and release evaluators from repetitive and
tedious tasks. A number of tools for usability evaluation of
traditional graphical applications have been proposed.
However, the different nature of Web interfaces requires
specific tools. The goal is not to provide designers with an
overall, definitive evaluation; rather, a more meaningful
approach is to provide a number of pieces of information
that can be helpful to evaluators and developers in order to
improve their applications.

In this paper we present a method and an associated tool to
detect usability problems in Web interfaces through a
remote evaluation. Our approach combines two techniques
that usually are applied separately: empirical testing and
model-based evaluation. The reason for this integration is
that models can be useful to detect usability problems but
their use can be much more effective if they can be related
to the actual use of a system. Our tool is able to analyse the
possible inconsistency between the actual user interactions
and the task model of the Web site that describes how its
concrete design assumes that activities should be

performed. To support remote evaluation, we have
developed a technique that allows recording user actions
during a site visit. The analysis of the logged data is based
on the comparison of the traces of actions performed with
the structure of the task model. This analysis provides
evaluators with a number of results that are related to the
tasks that users intend to perform and the Web pages and
their mutual relationships.

In the paper, we first discuss related works in the area of
automatic support for usability evaluation of Web sites,
next we describe the method supporting our approach and
the underlying architecture. Then, we move on to describe
the logging tool that we have developed to collect data
during users’ sessions, the preparation phase that is required
to apply the method and the intelligent analysis that can be
performed by our tool.

RELATED WORKS
In recent years, interest in automatic support for usability
evaluation of Web sites has been increasing. The methods
for usability evaluation of Web sites can be classified into
two types of approaches: empirical evaluation, where users
are directly involved to some extent, and analytical
evaluation where various combinations of criteria,
guidelines and models are applied to the assessment of the
site directly by the evaluators.

In the former group there are techniques based on the
analysis of Web server logs whose effectiveness is strongly
limited by the validity of the data (that cannot capture the
accesses to the pages stored into the browser cache) and the
impossibility to capture local user interaction with the user
interface techniques (menus, buttons, fill in text, …). To
overcome these limitations another approach, WebVip
(Web Visual Instrumenter Program) [11], has been
developed at NIST. This tool allows logging of user
interactions and the resulting log files can be analysed
through VISVIP [4] a graphical tool that visualises the
paths followed by the users during the site visit. The log
files generated by WebVIP include user interactions (such
as checkboxes, menu selections), interactions with the
browser windows and events relative to loading the web
pages. The logging tool proposed requires a number of
modifications in the HTML pages that must be evaluated
because each tag representing a user interface component
calls for adding Javascript code to record the interaction.

Because of the many modifications required, WebVip needs
a copy of the entire site. Unfortunately copying the entire
site can generate many problems. Also WET [5] considers
client-side logs but they are obtained more efficiently
without requiring copy of the entire site. In this case it is
sufficient to include the javascript file in the heading of the
page. This javascript file includes the specification of the
events that can be detected and the handling functions able
to capture them. In WET only the click, change, mouseover
and page load events are recorded. This limitation is due
also to the lack of automatic tools able to analyse the data.
Since the analysis is performed manually it is important to
have readable log files with content useful for the evaluator.
Adding all possible events in the log file increases the
complexity of its content since one user interaction can
correspond to many events. Other techniques are based on
the use of questionnaires but they have limited ability to
find detailed usability problems.

In the latter group we have tools such as Bobby [1] that
aims to support verification of application of accessibility
guidelines. WebSat [11] provides a usability evaluation by
analysing the HTML code through six categories of
usability guidelines (accessibility, form use, performance,
maintainability, navigation, readability). Design Advisor [6]
is based on guidelines derived from the use of eye-tracking
techniques that identify which interface elements attract
user attention (animations, images, colours, …) by
identifying the scanning path on the Web page. In Web
Criteria [12] an expert user model is applied. Instead of real
users, the simulated user always follows an ideal path where
no errors are performed and the shortest path is always
selected.

In our case we follow a hybrid approach because our
environment is able to analyse data relative to user
interactions and then compare them to the task model
corresponding to the design of the Web site. To this end,
the first issue we addressed was what type of log files to
consider. To detect user actions we have used a technique
similar to that used in Wet. Our tool exploits the possibility
of defining handlers of browser events in order to record
user interactions. The differences between Wet and our
logging tool are two: Wet records only some event types
because the analysis of the log files is manual whereas in
our case the analysis is automatic and it is possible to
record a wider set of events; in addition, to save log files
WET uses cookies but with this technique it is possible to
save only a limited amount of information (about 4K per
cookie, with a maximum of 20 cookies per site) whereas
our method uses a Java applet that is able to save log files
in the server without limiting the amount of data, thus even
with long user session there is no loss of data.

How user interactions can be considered as implicit interest
indicators has also been demonstrated in [3] where a web
browser was equipped to log user interactions, and the
findings were compared with explicit ranking automatically
requested of the users whenever they changed pages. By

comparing the results, what emerged is that time on page,
moving mouse, mouse clicks and scrolling are good
indicators of user interest. Another interesting approach is
discussed in [2]; it is based on the combined use of browser
logging tools and eye trackers. However, this approach
requires the use of devices that are still rather expensive.

THE METHOD
The starting point for our work was RemUSINE [9], an
automatic tool based on the use of task models to support
evaluations of graphical applications. This tool was not
suitable for web applications whose specific aims are to
support tasks related to retrieving and accessing
information, and navigation is based on links to remote
pages. In order to identify errors (useless actions for the
current task), RemUSINE considers the logical enabling
and disabling of user interface actions. Then, if users try to
perform an action, this means that they want to perform the
associated task, and if the task model indicates that some
other action should be performed first, then an error is
considered to have occurred. For example, suppose the user
has to install software and the installation procedure is
composed of some phases, each of which requires some
specific actions to be performed. If the user tries to move to
the next phase through a disabled action before terminating
the sequence of actions associated with the current phase,
then the error can be automatically detected. During Web
site evaluation it is often not possible to apply this concept
because usually links are always enabled. Thus, in this
context it is difficult to automatically identify user
intentions. The solution that we have adopted to capture
this information is to display the high-levels tasks that are
supported by the Web site asking the user to indicate
explicitly what task they want to perform. During the
testing, since we perform remote evaluation without direct
observation of the user interactions, it is important to obtain
logs with detailed information. We have designed and
implemented a logging tool able to record a set of actions
wider than those contained in server logs. WebRemUSINE
compares the logs with the task model and provides results
regarding both the tasks and the Web pages supporting an
analysis from both viewpoints.

The method is composed of three phases: Preparation,
which consists of creating the task model of the Web site,
collecting the logged data and defining the association
between logged actions and basic tasks; Automatic analysis,
where WebRemUSINE examines the logged data with the
support of the task model and provides a number of results
concerning the performed tasks, errors, loading time,
Evaluation, the information generated is analysed by the
evaluators to identify usability problems and possible
improvements in the interface design.

The environment is mainly composed of three modules: the
ConcurTaskTrees editor (publicly available at
http://giove.cnuce.cnr.it/ctte.html); the logging tool that has
been implemented by a combination of Javascript and Java
applet to record user interactions; WebRemUSINE, a java

tool able to perform an analysis of the files generated by the
logging tool using the task model created with the CTTE
tool.

Task models describe the activities to perform in order to
reach user's goals. We have used the ConcurTaskTrees
(CTT) [10] notation to specify them. This is a notation
where it is possible to graphically represent the hierarchical
logical structure of the task model. It is possible to specify a
number of flexible temporal relationships among such tasks
(concurrency, enabling, disabling, suspend-resume, order-
independence, optionality, …) and for each task it is
possible to indicate the objects that it manipulates and a
number of attributes. The notation also allows designers to
indicate how the performance of the task should be
allocated (to the user, to the system, to their interaction)
through different icons.

The logging tool is able to store various events detected by
a browser. The Javascripts are encapsulated in the HTML
pages and are executed by the browser. When the browser
detects an event, it notifies the script for handling it. By
exploiting this communication, the script can capture the
events detected by the browser and add a temporal
indication. Our tool works for the two main Web browsers
(Micorosft IE and Netscape Communicator). Then, a Java
applet stores the log files directly in the application server.

WebRemUSINE performs an automatic evaluation of a
Web site providing the evaluator with a set of measures,
concerning also group of users, useful to identify usability
problems. The input for the tool are the task model and the
log files recorded during the test sessions. WebRemUSINE
is composed of two submodules:

• The preparation module, this module filters the
information recorded during the testing, then the
evaluator has to associate each basic task with the
corresponding event. All the event-basic task
associations are recorded in a file.

• The evaluation module, it has three inputs: the task
model, the log files and the event-basic tasks
associations. This information is useful to analyse the
logs with the support of the task model and identify
errors performed by the user during the navigation. By
following the sequence of events stored in the log it is
possible to identify the corresponding tasks (through
the event-basic tasks association) and comparing the
sequence with the temporal relationships among the
tasks it is possible to identify the tasks performed
correctly and those that generate errors. It is also
possible to calculate the completion time for the
relative tasks. All results are displayed by
WebRemUSINE in various formats both textual and
graphical.

The WebRemUSINE analysis can point out usability
problems such as tasks with long performance or tasks not

performed according the task model corresponding to the
Web site design. These elements are useful to identify the
pages that create problems to the user. As previously
explained, log files store both user interactions (mouse
movements, keyboard input, link selection) and browser
behaviour (start and end of page loading). The events
corresponding to user interactions are associated with
interaction tasks whereas the internal browser events are
associated with system tasks. Thus the evaluation
performed provides information concerning both tasks and
Web pages. These results allow the evaluator to analyse the
usability of the Web site from both viewpoints, for example
comparing the time to perform a task with that for loading
the pages involved in such a performance. WebRemUSINE
also identifies the sequences of tasks performed and pages
visited and is able to identify patterns of use, to evaluate if
the user has performed the correct sequence of tasks
according to the current goal and to count the useless
actions performed. In addition, it is also able to indicate
what tasks have been completed, those started but not
completed and those never tried. This information is also
useful for Web pages: never accessed web pages can
indicate that either such pages are not interesting or that are
difficult to reach. All these results can be provided for both
a single user session and a group of sessions. The latter case
is useful to understand if a certain problem occurs often or
is limited to specific users in particular circumstances.

THE LOGGING TOOL
Our logging tool is able to extend the browser behaviour by
associating a script with the event handlers. Thus, it is
possible to capture the user interactions with a Web site. All
the pages should include this script. Unfortunately, these
scripts are not persistent thus the visibility of the variables
is limited to the page where they are defined whereas users
can navigate across multiple pages within a web site. The
collection of the data relative to multiple pages is
performed through a Java applet that is activated at the
beginning of the test and is active for all the session. Each
page of the site includes the script for logging user
interactions. All events are communicated to the applet that
concatenates them. Lastly, at the end of the session the
applet provides the server with all the logged events. For
this purpose, in the server there is a servlet able to collect
the data and save them into a file.

The script redefines event handlers in order to support
recording of the following events: abort and error on
images; change on form elements, click and dblclick on
links, images and form elements, load and unload of pages,
submit and reset of forms, resize and scroll of browser
windows. An event handler is a piece of code associated
with an interaction object. When the user performs an
interaction, such as button or link selection, the
corresponding event handler is performed. For example, it
is possible to implement an event handler that when the
mouseOver event occurs on a link then shows a

corresponding message at the bar level. To this purpose it is
required to redefine the function predefined as event
handlers. Our tool works with both Netscape and Internet
Explorer even if they have different ways to analyse user-
generated events.

It is more difficult to understand user intentions from an
automatic analysis when Web applications are considered.
We aim to automatically determine if the user is able to
reach the information desired and if he is able to follow the
best navigational path. For example, if the user wants to
download a program from a Web site he can access various
pages of the site without finding the download page. Our
goal is to highlight this problem, which reveals a usability
problem since the user is not able to reach his goal. To this
end, we have decided to provide the list of high-level tasks
that are in the task model of the web site. This list
represents the activities that can be performed during the
site visit and the user has to select which one is the current
goal. At any time, the user can change the current goal and
select another task. To implement this, during the site test
the browser window is divided into two frames: one to
show the list of possible target tasks and the other showing
the site pages.

The selection of one target high-level task activates a
specific event handler that, as it happens with user-
generated events, creates an element in the log file. A radio
button implements the possibility of selecting the target
high-level task with labels indicating the task names (see
Figure 1).

Our solution has taken into account that when a Web page
with a script is accessed then also the script is executed.
However, the variables of the script are visible only from
when the page is downloaded until a new page is loaded.
This lack of data persistency during loading of multiple
pages was the first issue to address. Cookies represent one
possible solution to keep information regarding the session
in a persistent manner, with the possibility of sharing then
across multiple pages. Usually, cookies are a mechanism
that can be used from server-side connections (such as CGI
scripts) to store and retrieve information on the client side
of the connection. Javascripts are able to access and save
information in cookies thus making it accessible also from
the server. This mechanism has some limitation on the
amount of information that can be stored in the client
system and for long sessions some data can get lost. We
have chosen another solution to overcome the stateless of
the Web. The page appearing in the browser is composed of
two frames. The first frame contains the applet while the
second frame shows the web site pages containing the
script.
While the user interacts with the site, the script captures all
the events and communicates them to the applet. All the
information is kept by the applet during the session and
only at the end is saved into a file. The end of a session is
explicitly indicated by the user selection of the stop button

in the frame with the applet and the high-level tasks. Since
applets can store information on the server, the log files are
transmitted to the server, where the evaluators can access
all of them. The communication between applet and server
is performed through a servlet that stores the information
received from the applet into a file. Servlets are able to
access some information regarding the client system and, in
some cases, the user. In our case the servlet inserts in each
file a heading with the following information: date and time
of log reception, IP address and host name of the client
system. User name is provided directly from the user. The
last operation of the servlet is to save the file in a
predefined directory in the server system.

Figure 1: Layout of Web application during testing.

THE WebRemUSINE PREPARATION PHASE
The main goal of the preparation phase is to create an
association between the basic tasks of the task model and
the events that can be generated during a session with the
Web site. This association allows the tool to use the
semantic information contained in the task model to analyse
the sequence of user interactions. Once the association file
is created, it can be used to analyse as many user sessions as
desired without any additional effort. In this phase, the
frame with the list of high-level tasks supported is also
created. This is performed automatically through a depth-
first analysis of the task model and the generation of the
corresponding HTML code supporting the possibility of
selecting one of them.

Basic tasks are tasks that cannot be further decomposed
while in high-level tasks we have complex activities
composed of sub-activities. The log files are composed of
set of events. If an event is not associated with any basic
task, it means that either the task model is not sufficiently
detailed, or the action is erroneous because the application
design does not call for its occurrence. For example, when a
user sends a form then two events are stored in the log: one
associated with the selection of the Submit button and the
other one with the actual transmission of the form. Thus, in
the task model two basic tasks are required one interaction

task for the button selection and one system task for the
form transmission otherwise it is uncompleted. Whereas if
the user selects a non interactive image it means that an
error has been performed which also points out a usability
problem since it shows that the user does not understand
that the image is static with no functionality associated.

In the logs there are three types of events: user-generated
events (such as click, change), page-generated events
(associated with loading and sending of pages and forms)
and events associated with the change of the target task by
the user.

Tasks can belong to three different categories according to
the allocation of their performance: user tasks are only
internal cognitive activities that thus cannot be captured in
system logs, interaction tasks are associated with user
interactions (click, change, …) and system tasks are
associated with the internal browser generated events. In
addition, the high-level tasks in the model are those that can
be selected as target tasks by the user. Each event is
associated with a single task whereas a task can be
performed through different events. For example, the
movement from one field to another one within a form can
be performed by mouse, arrow key or Tab key. The one-to-
many association between tasks and events is also useful to
simplify the task model when large Web sites are
considered so that we need only one task in the model to
represent the performance of the same task on multiple
Web pages.

Figure 2: Tool support for the preparation phase.

The main activity supported by the WebRemUSINE tool
during the preparation phase is the creation of the
association files for interaction and system tasks. The list of
basic tasks and the events contained in the log files
considered are loaded in two separate lists (see Figure 2). In
the figure, the list with task names contains the names of all
the basic interactive tasks while the list of events contains
the list of events that appear in the log considered. If the
user performs multiple times one event, that event appears
only once in the list. Each event is composed of its

description and the indication of the corresponding page.
All the events associated with one page are grouped in the
presentation. The association is created by selecting one
element in each list and pressing the Associate button. The
events associated are removed from the list while tasks
remain visible because they may be associated with other
events. When a task is associated then it is shown by a
different colour. All the associations performed can be
visualised and edited for removing previously created
associations. In this case, the removed event will be shown
again in the list of events.

THE ANALYSYS PHASE
Once the task-event associations has been created then it is
possible to move on to the analysis phase. The evaluation
provides a number of results regarding both tasks and pages
allowing evaluators to perform an analysis from both
viewpoints. For example, the tool calculates both the time
to perform a task on a page and the time of visit of the same
page. Thus, the evaluator can deem if it is the entire page to
create problems to the user (for example, because it
contains too much information) or if it is the task
performance to require too long time.

The above results can be calculated both for single logs and
for all the sessions available. In addition, WebRemUSINE
is able to calculate summary information and statistics
regarding the set of sessions considered. This evaluation is
performed by exploiting the basic tasks/events association
that allows the tool to analyse user behaviour with the
support of the task model.

As we explained beforehand, the logged events are
associated with basic tasks and the target tasks with high-
level tasks in the model. The analysis performed depends
on the type of task:

• For basic tasks the tool checks that the temporal
relationships defined in the task model are not violated;
if a disabled basic task is performed then a
precondition error is indicated otherwise the task is
considered correctly performed;

• For high-level tasks the tool determines if all the
corresponding basic tasks have been correctly
performed (and thus the goal has been correctly
achieved) and if some useless basic tasks has been
performed.

Analysis of a User Session
During the analysis, the WebRemUSINE tool internally
uses a simulator that was implemented for the CTTE tool.
This simulator takes a task and is able to indicate what the
next enabled tasks are according to the temporal
relationships indicated in the task model. Thus, at the
beginning WebRemUSINE activates the simulator that
returns the list of initially enabled tasks. Then, for each
event in the log WebRemUSINE asks the simulator to
perform the corresponding basic task and return the enabled

tasks after its performance as well as the high-level tasks
that have completed their performance.

WebRemUSINE also shows analysis of log files. In the
readable list (see Figure 3), for each event three types of
information can be given: the event is associated with a
basic task and the performance was either correct (event
number 3 or 4 in the figure) or a precondition error
occurred (number 6 in the figure), alternatively the event
was not associated with any basic task (number 5 in the
figure). In addition to the event description and the name of
the corresponding basic task (if any), the tool also shows
the basic tasks enabled after the performance of the basic
task considered and the name of the current high-level
target task. This information is useful for evaluators for an
interactive analysis of the sequence of actions performed.

Figure 3: Log file simulation with task model support.

In the automatic analysis of the target high-level tasks five
possible results can be achieved:

• Success, the user is able to perform a sequence of basic
tasks that allows achieving complete performance of
the high-level task;

• Failure, the user starts to perform the required basic
task to achieve the current goal but he is unable to
complete its performance; in this case the tool is also
able to show an example of sequence of basic tasks that
would have allowed the user to reach the target goal;

• Warning type 1, it is possible to detect performance of
basic tasks useless for the current goal but that do not
preclude its completion;

• Warning of type 2, the user starts to perform correctly
a high-level tasks but then some useless basic tasks are
performed that disable the possibility of reaching the
goal;

• Warning of type 3: the user has not been able to enable
the performance of the target high-level task.

In Figure 4 we can see another excerpt from an example of
analysis of log file. A user accessed the SIGCHI-Italy web

site. At the beginning the target goal is access information
on HCI courses. The user accesses a wrong page (event 2
and 3 in Figure 4) and then changes target goal. The tool
shows a sequence of basic tasks that would have allowed
reaching the goal. The next goal is to fill the registration
form and the users starts with selecting a wrong page (event
number 4 in Figure 4). This action makes the target task
disabled according to the application behaviour.

Figure 4: Excerpt of analysis of log file.

Metrics Automatically Evaluated
Regarding single sessions the tool provides various
information:

• The list of tasks (basic, target, high-level) performed
correctly with indication of the number of times they
have correctly been performed;

• The list of tasks (basic, target, high-level) that have
wrongly been performed for a precondition error with
the indication of the number of times the error has been
made;

• The list of basic tasks never performed correctly;

• The pattern of basic tasks (frequent sequence of tasks)
that have correctly been performed during the session
and indication of their frequency.

This information allows evaluators to easily identify what
tasks create problems and what tasks are efficiently
performed. The indication of tasks never tried is useful to
identify parts of the user interface that are difficult to reach.
In the case of frequent task patterns, the designer can decide
to change the design in order to make their performance
simpler and faster.

The tool is able to provide the time of task performance for
basic, high-level tasks and target tasks. The time for the
high-level tasks is given by the sum of the performance of
all the composing basic tasks. Since one task can be
performed multiple times during a session, the tool shows
minimum, maximum, average and median time of
performance through different colours in the bar associated
with the task (see Figure 6). By selecting one bar it is
possible to get detailed information on the time
performance in each execution.

The tool also provides temporal information regarding
when errors occur. This is useful to understand whether
user performance improves during the test. For example, if
errors are concentrated in the initial phase of the test it can
mean that the user interface is easy to learn to use.

Regarding the navigation among pages the tool is able to
determine the following information:

• The visited pages and the number of accesses;

• The visit patterns during navigation and their
frequency;

• The time of downloading and visit of each page.

Analysing the number of accesses to the web pages is
interesting. Pages accessed very frequently may indicate a
rigid design. For example, if the access to the various parts
of the site requires always selection of the home page, this
page will have a high number of accesses and this solution
would be inefficient since it would be faster to provide the
list of the possible parts of the site available at any time. On
the other hand, pages rarely accessed indicate parts of the
site that are either not interesting or difficult to reach. If the
same problem occurs for many users then it becomes
important to redesign the site to better support access to this
information.

Patterns of pages accessed are another important aspect to
analyse especially if they contain errors that occur
frequently in various users' sessions.

The analysis of the time can indicate many usability
problems. If transferring a page takes too long then it is
possible to identify too large files. For example, if the
loading of images is often interrupted (generating an abort
event captured by the logging tool) it is possible to
understand that users do not like to wait too long to see
them. In these cases it is better to reduce the dimensions to
improve the site usability. The downloading time is
calculated from when the user asks for the new page until
the new page is completely loaded.

Time visit of a page is calculated from when a page is
completely loaded in the browser until the user asks for a
new page. The visit time depends on the structure of the
page. Long pages containing a lot of textual information

require from the user longer time to identify the required
information. The number of links in the page can affect the
visit time because users have to consider them to decide
how to carry on the navigation. To allow evaluators to
better analyse the visit time for each page the tool is also
able to provide some measures (number of words and links
contained) obtained through a static analysis of the HTML
code to determine the complexity of the structure of the
page as Figure 5 shows.

Figure 5: Display of page visit times.

The tool is also able to analyse not only single sessions but
also group of sessions and then provide statistical and
summary information concerning them. For example, it
provides both the average and the standard deviation of:

• Total time taken by the user session;

• Number of completed tasks;

• Number of errors subdivided into precondition errors
and other errors;

• Number of scrollbar movements and change
dimensions events.

Regarding basic tasks, the following averages are calculated
on the group of users and showed listed in decreasing order:

• Number of correct performance, here first tasks
completed correctly from all users are shown and then
the others to better highlight those that do not create
problems to any user;

• Number of times a precondition error has been
generated;

• Frequency of a task pattern.

Figure 6 shows the performance time regarding a group of
sessions and the associated details of the SelectPeople task
(selected in the task list) for all users who performed it.

Regarding evaluation of single pages the following average
values are calculated on the number of users:

• Average number of accesses to each page;

• Average frequency of patterns;

• Average downloading time;

• Average visit time.

Figure 6: Display of a user group’s task performance.

CONCLUSIONS
In the paper we have shown how it is possible to perform
remote testing of Web sites and analyse the results with the
support of automatic tools. We have implemented the
logging tool in Javascript while WebRemUSINE has been
implemented in Java.

Once the initial preparation phase has been completed, this
approach allows evaluators to analyse large number of
sessions without additional effort.

Future work will be dedicated to the application of our tool
to the evaluation of large web sites to determine whether
the preparation phase in these cases may be inordinately
long, thus calling for improvements in order to make the
tool easier to use. Foreseeable improvements include
automatic support for generation of Web sites task models
and for associating basic tasks to events in the log files.

REFERENCES
[1] Bobby. http://www.cast.org/bobby

[2] S.Card, P.Pirolli, M. Van der Wege, J.Morrison,
R.Reeder, P.Schraedley, J.Boshart, Information Scent as

a Driver of Web Behavior Graphs: Results of a Protocol
Analysis Method for Web Usability, Proceedings ACM
CHI 2001, pp.498-504.

[3] M.Claypool, P.Le, M.Wased, D.Brown, Implicit
Interest Indicators, Proceedings ACM IUI'01, pp.33-40.

[4] J. Cugini, J. Scholtz VISVIP: 3D visualization of paths
through web sites. Proceedings of the International
Workshop on Web-Based Information Visualization
(Florence, Italy, September 1999), pp. 259-263. Institute
of Electrical and Electronics Engineers.
http://www.itl.nist.gov/iad/vug/cugini/webmet/visvip/we
bvis-paper.html

[5] M. Etgen, J. Cantor What does getting WET
(WebEvent-logging Tool) mean for web usability?.
Proceedings of HFWeb’99 (Gaithers-burg, Maryland,
June 1999).
http://zing.ncsl.nist.gov/hfweb/proceedings/etgen-
cantor/index.html.

[6] P. Faraday Visually critiquing web pages. Proceedings
of HFWeb’00 (Austin, TX, June 2000).
http://www.tri.sbc.com/hfweb/faraday/faraday.htm

[7] M. Ivory, M. Hearst State of the Art in Automated
Usability Evaluation of User Interfaces. 2000.
University of California, Berkeley

[8] G. Lynch, S. Palmiter, C. Tilt The max model: A
standard web site user model. Proceedings of
HFWeb’99 (Gaithers-burg, Maryland, June 1999).
http://www.nist.gov/itl/div894/vvrg/hfweb/proceedings/l
ynch/index.html

[9] F. Paternò, G. Ballardin RemUSINE: a bridge between
empirical and model-based evaluation when evaluators
and users are distant. Interacting with Computers,
Vol.13, N.2, 2000, pp. 151-167.

[10] F. Paternò, Model-based design and evaluation of
interactive applications, Springer Verlag, 1999. ISBN 1-
85233-155-0.

[11] J. Scholtz, S. Laskowski, L. Downey Developing
usability tools and techniques for designing and testing
web sites. Proceedings HFWeb’98 (Basking Ridge, NJ,
June 1998). http://www.research.att.com/conf/hfweb/
proceedings/scholtz/index.html

[12] WebCriteria. Max, and the objective measurement of
web sites. December 1999.
http://www.webcriteria.com/pdf/max_102.cfm

