
  

A UNIFIED METHOD FOR DESIGNING 
INTERACTIVE SYSTEMS ADAPTABLE TO 
MOBILE AND STATIONARY PLATFORMS 

Fabio Paternò, Carmen Santoro 
CNR  
Via G. Moruzzi 1 56100 Pisa Italy 
 {f.paterno, c.santoro}@cnuce.cnr.it 

Abstract The wide variety of devices currently available, which is bound to increase in 
the coming years, poses a number of issues for the design cycle of interactive 
software applications. Model-based approaches can provide useful support in 
addressing this new challenge. In this paper we present and discuss a method 
for the design of nomadic applications showing how the use of models can 
support their design. The aim is to enable each interaction device to support 
the appropriate tasks users expect to perform and designers to develop the 
various device-specific application modules in a consistent manner. 

Keywords: Model-based design, Multi-platform interactive systems, Context of use. 

1. INTRODUCTION 

Recent years have seen the introduction of many types of computers and 
devices (e.g. cellphones, PDA's, WebTV, etc.) and the availability of such a 
wide range of devices has become a fundamental challenge for designers of 
interactive software systems (Olsen, 1998). Users wish to be able to seam-
lessly access information and services regardless of the device they are us-
ing, even when the system or the environment changes dynamically. To this 
end, computer-based applications need to run on a wide spectrum of devices.  

Designing applications that exploit new multi-platform technology is of-
ten a difficult problem. For software developers this introduces the problem 
of constructing multiple versions of single applications and endowing these 
versions with the ability to dynamically respond to changes in context. Cre-
ating different versions of applications for different devices engenders extra 



 Paternò, Santoro 
 
development and expensive maintenance cost of cross-platform consistency, 
complicates the problems of configuration management and dilutes the re-
sources available for usability engineering. Additionally, current develop-
ment tools provide little support for creating applications that change dy-
namically in response to changes in their environment, or that have to share 
data amongst heterogeneous device types.  Although many dimensions must 
be considered when designing context-dependent applications (actors, plat-
forms, environments, system resources, etc.), in this paper we focus on how 
to support a design addressing change of platforms.  

Nowadays companies need to better consider the thorny issues involved 
in designing applications supporting multiple platforms. Currently, they of-
ten address different contexts of use by building different applications, even 
if supporting similar tasks accessing similar data. Different versions of ap-
plications should differ in their structure, rather than trying to address differ-
ent input/output platforms by just resizing the elements of the user interface. 
Versions may also differ in the tasks they can realistically support –for ex-
ample, the PDA permits reading reviews, the phone permits ordering books, 
and the desktop PC supports both. In addition the set of functionality sup-
ported can change dynamically.  

Technological advances solve some of the problems of engineering ap-
plications for multiple devices: XML (eXtensible Markup Language) docu-
ments supported by XSL (eXtensible Stylesheet Language) stylesheets allow 
creating customised presentations for different devices or users. Wireless 
Markup Language (WML) permits to produce device-independent presenta-
tions for a range of small display devices. Wireless Internet gateways auto-
matically translate HTML documents into WML documents (although they 
may produce unusable results if they rely on large displays). However, XSL 
(and related technologies) help with user interface presentation, but are lim-
ited by the fact that a different interaction design may be necessary when 
moving between radically different device types. More generally, while 
these solutions help with parts of the problem, they do not provide high-level 
guidance for guaranteeing quality across multiple versions of applications. 

The goal of this paper is to present and discuss a method to support de-
sign and development of highly usable context-sensitive interactive software 
systems. To this end we discuss the state of art in addressing issues related to 
multi-platform applications. Next, we identify the main phases of the pro-
posed method and also illustrate how the information provided by task mod-
els can be useful for the design of user interfaces in multi-platform applica-
tions. Then, we analyse more in depth the method and show its application to 
an example taken from the design of a museum application. Lastly, some 
concluding remarks are provided.  



 
 
2. RELATED WORK 

In a recent paper, discussing the future of user interface tools, Myers, 
Hudson, and Pausch (2000) indicate that the wide platform variability en-
courages a return to the study of some techniques for device-independent 
user interface specification, so that developers can describe the input and 
output needs of their applications, so that vendors can describe the input and 
output capabilities of their devices, and so that users can specify their pref-
erences. Then, the system might choose appropriate interaction techniques 
taking all of these into account. The basic idea is that instead of having sepa-
rate applications for each device that exchange only basic data, there is some 
abstract description and then an environment that is able to suggest a design 
for a specific device that adapts to its features and possible contexts of use. 
This is also called user interface plasticity (Thevenin and  Coutaz, 1999). 
Methods for modelling work context (Beyer and Holtzblatt, 1998) can pro-
vide useful information for this type of approach. 

This problem is a novel challenge for model-based design and develop-
ment of interactive applications. The potentialities of these approaches have 
been addressed in a limited manner. In the GUITARE Esprit project a user 
interface generator was developed: it takes ConcurTaskTrees (CTT) task 
models (Paternò, 1999) and produces user interfaces for ERP applications 
according to company guidelines. However, automatic generation is not a 
general solution because of many, varying factors that have to be taken into 
account within the design process. Semi-automatic support is more general 
and flexible: Mobi-D (Puerta, 1997) is an example of a semi-automatic ap-
proach but it only supports design of traditional graphical desktop applica-
tions. 

UIML (Abrams et al., 1999) is an appliance-independent XML user inter-
face language. While this language is ostensibly independent of the specific 
device and medium used for the presentation, it does not take into account 
the research work carried out in the last decade on model-based approaches 
for user interfaces: for example, the language provides no notion of task, it 
mainly aims to define an abstract structure. The W3C consortium has re-
cently delivered the first version of a new standard (XForms) that presents a 
description of the architecture, concepts, processing model, and terminology 
underlying the next generation of Web forms, based on the separation be-
tween the purpose and the presentation of a form. If it shows the importance 
of separating conceptual design from concrete presentation, it also highlights 
the need for meaningful models to support such approaches. 

More generally, the issue of applying model-based techniques to the de-
velopment of UIs for mobile computers has been addressed at a conceptual 
and research level (Eisenstein et al., 2001; Calvary et al., 2001), but there are 



 Paternò, Santoro 
 
still many issues that should be solved to identify systematic, general solu-
tions that can be supported by automatic tools. Our approach aims to support 
design and development of nomadic applications providing general solutions 
that can be tailored to specific cases, whereas current practise is still to de-
velop ad hoc solutions with few concepts that can be reused in different con-
texts. 

Various models have been proposed to highlight important aspects in the 
design of user interfaces (Johnson et al., 1993; Paternò, 1999; Sukavirija et 
al., 1993; Szekely et al., 1993; Vanderdonckt and Bodart, 1993). In our 
method we focus on models that can support development of user interfaces 
while preserving usability, in particular task models specifying the different 
activities that are supposed to be performed in an interactive system. Such 
models should be developed involving users so as to represent how they pre-
fer to perform activities. The basic idea is to capture all the relevant re-
quirements at the task level and then be able to use such information to gen-
erate effective user interfaces tailored for each type of platform considered. 

  

3. THE PROPOSED METHOD 

The design of multi-platform applications can follow different ap-
proaches. It is possible to support the same type of tasks with different 

Figure 1: One model, many interfaces.



 
 
devices. In this case, what has to be changed is the set of interaction 
and presentation techniques to support information access while tak-
ing into account the resources available in the device considered. 
However, in some cases designers should consider different devices 
also with regard to the choice of the tasks to support. For example, 
phones are more likely to be used for quick access to limited informa-
tion, whereas desktop systems better support browsing through large 
amounts of information. To complicate matters, it must be borne in 
mind that even within the same class of devices there are different 
presentation models that need to be handled. For example, more and 
more, cellular phones are being used to access remote applications, 
and currently access is provided by WAP phones. There are many us-
ability issues that are limiting their spread. While in desktop systems 
we have mainly two well-known browsers with some compatibility is-
sues (even though such issues often create some problems), in WAP-
enabled phones a number of microbrowsers tend to accept slightly dif-
ferent versions of WML, assume to interact with slightly different 
phones (for examples, phones with a different number of softkeys) 
and interpret the softkeys interactions differently. 

 
Our method tries to address such problems, and is composed of a 

number of steps (see Figure 2) that allows designers to start with an 
overall envisioned task model of a nomadic application and then de-
rive concrete and effective user interfaces for multiple devices:  

• High-level task modelling of a multi-context application. In this 
phase designers need to think about the logical activities that 
have to be supported and the relationships among them. They 
develop a single model that addresses the various possible con-
texts of use and the various roles involved and also a domain 
model aiming to identify all the objects that have to be manipu-
lated to perform tasks and the relationships among such ob-
jects. Such models are specified using the ConcurTaskTrees 
(CTT) notation. The CTTE (CTT Environment) tool  (publicly 
available at http://giove.cnuce.cnr.it/ctte.html) supports editing 
and analysis of task models specified using this notation. The 
tool allows designers to explicitly indicate the platforms suit-
able to support performance of each task. 

• Developing the system task model for the different platforms 
considered. Here designers have to filter the task model accord-
ing to the target platform and, if necessary, further refine the 
task model, depending on the specific device considered. This 
filter-and-refine process in some cases involves creating task 



 Paternò, Santoro 
 

models in which the tasks that cannot be supported in a given 
platform are removed and the navigational tasks deemed neces-
sary to interact with the considered platform are added. In other 
cases it forces to add supplementary details on how a task is 
decomposed when a specific platform is considered. Thus, we 
obtain the system task model for the platform considered.  

• From system task model to abstract user interface. Here the 
goal is to obtain an abstract description of the user interface 
composed of a set of abstract presentations that are identified 
through an analysis of the task relationships and structured by 
means of interactors composed of various operators. Then, still 
considering the temporal relationships among tasks, we identify 
the possible transitions among the user interface presentations 
considering the temporal relationships that the task model indi-
cates. Analysing task relationships can be useful for structuring 
the presentation. For example, the hierarchical structure of the 
task model can be considered to identify interaction techniques 
to be grouped, for example, those that have the same parent 
task and are thus logically more related to each other. Likewise, 
concurrent tasks that exchange information can be better sup-
ported by highly integrated interaction techniques (to some ex-
tent, merged), as happens when using adjacent techniques, so 
that users can better follow their mutual dependencies.  

• User interface generation. In this phase we have the genera-
tion of the user interface. This phase is completely platform-
dependent and has to consider the specific properties of the 
target device. For example, if the considered device is a cellu-
lar phone, such information is not sufficient, as we also need to 
know the type of micro-browser supported and the number and 
the types of soft-keys available.   

 
Task model for envisioned nomadic applications

System task model 

– Desktop – (XML) 

    System task model 

– Cellphone – (XML) 

System task model  

– PDA – (XML) 

Filter + Refine 

Abstract UI –  

cellphone 

(XML) 

   Openwave    …      Nokia 

(WML, XHTML Mobile, 
VoiceXML, …) 

Abstract UI 

– desktop 

(XML) 

  M/Media PC  Graphical PC      Low Res PC 

                ( XHTML, …) 

Abstract UI –  

Pda 

(XML) 

   Palm    …      Compaq    

Figure 2:  The transformations supported.



 
 

In the following sections we better explain such steps while 
showing their application to a specific example. 

We have defined XML versions of the language for task model-
ling (ConcurTaskTrees), enabled task sets and the language for 
modelling abstract interfaces and developed automatic transforma-
tions among these representations. 

 

4. TASK AND MULTI-PLATFORMS RELATION-
SHIPS 

In general, when a multi-platform application is considered, it is impor-
tant to understand what type of tasks can actually be performed in each 
available platform. We have identified a number of possibilities: 

• The same task can be performed on multiple platforms in the same 
manner (there may be only some changes in attributes of the user in-
terface objects from platform to platform). This is the case of tasks 
whose presentation remains mostly unchanged on different plat-
forms: an example is when in a museum application textual links are 
provided to access general information about the museum (how to 
reach, timetable, etc.). 

• Same task on multiple platforms but with different user interface ob-
jects. An example of this case is highlighted in figure 3. In both sys-
tems users can select a section of the museum (e.g. Roman Archae-
ology, Modern Sculpture, etc). However, while in the desktop sys-
tem a large, coloured interactive map of the museum is at the users’ 
disposal, in the phone, because of its limited capabilities, a text link 
is available for every museum section. 

 
 

 
 
 
 
 
 
 
 

 
 
 

Figure 3: Same task, different interface objects



 Paternò, Santoro 
 
 

• Same task on multiple platforms but with different domain objects.  
This means that during the performance of the same task different 
sets of domain objects are manipulated. Figure 4 shows an example 
of this: presentations of different information on a desktop system 
and a WAP phone. As you can see from the bottom part of the pic-
ture, while in the desktop system it is possible to access a wider set 
of domain elements (title, image type, description, author, material, 
and date of creation), the WAP interface supports access to only an 
image  (which is a low resolution image just to give users a rough 
idea of what the work of art is), along with the indications of the title 
and associated museum section. The top part of Figure 4 shows how 
in the CTTE tool it is possible to specify for each platform (PDA, 
desktop system, cellphone or other platforms) what objects can be 
manipulated during performance of the task in question.  For exam-
ple, for the “Show artwork info” task considered in the picture, the 
designer has specified that the title is available on all the platforms 
considered (all the checkboxes labelled “PDA”, “Desktop”, and 
"Cellphone" have been selected), whereas the description is avail-
able only for the desktop system. This information has been used to 
generate different user interfaces for the cellular phone and the desk-
top system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Example of different presentations of a work of art 
 
 

• Same task on multiple platforms but with different task decomposi-
tion. This means that the task is sub-divided differently, with differ-

Figure 4: Same task, different domain objects



 
 

ent sets of sub-tasks, depending on the platform. An example of this 
possibility is displayed in the figure 5 that shows how differently the 
task access work of art is supported in a desktop and in a wap de-
vice. In the desktop system, the users can accomplish additional sub-
tasks, which are not supported in other systems. An example con-
cerns the possibility of reading reviews of a particular work of art, 
which is a lengthy information-processing task that users can per-
form satisfactorily when sitting in front of a desktop computer, but 
which is simply unacceptable with handheld devices. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

• Same task on multiple platforms but with different temporal con-
straints. In this case the difference is in the temporal relationships 
among the subtasks. With reference to the museum application, con-
sider the case of users who wish to electronically reserve their tick-
ets for a particular visit in order to avoid queues. As you can see 
from the picture, in both systems they have to provide personal in-
formation. However, while in the desktop system they are free to 
choose the order to follow for filling in the various fields, within the 
phone application they are constrained by the wap interface to fol-
low a sequential order (see Figure 6).  

 
 
 
 
 
 
 

Figure 5: Same task, different task structure

Figure 6: Same task, different temporal relationships



 Paternò, Santoro 
 
 
 
 
 
 
 
 
 
 

• Dependencies among tasks performed on different platforms. An ex-
ample of this can be found when the users have to reserve their tick-
ets. Through the desktop system users can access, compare and con-
trast the different options about the best time for visiting the mu-
seum (depending on planned exhibitions, time, etc.). Once they have 
selected their preferences and entered personal data, the system pro-
vide them with a special reservation code identifying the data asso-
ciated to that specific visit. It is only when they arrive at the museum 
that users need such reservation code, and the WAP device they 
usually bring should be able to show such information  necessary to 
pick up the ticket at the museum and avoid queuing (see Figure 7). 
Capturing this type of task relationships is particularly important 
when there is some task relevant to only a particular platform and 
that affects the performance of another task through a different plat-
form. A typical situation occurs when users physically visit the mu-
seum and simultaneously annotate the most interesting works of art 
on the PDA. When they arrive home they would appreciate being 
able to receive information regarding such works first during their 
access to the museum web site through a desktop system. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7: Relationships among tasks performed on different platforms



 
 
5. FROM THE TASK MODEL TO THE ABSTRACT 

USER INTERFACE  

Starting with the task model of the system, we aim to identify the specifi-
cation of the abstract user interface in terms of its static structure (the 
“presentation” part) and dynamic behaviour (the “dialogue” part): such 
abstract specification will be used to drive the implementation. By analysing 
the temporal relationships of a task model, it is possible to identify the sets 
of tasks that are enabled over the same period of time according to the con-
straints indicated in the model (enabled task sets). Thus, the interaction tech-
niques supporting the tasks belonging to the same enabled task set are logi-
cally candidates to be part of the same presentation, though this criteria 
should not be interpreted too rigidly in order to avoid excessively modal user 
interfaces.  
This sshhiifftt  ffrroomm  ttaasskk  ttoo  aabbssttrraacctt  iinntteerraaccttiioonn  oobbjjeeccttss  iiss  ppeerrffoorrmmeedd  tthhrroouugghh  tthhrreeee  
sstteeppss::  

••  CCaallccuullaattiioonn  ooff  eennaabblleedd  ttaasskk  sseettss;;  wwee  hhaavvee  ddeevveellooppeedd  aann  aallggoorriitthhmm  
tthhaatt  ttaakkeess  aass  iinnppuutt  tthhee  ffoorrmmaall  sseemmaannttiiccss  ooff  tthhee  tteemmppoorraall  ooppeerraattoorrss  ooff  
tthhee  CCoonnccuurrTTaasskkTTrreeeess  nnoottaattiioonn  aanndd  tthhee  ssppeecciiffiiccaattiioonn  ooff  aa  ttaasskk  mmooddeell  
aanndd  iiddeennttiiffiieess  tthhee  ccoorrrreessppoonnddiinngg  eennaabbllee  ttaasskk  sseettss;;  

••  HHeeuurriissttiiccss  ffoorr  ooppttiimmiissaattiioonn  iinn  tteerrmmss  ooff  pprreesseennttaattiioonn  sseettss  aanndd  ttrraannssii--
ttiioonnss;;  ssiinnccee  aa  ddiirreecctt  mmaappppiinngg  bbeettwweeeenn  eennaabblleedd  ttaasskk  sseettss  aanndd  uusseerr  
iinntteerrffaaccee  pprreesseennttaattiioonnss  ccaann  ggeenneerraattee  excessively mmooddaall  uusseerr  
iinntteerrffaacceess  oorr  iinntteerrffaacceess  wwiitthh  aa  vveerryy  lliimmiitteedd  nnuummbbeerr  ooff  eelleemmeennttss,,  
tthheessee  hheeuurriissttiiccss  hheellpp  ddeessiiggnneerrss  ttoo  ggrroouupp  ttaasskkss  iinn  pprreesseennttaattiioonn  sseettss  
tthhaatt  aarree  bbeetttteerr  ccaannddiiddaatteess  ttoo  ssuuppppoorrtt  tthhee  mmaappppiinngg  iinnttoo  tthhee  uusseerr  
iinntteerrffaaccee  pprreesseennttaattiioonnss..  • MMaappppiinngg  pprreesseennttaattiioonn  ttaasskk  sseettss  aanndd  tthheeiirr  ttrraannssiittiioonnss  iinnttoo  sseettss  ooff  aabb--
ssttrraacctt  iinntteerraaccttiioonn  oobbjjeeccttss  aanndd  ddiiaalloogguuee.. 

5.1 Identification of Presentation Task Sets 

The first step is to calculate the Enabled Task Sets (ETSs) according to 
the system task model. The CTTE tool automatically performs the identifica-
tion of these sets. Only application and interaction tasks are considered in 
ETSs because user tasks (those associated with internal cognitive activities) 
are not directly relevant to this transformation. The ETSs identify a number 
of potential presentations and the connections among different ETSs are rep-
resented by transition tasks. 



 Paternò, Santoro 
 
 

Once the ETSs have been defined, we need to specify some rules to re-
duce their number by merging two or more ETSs into new sets, called Pres-
entation Sets or PSs. The reasons for such step are various: first of all, reduc-
ing the initial number of ETSs which as we previously noted in some 
cases can be very high; secondly, keeping and highlighting in the same pres-
entation significant information (as a data exchange is) even when the in-
volved tasks belong to different ETSs so that users can better follow the flow 
of information; lastly, avoiding repeatedly considering groups of tasks which 
all share a similar structure. These rules are particularly useful when desktop 
systems are considered. Up to now, the heuristics that have been identified 
are the following:  

 
• H1: If two (or more) ETSs differ for only one element, and those 

elements are at the same level connected with an enabling operator, 
they could be joined together. 

• H2: If an ETS is composed of just one element, it should be joined 
with another ETS that shares some semantic feature. 

• H3: If some ETSs share most elements, they could be unified. For 
example if the common elements all appear at the right of the dis-
abling operator, they could be joined in only one PS. 

• H4: If there is an exchange of information between two tasks, they 
can be put in the same PS in order to highlight such data transfer. 

 
It is worth noting that it is the designer that decides about the heuristics’ ap-
plication, also taking into account the features of the specific platform con-
sidered. For example, if we consider graphical user interfaces, it is likely that 
on devices with small screens the heuristics will be applied less than on other 
devices with more extended capabilities. The reason is that desktop systems 
rely on large screen areas, whereas on small displays too many user interface 
objects in the same presentation would tend to add clutter rather than in-
crease usability.  
 

5.2 The Language for Abstract User Interfaces 

The set of PSs obtained is the initial input for building the abstract user in-
terface specification, which will be composed of interactors (Paternò and 
Leonardi, 1994) (abstract interaction objects) associated with the basic tasks. 
Such interactors are high-level interaction objects that are classified first de-



 
 
pending on the type of task supported, then depending on type and cardinal-
ity of the associated objects and lastly on presentation aspects.  
Figure 8 provides a tree-like representation of the abstract language that has 
been used for specifying the abstract user interface. As you can see from the 
picture, an interface is composed of one or more presentations and each 
presentation is characterised by a structure and 0 or more connections. The 
basic idea is that the structure describes the static organisation of the user in-
terface, whereas the connections describe the relationships among the vari-
ous presentations of the user interface. Generally speaking, the set of con-
nections identifies how the user interface evolves over time, namely its dy-
namic behaviour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In fact, each connection has two attributes: an interaction_aio_name, which 
defines the interaction object whose performance triggers the next presenta-
tion, which is identified by the presentation_aio_name. 
 
As far as the structure is concerned, two types of elements can occur: ele-
mentary abstract interaction objects (aio), or complex expressions 
(aio_composition)  derived from applying the operators to such  objects. 
Each aio can be either an interaction_aio or an applicaton_aio depending on 
whether or not an interaction between the user and the application is in-
volved. For interaction_aio we have various categories depending on the 

Figure 8: The structure of the abstract user interface language



 Paternò, Santoro 
 
type of basic task supported (editing, selection, etc.). For the application_aio 
we have different classes according to the types of object manipulated. 

5.3 From Presentation Task Sets to Abstract User Inter-
face Presentations 

The abstract user interface is mainly defined by a set of interactors and the 
associated composition operators.  

The type of task supported, the type of objects manipulated and their car-
dinality are useful elements for identifying the interactors. In order to com-
pose such interactors we have identified a number of composition operators 
that capture typical effects that user interface designers actually aim to 
achieve (Mullet and Sano, 1995): 

• Grouping (G): the idea is to group together two or more elements, 
so this operator should be applied when the involved tasks share 
some characteristics. A typical situation is when the tasks have the 
same parent (they are activities needed to perform a high level task). 
This is the only operator for which the position of the different oper-
ands is unrelevant. 

• Ordering (O) operator: it is applied when some kind of order exists 
amongst elements. The more intuitive one is the temporal order. The 
order in which the different elements appear within this operator re-
flects the order that holds amongst them. 

• The Relation (R) operator should be applied when a relation exists 
between n elements yi, i=1,…, n and one element x. Referring to the 
task model, a typical situation is when we have a leaf task t at the 
right side of a disabling operator: all the tasks that could be disabled 
by t (at whatever task tree level) are in relation with t. Again, also 
this operator is not commutative. 

• The Hierarchy (H) operator means that a hierarchy exists amongst 
the involved interactors. It is the importance level associated with 
the operands that identifies the prominence degree that the associ-
ated interaction objects should have within the user interface. The 
importance can be derived from the frequency of access or depend 
on the application domain. In order to convey this information, vari-
ous techniques could be used. In graphical user interfaces one exam-
ple is allotting within the screen a larger area to objects which are 
hierarchically more ‘important’. 

 
At this point we have to map each task of the presentation set considered 

into a suitable interactor and build a presentation structure where the rela-
tionships among tasks are reflected through the different relationships be-



 
 
tween such interactors which are expressed by using the composition opera-
tors. In order to derive the presentation structure associated to the specific 
presentation set and deduce the operators that should be applied to them, we 
have to consider the part of the task model regarding the tasks belonging to a 
specific presentation set. In this process we have to consider that temporal 
relationships existing between tasks are inherited also by their subtasks.  

5.4 The Dialogue Part 

Once the static arrangement of the abstract user interface is identified, we 
have to specify its dynamic behaviour. To this aim, an important role is 
played by the so-called transition tasks. For each presentation set P, we de-
fine transition tasks(P) the tasks whose execution makes the abstract user in-
terface pass from the current presentation set P into another presentation set 
P’. For each presentation set P, a set of rules (transition_task, next_PS) 
should be provided whose meaning is: when transition_task is executed, the 
abstract user interface passes from P to next_PS.  
 

6. FROM THE ABSTRACT USER INTERFACE TO 
ITS IMPLEMENTATION 

Once the elements of the abstract user interface have been identified, 
every interactor has to be mapped into interaction techniques supported by 
the particular device configuration considered (operating system, toolkit, 
etc.), and also the abstract operators have to be appropriately implemented 
by highlighting their logical meaning: a typical example is the set of tech-
niques for conveying grouping relationships in visual interfaces by using 
presentation patterns like proximity, similarity and continuity (Mullet and 
Sano, 1995).  

 
It is worth noting that the composition operators can be iteratively applied on 
the elements of the domain objects, and we refer to this possibility by putting 
a * beside the name of the operator (e.g. G*, H*). This means that each in-
teractor involved in the expression actually involves multiple user interface 
objects, so the operator is iteratively applied to every data element handled 
by the interactor in the expression. One example of this can be seen in the 
following expression, for the desktop system: 

 



 Paternò, Santoro 
 
 
R(H(G*(Show_work_info, show_work_image),    Sec-
tion_Description)),    G (Go_back, Go_museum_map, Go_to_start)) 
 
This example shows an expression in which different operators have 
been used. Reading the expression, we have a grouping operator 
which involves three elements, namely the interactors associated to  
Go_back, Go_museum_map and Go_to_Start tasks respectively. This 
grouping is the right member of a Relation operator, which means that 
each of the elements appearing on the right side is in relation 1:N with 
the elements appearing on the left side of the R operator.  
In turn, the left operand of the R operator is a complex expression 
which involves a Hierarchy operator. Recalling that H conveys the 
idea of hierarchy existing amongst the different objects involved, in 
this case the elements hierarchically arranged are a complex  interac-
tor expression (the iterated grouping of  Show_work_info, 
show_work_image) and a basic interactor (that associated to the Sec-
tion Description task). The latter interactor is considered less impor-
tant than the first one and for this reason a smaller space has been al-
lotted to it within the user interface (see Figure 9).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As an example of expression for the cellphone system we have the fol-
lowing expression: 
 

Figure 9: Example of implementation on desktop system



 
 
 
Another example of application can be seen by considering the fol-
lowing expression: 
 
 
H(Show section list, G *(Access to section info, Access to section 
works )) 
 
This expression has, at its outermost level a Hierarchy operator, whose 
first element (‘first’ according to the hierarchy as well) is the interac-
tor associated to the Access to sections’ list task. The right-hand oper-
and is an iterated grouping of the interactors associates to  Access to 
section’s info and to Access to section’s works tasks. In figure 10 it is 
shown how this expression can be rendered on a cellphone user inter-
face, where there are less possibilities due to the more limited capa-
bilities of the device. As you can see the interactor associated to Ac-
cess to sections’ list task has more predominance with respect to the 
grouped expression and this is conveyed by using a bigger size of the 
font for displaying the related textual string. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Example of implementation on a Wap device



 Paternò, Santoro 
 
7. AN EXAMPLE 

The example considered throughout the paper regards the design of a 
nomadic application for accessing museum information.  Its task model con-
tains tasks that refer to the possible platforms according to the various possi-
bilities discussed in section 4. There are tasks performed through only one 
platform (such as the possibility of accessing the museum map, namely Ac-
cess to map task, ), tasks that are performed differently according to the type 
of platform (such as Show artwork info) and so on. 

A possible scenario is a user who comes across the museum while surfing 
the web at home. S/he accesses the web site and starts to look at the informa-
tion contained and afterwards s/he proposes a visit to the Marble Museum to 
some friends. As they appear a bit reluctant, s/he accesses the WAP server 
trying to convince them by showing some concrete elements of what the mu-
seum offers. Finally, they decide to have a visit, so they access again the 
WAP server to check its location and schedule. When they arrive at the mu-
seum, they receive a guide implemented in PDA that provides audio-visual 
support for their visit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 11: Part of the system task model for the PDA access 
 

For reasons of space we have provided only part of the system task model 
for the PDA (see Figure 11). Users can access the museum map (Access to 
map), and then (see the enabling CTT operator “>>”), after such map is dis-
played (Show museum map), they can select a room (Select room). When 



 
 
they select a room, the presentation shows the different types of artworks in 
the room, so as to allow visitors to locate them.  After the visitor selects a 
specific artwork (Select artwork), depending on the selection (see the ena-
bling with information passing operator ”[]>>”) the PDA delivers informa-
tion about the artwork (Show artwork info), with the possibility of returning 
to the previous room. Further actions will be made available to the user: ei-
ther return to the global map (Return to map) or exit the museum (Exit mu-
seum), both appearing at the right of a disabling operator (“[>”). 

 
For the considered example, the ETSs are: 

ETS1: {Access to map} 
ETS2: {Show Museum map, Exit museum} 
ETS3: {Select room, Exit museum} 
ETS4: {Show room artworks&adjacent rooms,Return to map, Exit museum} 
ETS5: {Select adjacent room, Select artwork, Return to map, Exit museum} 
ETS6: {Show artwork info, Return to room, Return to map, Exit museum} 
 

By applying the heuristics we may find for example that ETS2 and ETS3 
differ by only one element: applying H1 they could be unified into 
PS1={Show museum map, Select room, Exit Museum}. Also, ETS4 and 
ETS5 share most elements: H3 can be applied to obtain PS2={Select adja-
cent room, Select artwork, Show Room Artworks & Adjacent Rooms, Return 
to map, Exit museum}. 

 
For example,  the presentation structure then obtained for PS2 is: 
O (Show Room Artworks & Adjacent Rooms, G (Select adjacent room, 

Select artwork)) R Return to map R Exit museum 
This is because the Ordering operator highlights the information transfer 

(specified by the []>> operator) between the Show Room Artworks & Adja-
cent Rooms and both Select adjacent room and Select artwork tasks (which 
are grouped together because of the choice “[]” operator). Each task is in 
turn put in relation to Return to map and Exit museum because they both ap-
pear at the right of a disabling operator ([>). In the same way, we can iden-
tify the abstract presentation associated to PS1 which is: O(Show museum 
map, Select room) R Exit Museum  

 
Regarding the transitions, we can see, for example, that PS1 has two 

transition tasks: Select Room and the task Exit Museum. To express that via 
the transition task Select room the abstract interface passes from PS1 to PS2 
we can use the following rule: 
<presentation_set PS1 /presentation_set ><behaviour><rule> 
<transition_task Select room /transition_task>  <next_PS PS2 /next_PS>    

</rule></behavior> 



 Paternò, Santoro 
 

In addition, we have to map each task into a suitable interactor, by con-
sidering relevant dimensions specified in the task model. For example with 
regard to a selection task (as Select adjacent room task) we identify the type 
of selection (single/multiple), the type of manipulated objects (boo-
lean/quantitative/text, etc) and the cardinality (low/medium/high) of the 
dataset from which the selection should be performed, as relevant dimen-
sions. Once such attributes have been identified, we define some rules to in-
dicate in which case a widget is more appropriate than another one depend-
ing on the different values that each attribute assumes and on the specific 
platform and/or device considered. For example, as the Select adjacent room 
task is single selection task managing spatial information and the set of ma-
nipulated objects has a low cardinality, the interaction technique to be pro-
vided must allow a choice of elements by providing an interactive map. 

A possible implementation for the presentation corresponding to PS2 is 
shown in Figure 12, supposed that the current room is about Roman Archae-
ology.  

 
  

8. CONCLUSIONS 

In this paper we have described a method for designing multi-device, no-
madic applications starting from their task model and using a number of 
transformations in the design cycle to obtain final applications able to effec-

Figure 12: One presentation of the PDA user interface



 
 
tively support the users’ activities through various devices accessed in dif-
ferent contexts. The application of the method helps maintain a high-level of 
consistency across the multiple user interfaces developed.  
We are developing a tool, TERESA (Transformation Environment for inteR-
activE Systems representAtions), whose aim is to provide a complete semi-
automatic environment supporting the presented method and transforma-
tions.  Particular attention will be paid to design a high-level control panel 
for designers so that they can focus on main design aspects and choices 
through effective representations without even knowing the basic underlying 
mechanisms and concepts (such as enabled task sets) that support the possi-
ble transformations. 
This work has been supported by the CAMELEON IST project 
http://giove.cnuce.cnr.it/cameleon.html. We thank the European Commis-
sion for the support and project colleagues for useful discussions on the top-
ics of the paper. 

REFERENCES 

Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J., 1999. UIML: An Ap-
pliance-Independent XML User Interface Language, Proceedings of the 8th WWW con-
ference. 

Beyer, H., & Holtzblatt, K., 1998. Contextual Design: Defining Customer Centred Systems. 
San Francisco: Morgan Kaufman.  

Calvary, G., Coutaz, J., Thevenin, D., 2001. A Unifying Reference Framework for the Devel-
opment of Plastic User Interfaces, Proceedings of EHCI 2001, Springer Verlag. 

Einsenstein, J., Vanderdonckt, J., Puerta, A., 2001. Applying Model-Based Techniques to the 
Development of UIs for Mobile Computers, Proceedings of the Fifth International Confer-
ence on Intelligent User Interfaces (IUI ’01), ACM Press.  

Johnson, P., Wilson, S., Markopoulos, P., Pycok, J., 1993. ADEPT - Advanced Design Envi-
ronment for Prototyping with Task Models, Proceedings of InterCHI'93, Amsterdam, The 
Netherlands, pp 56-57. 

Mullet, K., Sano, D., 1995. Designing Visual Interfaces. Prentice Hall. 
Myers, B., Hudson, S., Pausch, R., 2000. Past, Present, Future of User Interface Tools. Trans-

actions on Computer-Human Interaction, ACM, 7(1), 3-28. 
Olsen, D., 1998. Interacting in Chaos, Keynote address. Proceedings of IUI'98, San Francisco, 

pp.97-100. 
Paternò, F., 1999. Model-based Design and Evaluation of Interactive Applications, Springer 

Verlag. 
Paternò, F., Leonardi, A., 1994. A Semantics-based Approach to the Design and Implementa-

tion of Interaction Objects, Computer Graphics Forum, Blackwell Publisher, Vol.13, N.3, 
195-204. 

Puerta, A.R., 1997. A Model-Based Interface Development Environment, IEEE Software, 
July/August 1997, 40-47. 

Sukaviriya, P.N., Foley, J.D., and Griffith, T., 1993. A second generation user interface de-
sign environment: The model and the runtime architecture, Proceedings of INTERCHI 
’93, Amsterdam. ACM Press, New York, NY, pp.375–382. 

Szekely, P., Luo, P., and Neches, R., 1993. Beyond interface builders: Model-based interface 
tools, Proceedings of INTERCHI ’93. ACM Press, New York, NY, pp.383–390. 



 Paternò, Santoro 
 
Thevenin, D., Coutaz, J., 1999. Plasticity of User Interfaces: Framework and Research 

Agenda, Proceedings of Interact ‘99, Edinburgh, A. Sasse & C. Johnson Eds, IFIP IOS 
Press Publ., pp.110-117. 

Vanderdonckt, J., Bodart, F., 1993. Encapsulating Knowledge For Intelligent Automatic In-
teraction Objects Selection, Proceedings of InterCHI'93, pp 424-429. 


