

Mixed-Initiative, Trans-Modal Interface Migration

Renata Bandelloni, Silvia Berti, Fabio Paternò.

I.S.T.I-C.N.R. via G.Moruzzi, 1,
56124 Pisa, Italy

{Renata.Bandelloni, Silvia.Berti, Fabio.Paterno}@isti.cnr.it

Abstract. This paper presents our solution to supporting runtime migration of
Web application interfaces among devices offering different interaction
modalities, in particular graphic to vocal platform migration and vice versa.
Migrating between platforms implies keeping track of the user interactions in
order to retrieve the runtime state of the interface and maintaining interaction
continuity on the target device. The system can serve user-issued migration
requests containing the identifier of the selected target device, and can also
automatically start the migration procedure when environment conditions
require it. In automatic migration the target platform has to be automatically
selected as well. To this aim, we consider devices belonging to a restricted
environment and have defined selection rules in order to identify the most
suitable available target for the ongoing migration.

1 Introduction

The wide availability of new mobile devices supporting Internet access, offering
various interaction capabilities, raises the need for applications able to support
different interaction modalities. On any given day, users are surrounded by many
different interactive platforms at work, at home, and even while walking along the
road. User mobility accompanied by various devices raises the need for some sort of
application interface mobility that allows users to change the device they are
interacting with while moving from one environment to another, or just because the
resources (such as the battery) of the current mobile device have been depleted. Such
scenarios raise the need for multi-platform migration services that are able to follow
users through the changing contexts by transferring amongst different devices at run
time.
We analyzed the potentialities of our model-based approach to perform an adaptive
interface migration [1], addressing devices with different features, able to support
graphic navigation of Web sites. In this work we address two novel issues for this
approach:
• introduction of migration with modality change, thus allowing users to migrate

from a graphical interface to a vocal interface or vice versa;
• support for migration that can be activated not only on user request but also by the

automatic detection that a system is no longer able to support the user (for
example, because the battery has expired or the system is no longer connected).

The solution to these issues is important because allows users interacting with a
typical graphical Web browser, to continue the interaction through a different device
and a different interaction modality. This is the case of a user navigating the Web
through a PDA or Desktop PC and migrating the application to a mobile phone
supporting only vocal interaction. Apart from migration on user demand, we also
introduce the novelty of automatic migration, which implies automatic recognition of
nearby devices associated to the same user as well as the ambient conditions leading
to migration.
Graphic and vocal interactions rely on different interaction techniques because of the
differences between the associated media. In graphic browsers, many tasks can be
supported concurrently, all at once in a page, and the user can freely decide which
one to perform. Vocal navigation imposes a serialisation of dialogues. At any time
only one interaction is available, even if users can choose to move at different points
of the dialogue structure. Such differences imply a different way to structure the
concrete interface and choose the interface elements.
Our migration service applies to Web applications whose interface has been
developed through the model-based approach supported by the TERESA tool [5].
This provides semantic information associated with the user interface implementation
that can be exploited at run-time to support migration in such a way as to maintain
interaction continuity and consider usability design criteria.
In section 2 we discuss related work. Next, we introduce a couple of scenarios
highlighting the issues that we aim to address. Then, we discuss the solution
developed to obtain migratory interfaces through underlying transformations and
processing. This is followed by the description of the architecture of the migration
service highlighting how it can support both user-activated and system-activated
migration. We also provide more detail showing how the trans-modality migration is
achieved along with an example of application. Some concluding remarks and
indications for future work conclude the paper.

2 Related Work

Run-time adaptation of user interfaces to different device capabilities raises many
issues. A framework describing such issues is provided in [2]. PUC [6] is an
environment that supports the downloading of logical descriptions of appliances and
the automatic generation of the corresponding user interfaces. The logical description
is performed through templates associated with design conventions, which are typical
design solutions for domain-specific applications. The application area of this
approach is limited to the home domain where devices require similar interfaces.
Aura [3] is a project whose goal is to provide an infrastructure that configures itself
automatically for the mobile user. When a user moves to a different platform, Aura
attempts to reconfigure the computing infrastructure so that the user can continue
working on tasks started elsewhere. In this approach, suppliers provide the abstract
services, which are implemented by just wrapping existing applications and services
to conform to Aura APIs. For instance, Emacs, Word and NotePad can each be

wrapped to become a supplier of text editing services. So, the different context is
supported through a different application for the same goal (for example, text editing
can be supported through MS Word or Emacs depending on the resources of the
device at hand). Our work follows a different approach where the application is still
the same but the interactive part is adapted to the new device.
A taxonomy of task for voice interfaces to Web pages [7] has been proposed with the
aim to obtain a voice navigation that is not a mere substitution of graphic navigation,
but is tailored on specific voice interaction features. The paper focalizes on
VoiceXML interface design, in our work we take into consideration both vocal and
graphic navigation and make a comparison between them in order to allow a user to
change interaction modality while changing device.
An example of transformation of a Web site developed in HTML into a VoiceXML
application is presented in [4]. In this paper the original Web site is analyzed and
redesigned in a dialog model style, by means of a finite state diagram, then the model
is implemented in VoiceXML. The model of the vocal version of the original site is
manually built; authors are working on the automatic remodelling of the Web site,
basing on a syntactic and semantic HTML files analysis. In our approach we consider
interfaces generated from task models. This semantic information is exploited also in
the migration service in order to identify what part of the target interface to activate
and to associate it with the state of the user interactions performed so far.
Perez-Quinones et al. [7] describe a multimodal interface architecture that allows for
combining speech, pen and touch-tone digit interaction in noisy mobile environments.
The proposed system allows users to interact with an application using more than one
modality at once. The system was evaluated through an example application. One
result is the confirmation that some kinds of tasks are more appropriate for a specific
input modality. In that work, the user can access different interaction modalities at the
same time, over a single device.

3 Scenarios

In this section we present two scenarios to underline the features of the multi-modal
migration service. The first one concerns a restaurant booking application and is an
example of graphic to vocal migration.
Friday Morning, Louis is at home and wants to organize a dinner with his friends for
the evening. He turns on his personal computer and opens the Official Web site of the
town. He accesses the restaurant main page, from which he starts selecting restaurants
one by one, in order to check the menu of the day. While Louis is selecting the
Mermaid restaurant main page, he realizes that it is getting late and has to leave and
go to work, hence requires the migration to his mobile phone. Louis can now turn off
the computer keep interacting with the application in vocal mode. The vocal interface
remembers the selected restaurant to Louis and tells him the different options he can
go through. Louis asks to hear the menu of the day, then he asks to go back to the
main restaurant options and asks for booking a table. The system asks Louis to say
his name, selects the preferred menu, and specifies the date and time for booking.
Finally, the system repeats all the information inserted to Louis, asking confirmation.

Louis confirms the booking and keeps walking to his office, enjoying the thought of
the dinner with his dearest friends.
The second scenario concerns a typical agenda application and is an example of vocal
to graphic migration. Monday morning, George is driving in his car when an accident
blocks the road. George will be late for work, so he decides to access the Agenda
Application through the car voice system to check his schedule for the day. The voice
synthesizer welcomes George to the Agenda Application and tells him all the
available operations. George says “Today’s schedule” to check the appointments
fixed for the day and under a further system request, he specifies that he wants to hear
the appointments scheduled for the morning. The synthesizer says that he has two
appointments scheduled in the morning and the first one is a 10:00 meeting with the
project coordinator. George asks for more details, meanwhile he arrives at work. As
soon as he turns off the car, the application migrates automatically from the voice car
system to the PDA that George has in his pocket. George starts running to his office
to collect important documents for the meeting and use his PDA to check in which
room the meeting is to be held. In the above scenario, the vocal interaction is
supported by a voice car system. In our analysis, we take into consideration a vocal
interface accessed through a mobile phone. Diverse voice car kits connect to the car
owner mobile phone, as soon as the vehicle is turned on allowing automatic call
answering. With such kind of equipment, migration can take place from the PDA to
the mobile phone and vice versa, giving the user the feeling that only the phone and
the car are involved. In particular, the user will not hear the phone ring, announcing
graphic to vocal migration, because of the automatic call answer feature, and will be
able to continue interacting, without any supplementary action to receive the call.

4 Migration Service Approach

The interface migration is obtained through different interface versions (one for each
platform). When the interface migrates then the migration service is able to activate
the version for the target device at the point where the user left the source device and
maintain the state resulting from the previous interactions in the new device.
Our migration service applies to Web applications whose interfaces have been
developed through the model-based approach integrated in the tool TERESA. The
interface generation through the TERESA approach, starts with the development of
the nomadic task model that describes the application interface in terms of user
activities. Platform specific task models are obtained analysing the nomadic one,
extracting the tasks supported by the specific platform. Each refined task model is
used to generate the Abstract User Interface (AUI), where the interface is described in
terms of presentations. Each presentation contains: a set of Interactors, giving an
abstract description of the objects that will be used to implement corresponding tasks,
and composition operators, providing declarative indications on how to compose
interactors (grouping, hierarchy, relation, …). Each presentation is associated with
the set of tasks that it supports. The last step is the generation of the final user
interface according to design criteria that take into account the platform selected. It
can be generated in XHTML, XHTML Mobile Profile, Java, or VoiceXML. In this

paper we are considering XHTML and VoiceXML languages, in order to address the
trans-modality migration.
The logical descriptions obtained through the interface generation process are used by
the Migration Server in order to compare source and target platform version of the
interface, to identify the presentation for the target platform and keeping user
interaction continuity, when activating the interface on the target device. When a
migration is required by the user, or automatically triggered, the server retrieves the
last URL loaded on the source device, hence extracts the presentation describing the
migrating page, from the AUI of the corresponding interface. At this point, the server
accesses the AUI describing the interface for the target platform type.
The server uses the AUIs, to search for the target presentation that is the most similar
to the source one. Similarity is calculated in terms of supported tasks: the higher
number of tasks the source and target presentation share, the more similar the
presentations are. This similarity criterion can lead to ambiguity in case more than
one target presentations share the same number of tasks with the source one, having
the same similarity degree. The conflict is solved identifying the target presentation
supporting the task associated with the interaction object last modified by the user on
the source device, since the user is most likely to continue interaction from that point.
Once the target presentation has been identified, the target page is immediately
identified, since a one to one mapping exists between presentations and pages. Next
step is to calculate the state of the objects contained in the target page, in order to
keep interaction continuity. In this phase, we consider objects implementing
corresponding tasks in the source and target page. In different versions of the
interface obtained for different platform types, the same task can be implemented by
means of different interaction objects. In particular, while comparing graphic and
vocal platforms, we have VoiceXML objects in one version and HTML objects in the
other one. For example, the graphical interface task that performs a selection action
can be implemented by radio button while, in the vocal interface, this can be obtained
through DTMF (Dual Tone Multi Frequency) menu voice, and the selection can be
performed through keypads. Another interesting example is given when in the logical
description of the presentations there are two or more control interactors that enable
the access to other application pages: in the graphical interface they can be
implemented by buttons or links while in the voice interface they can be combined in
a menu voice.
The description of the runtime state of a graphical object has to be translated into a
description of the runtime state of the corresponding vocal object and vice versa. For
example, if users select an option in the graphical interface they can listen its result
through the feedback of the choice in voice menu and vice versa, if users press a
particular number of keypad they can see the radio button corresponding the same
option selected in the graphical interface.
In graphic-to-graphic migration, the runtime state is sent to the target device in a form
adapted to its resources. Applying the state to the page is the task of the migration
client running on the device. The same technique can be used in performing vocal to
graphic migration, but not for graphic to vocal because a typical vocal device has
very limited capabilities. Hence, when the target has no computational capability
other than handling phone calls, all the work must be performed on the server side.

Once the vocal target page has been identified, a new temporary page is created. Such
a page is a copy of the target one, plus the suitably adapted runtime state. In this way,
the original page remains available on the server for access by other users and the
modified copy is removed when the target platform ends the call.

5 The Migration Service Architecture

The scenarios introduced in Section 3 can be supported by a migration service that
allows trans-modal migration to be activated either by user request or automatically
when the environment conditions require it. We define the first type as on demand
migration and the second automatic migration.
In on demand migration, the user explicitly asks for the application to migrate,
specifying the target device. In automatic migration, the system must check the
environment conditions like mobile device battery energy level and device proximity,
in order to decide if migration is needed and to select the target device when more
than one fit the predefined requisites.
In [1] we proposed a solution to support on demand migration involving devices
supporting graphic Web browsers. In this work, we improve the migration service
adding a modal migration from graphic to vocal browsing and vice versa. We also
add the automatic migration service by changing the runtime context manager
module and introducing client devices classification and localisation mechanism. In
our previous work, the runtime state of the migrating page was collected on the client
side and sent to the server only when the user decided to migrate the application. In
the runtime state there is the result of the user interactions (selected elements, values
entered, …). In the new solution, we keep updating the server-side data structure,
describing the runtime state of the application on the client. In this way, the server
does not have to query the client for its runtime state, in particular, when migration is
triggered because a previously available device becomes unavailable. Otherwise, it
would not be possible to retrieve the runtime context of the application running on it.
The new solution for the state management is discussed in 5.1.
The other important new feature is the introduction of the client device classification
and localisation. Devices are classified in terms of features that guide the selection of
the target device for automatic migration. In particular, they are considered as part of
an environment as described in 5.2 Activation of the application on the target device
has also been improved, in order to enable modal migration, which was not
previously supported. The new solution is discussed in 5.3.

Fig. 1. Left: old migration solution, right: new migration solution

The service relies on a server machine that stores the migratable applications, as well
as their logical descriptions and the mechanisms to perform device migration. The
server is initialised by building correspondences between tasks and the user interface
logical elements, and between the logical description of interface elements and the
objects used for their implementation. Such operations are performed for all
migratable interfaces and for each one of their device specific versions (see section
4). The time required for the initialisation phase increases with the number of
supported applications and their complexity. However, this operation is performed
only once at start-up and considerably increases the speed of runtime migration.
Users who want to access the service have to load the migration client from the server
onto their device. This operation allows the server to identify the devices available for
migration and also enables the user device to send migration requests and work as a
target for an incoming migrating interface.
Summarising, the main aspects of this improved version of the migration service are:
state management, device management and target interface activation.

5.1 User Interface State Management

When a new device enters the migration service, a state collection module is activated
on the client side and a corresponding one is created on the server side.
Generally speaking, a server can not access directly information inserted by users on
client devices, until they are submitted. In performing migration, we need what has
been inserted in the page shown to the user, for this purpose clients can provide
useful support in the runtime state collection.
Any time the user interacts with an element of an interface, the client module catches
the generated event and immediately sends the new state of the object to the server.
The captured events relate to actions, such as objects selection and text insertion. The
server keeps a description of the runtime state of the pages loaded on the client, and
updates it at each new message received by the client.
When a migration request has to be served, the server analyzes the description of the
runtime state, associated to the client from which the interface has to migrate to
retrieve the URL of the last page visited by the user and the runtime state of each
object of the interface as it was when migration was requested (or triggered).

The last visited page URL is used in the process of target page retrieval and the
runtime state of the source page is elaborated to be adapted to the retrieved target
page (see section 4).

5.2 Device Management

When asking for on demand migration, the user specifies which device has to be the
target. In this case, the only information concerning the target device that is
necessary, is a description of its type and its supported features. In automatic
migration, the target is selected by the server among the devices registered to the
service according to their features, settings and location.
• Features. When a device accesses the migration service, the server recognises its

platform type like mobile phone, PDA, desktop, vocal and features such as the
screen size, browser supported, etc. In particular, client devices are also recognised
as mobile or stationary.

• Settings. When the users start the client migration module, they have to specify if
the device has to be used as a personal or shared device. A device is shared when
more than one user can access it, while it is personal when only the owner can use
it. The availability to accept incoming migrating interface has to be declared. Users
can also register to the service, specifying more devices that must be considered as
potential target for migration. Such devices are those that cannot load a migration
client, but can be activated directly by the server, in particular they can be fixed or
mobile phones.

• Location. The server must keep track of the position of each active client. Devices
are considered near, when they are inside the same environment. An environment
can be a room, when we consider a building or a car when we consider the user
moving outside. The current environment is mainly detected through the use of
WLANs and infrared beacons. Stationary devices such as desktop PCs, are
statically considered into a specific environment that can not change until the
device is turned on, while mobile devices are subject to change position frequently
and their position is kept updated.

When selecting a target device for automatically triggered migration, the server
considers all the devices being in the same environment in which the source device is
that are available to receive incoming applications. In order to select the final target
device, among a set of available candidates the migration server analyses the
interaction capabilities and energy supply matters of the available devices. For
example, we can think of a user interacting with a vocal application through his
mobile phone, while reaching his desktop PC and having his PDA turned on in a
pocket. The mobile phone is losing battery power and turns off, the application must
migrate, and both the PDA and the desktop are close enough to the user. In this case,
the desktop is selected as the target device, because a PDA could also be affected by
energy supply problems and offers less interaction facilities than the desktop.
Checking the environment, the migration assigns priority to the devices registered as
personal and that can be automatically activated. In case the user has for example a

fixed or mobile phone in his device list, the server can make the phone ring migrating
the application to one of them as soon as the user answers the call.

5.3 Target Interface Activation

There are two different modalities used to activate the interface application on the
target device. In case of vocal to graphic migration, the target is required to run the
client migration module. Once the server has calculated the URL of the page to be
loaded on the target and adapted the corresponding runtime context, all information is
coded in a formatted string and sent to the client module running on the target. The
client module extracts the URL from the string, loads it into a Web browser window
and also extracts the runtime state and applies it to the new page.
In case of graphic to vocal migration, if the host platform corresponds to a fixed or
mobile phone then the server is instructed to send a phone call to the appropriate
target, indicating which presentation has to be activated on user phone answer and
how the vocal interpreter has to run the target presentation applying the runtime
context obtained by the migration process.
Migrating from a modality to another one goes far beyond a simple one to one
mapping among the pages of the two different versions.
The graphical interfaces do not translate well into speech interfaces for a number of
reasons. For instance, graphical interfaces do not always reflect the vocabulary that
people use when talking to one another in the application domain. Another important
consideration concerns the information organization. In fact, presentations that work
well in the graphical interface can fail in speech implementations. Reading exactly
what is displayed on the screen is rarely effective. Likewise, users find it awkward to
say exactly what is printed on the display. Therefore, it is necessary to analyse the
logical description of the application to obtain a graphic to vocal mapping and vice
versa, based on the supported task sets.

6 The Multimodal Restaurant Booking Application

In this section we introduce the Multimodal Restaurant Booking Application, a
sample application built on the basis of one scenario described in Section 3. In the
application the user can choose a restaurant in a specific area of the city. After
selecting the Mermaid restaurant, the user fills in the form for booking a table. Let us
imagine that he has filled in the first three fields and has selected menu type and then
realises that it is getting late, so he decides to continue his booking by phone with the
voice system in the car.
The first step is performed by the migration service in order to identify the voice
presentation most similar to the source graphical presentation. Then, the migration
server accesses the Abstract User Interface of the graphical interface and retrieves the
presentation corresponding to the migrating page. At this point, the set of tasks
performed by the presentation, and therefore supported by the migrating page, is
identified and used by the mapping algorithm in order to find the right target

presentation. In the graphical application the set of tasks are composed of: provide
name, provide e-mail, provide date of reservation, provide time of reservation,
provide number of people, select preference seating, select menu type, provide
special request or comments, send reservation, and cancel reservation.
During the mapping the migration server compares the task set of the source
presentation (graphic) with the task set of the target (vocal) and identifies the most
similar abstract presentation of the vocal abstract interface. During this step it may
happen that some tasks supported by the source platform cannot be supported or can
be performed through different interaction techniques. For example, the sample
application does not support the task “Provide special request or comments” in the
voice platform, because it would encumber the vocal interaction as it is not an
essential task for booking.

 (grouping sound) Say the date of reservation

Say the time of reservation

Please say the number of people (grouping sound)

Grouping

Object that support the task
“Provide date”

Fig. 2. Presentations of some booking information in different modalities.

Another example is the different method used for supporting the task “Provide Date
of reservation”. In the desktop interface it is implemented by three pull-down menus
(day, month and year) while in the vocal system it is accomplished by a vocal input
request to the user for the date of reservation without indicating any potential choice
(see Figure 2).
In the example, the migration server identifies three vocal abstract presentations
containing the same number of tasks of the source presentation. One task is not
supported in the vocal application (Provide special request or comments). The first
presentation requests the user’s name and e-mail, the second presentation requests the
reservation date, time and the number of people, and the third presentation requests
seating preferences, the type of menu and confirms or deletes the reservation.
It is also interesting to notice the different techniques adopted to combine interactors.
For example, in the graphical interface the grouping operator is obtained through an
unordered list, whereas the vocal interface uses a sound to delimit the grouped
elements.

The second step allows the migration server to select the presentation that contains
the object implementing the last task performed by the user on the target platform.
During this phase, it is important to consider that the vocal channel serialises
interactions, while they can be performed concurrently on a visual channel.
Accordingly, once the presentation has been identified, the migration server checks if
all the previous tasks have really been executed. If a negative response results for any
tasks, they are performed first and then the dialog carries on from the task last
executed in the source device.

(grouping sound) Say the date of reservation

Say the time of reservation

20:30

Please say the number of people (grouping sound)

6

Presentation

19 March 2004
Start

(grouping sound)If you want to seating in smoking area pres 1, or in
no smoking area pres 2

2

What type of menu do you prefer: fish menu, meat menu, vegetarian
menu, menu of date or traditional menu

Ok

Fish menu

(grouping sound) Ok, Louis Lestat you have booked one table for 6
people on 19 March 2004 at 20:30. You prefer no smoking area and
you have chosen fish menu; if you want to confirm the reservation,
say ok or if you want to change a reservation, say change.

Presentation

Name: Louise Lestat
e-mail: Louis.Lestat@tecno.it
date: 19 March 2004
menu: fish menu

Fig. 3. Example of Migration scheme

In the presented example, composed of three vocal presentations, the last executed
task is select menu type and is included in the third presentation; the first presentation,
which asks for the user name and the e-mail, has been performed, while the second
and third presentations were not completed. In this situation, the dialog starts with the
first task of the second presentation (provide time reservation) and skips the tasks that
have already been executed through the graphical interface (see Figure 3).
With this solution, the data previously inserted in the form by the user are not lost,
and can be listened to in a feedback message of the last presentation.

7 Conclusions and Future Work

We have presented a new solution to obtaining migrating interfaces that can be either
initiated by the user or automatically triggered by the system when environment
conditions require. Moreover, we have also added the possibility of interaction

modality changes during migration. In particular, we have addressed graphic to vocal
migration and vice versa.
At this stage, our prototype of migration service supports migration of interfaces
implemented by XHTML, XHTML Mobile Profile and VoiceXML developed with
TERESA. We will soon support also multimodal interfaces implemented in languages
such as X+V.
Further studies will address the improvement of the migration service in order to
support Web interfaces developed using other tools as well. This further issue will
require a different kind of interface analysis: we plan to use tools for reconstructing a
logical description of the pages at runtime. The extension to such interfaces is a main
goal for our future work.
Another topic for future work is the support of multimodal distributed migration, in
which a user interface migrates in such a way to carry on interaction through multiple
devices.

Acknowledgments

We gratefully acknowledge support from the IST EU R&D CAMELEON project
(http://giove.cnuce.cnr.it/ cameleon.html) and would like to thank our colleagues in
the project for useful discussions.

References

1. Bandelloni R., Paternò F., Flexible Interface Migration, Proceedings ACM IUI 2004,
pp.148-157, ACM Press, Funchal, 2004.

2. Coutaz J., Balme L., Barralon N., Calvary G., Demeure A., Lachenal C., Rey G., Bandelloni
R., Paternò F., the CAMELEON Run Time Infrastructure for User Interface Adaptation,
October 2003, CAMELEON Deliverable D2.2.

3. de Sousa, J., Garlan, D. Aura : an Architectural Framework for User Mobility in Ubiquitous
Computing Environments. IEEE-IFIP Conf. 140 on Software Architecture, Montreal, 2002.

4. Ferreras, C, G., Mancebo, E, D., Payo, V, C.. From HTML to VoiceXML: A First Approach.
In Proceedings of TSD 2002, LNAI 2448, pp 441-444, 2002.

5. Mori, G., Paternò, F., Santoro, C. “Tool Support for Designing Nomadic Applications”,
Proceedings ACM IUI’03, Miami, pp.141-148, ACM Press.

6. Nichols, J. Myers B. A., Higgins M., Hughes J., Harris T. K., Rosenfeld R., Pignol M..
“Generating remote control interfaces for complex appliances”. Proceedings ACM
UIST’02, pp.161-170.

7. Pérez-Quiñoes, M, A., Capra, R, G., Shao, Z.. The Ears Have It: A Task by Information
Structure Taxonomy for Voice Access to Web Pages. In Proceedings of INTERACT 2003.

