
Flexible Interface Migration
Renata Bandelloni, Fabio Paternò

ISTI-CNR, via G.Moruzzi 1,
56100 Pisa, Italy

renata.bandelloni, fabio.paterno @isti.cnr.it

ABSTRACT
The goal of this work is to provide users immersed in a
multi-platform environment with the possibility of
interacting with an application while freely moving from
one device to another. We describe the solution that we
have developed for a service to support platform-aware
runtime migration for Web applications. This allows users
interacting with an application to change device and
continue their interaction from the same point. The service
performs the migration of the application taking into
account its runtime state and adapting the application
interface to the features of the target platforms. The service
is optimized for applications developed through a model-
based, multiple-level approach. The intelligence of the
adaptive interfaces resides in the migration server, which
adapts data collected at runtime from their original format
to the format best fitting the features of the target platform.
We also indicate how it is possible to extend this result in
order to support partial migration and synergistic access, by
which a part of the user interface is kept on one device
during runtime and the remaining part is moved to another
with different characteristics.

Categories and Subject Descriptors
H.5 INFORMATION INTERFACES AND
PRESENTATION

I2.2 Automatic Programming:
Program Transformation.

General Terms
Design, Experimentation, Security, Human Factors.

Keywords
Migratory interfaces, Adaptive interfaces, Multi-platform
applications, Remote control.

INTRODUCTION
Nowadays, everyday life is becoming a multi-platform
environment where people are surrounded by different
types of devices through which they can connect to the
Internet in different ways. Most of them are mobile and
personal devices carried by the user who can move around
different environments populated by various other
platforms. This kind of scenario raises the need to find a
way for the user to deploy his personal devices to get
connected and exchange information with the other
platforms that may be in the surroundings. These
considerations lead to the idea of migrating interfaces
among different platforms. A user browsing the net with a
PDA touch screen or a mobile phone keypad, would be
more comfortable using the mouse and keyboard of a
stationary PC. Conversely, a user may be entering private
data through a stationary PC and wish for the greater
privacy afforded by a personal device. Another interesting
case is when the user is interacting with a multimedia
application, say a PDA, browsing through images and
videos. Both power consumption and the reduced screen
size of the device would make it hard to fully enjoy the
visualisation of such content. It would be much more
appealing to keep interacting with the PDA for the control
operations and watch the videos displayed on a big wall-
sized screen by just pressing a button.
The short scenarios introduced exemplify the need for a
multi-platform migration service, allowing a user to
interact with an application through different devices.
There are two main issues concerning this kind of service.
Firstly, the diversity in features of the platforms involved in
migration, such as different screen size, interaction
facilities, processing and power supply, can make an
application developed for a desktop unsuitable for a PDA
and vice versa. Thus, an application cannot migrate as is
from one device to another, and needs an intelligent engine
in order to adapt its interface to the different features of the
target platform. The second issue concerns interaction
continuity. Users who want the application to migrate, do
not want to have to restart the application on the new
device; they want to continue their interaction from the
same point where they left off, without having to re-enter
the same data and go through the same long series of links
to get to the page they were visiting on the previous device
[13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

IUI 04, January 13 16, 2004, Madeira, Funchal, Portugal.

Copyright 2004 ACM 1-58113-815-6/04/0001 $5.00.

Two main kinds of information are relevant in performing
migration: static information referring to the device
features, and runtime information that refers to the state of
the migrating application, which can be summarised by the
history of user interactions with the application, including
visited pages, submitted data and results of previous data
processing.
There are several techniques for migrating user interfaces
to different devices, in particular to small screens, and most
of them rely on size reduction and data summarisation [5],
with the risk of making the application unusable because
objects on the page are difficult to recognise. Herein, we
focus on interaction continuity and device adaptation at
runtime that takes into account usability principles. We
consider different platform-specific versions of the same
application, starting with a general task model [10] from
which we generate the actual application by means of the
TERESA tool [6]. This tool produces a description of the
pages and the interactions that they support at different
abstraction levels. Runtime data on the state of the
application for which migration is required will be
collected locally from the platform requesting migration.
This information concerns elements selected and data
entered. It is transmitted to the server in order to recreate
the corresponding state in the application for the target
device. In this paper, we moreover describe the main
features of the prototype service implementing the
framework which was introduced in [1]. The prototype was
first designed to support total migration, and has been
extended to support partial migration, whereby the user can
keep the control part of the application on the original
device while migrating the display content part onto
another.
We first discuss related work and introduce the TERESA
approach to design and development of multi-platform user
interfaces. Then, we move on to discuss the possible cases
that should be considered when migrating interfaces
between different interaction platforms and present our
solution to these issues. Finally, we discuss the
development of the partial migration module, considering
the main issues that have to be tackled for this purpose. We
outline the most critical aspects concerning migration,
focusing on the steps required to add partial migration
capabilities to our system. We describe how to split the
migrating application into several parts, basically, the
control and visualisation parts, performing a semantic
analysis of the application model in order to attain partial
migration of the application. In essence, partial migration
allows one platform to be the controller for what happens
on another. The prototype confirmed the potential of the
model-based approach and provides insight into the
possibility of building a more enhanced service.

RELATED WORK
In recent years there has been an increasing interest in
application migration in the area of ubiquitous computing
that considers users immersed in multi-platform
environments. A good example of multiple device
interaction is shown in [3], where a system allowing a Web
page to be seen contemporarily by more than one display is
described. Different kinds of clients are defined, able to
download, upload or both, the page shown on a screen.
The system addresses issues concerning the movement of
Web content across several types of displays, but no
adaptation to the different features of the client platforms
and displays involved is performed.

A more general framework for migratory applications is
presented in [2]. In this work the main issue is platform
adaptivity. Migration is intended both as total migration of
the application interface and as splitting of the interface
into several parts to be spread over different platforms. The
framework does not pose any limitation on the kind of
platform, screen, operating system that can be addressed.
The generality of the cases considered causes the resulting
architecture to be extremely complex.

The display features of heterogeneous devices may be very
different because their interaction facilities may vary as
well, influencing the usability of the applications. Work at
Nokia Research [4] has shown how different features of the
interaction platforms can influence Web applications
usability. Results proved that designing usable applications
for mobile phones requires different criteria than the ones
needed by wider screen device. One of the main goal of our
migration service is to keep usability features of
applications. Thus, the application cannot migrate as it is
from one device to another, and must be adapted at
runtime, taking into account the diversity of the involved
platforms. Techniques used in adapting user interfaces to
different devices, in particular to small screens rely on size
reduction and data summarization as it is shown in [5].
Such an approach raises the risk to make the application
unusable because objects on the page become difficult to
recognize. We want to overcome this kind of problem
adapting interfaces to different platforms, taking into
account the effects on the usability of the application.

While in the past model-based approaches have mainly
focused on the design of desktop applications (see for
example [12] [14]) in this work we want to exploit their
potential to address multi-device migratory interfaces.

A semantic analysis of the abstract description of the
application [11] allows us to associate elements in the
actual interface with their meaning, hence elaborating the
best way to present them depending on the current
platform. Beside interface adaptivity, interaction continuity
has to be addressed too. The main aspects concerning this
problem are discussed in [13]. The system described allows

freezing Internet browser sessions and retrieve them in a
second time, from another device. The runtime state of the
application is preserved and retrieved when the user asks
to access the application previously stopped. This sort of
migration is based on a stop and go paradigm and is not
performed on the fly. In any case, the capture of the session
data is an important issue in our work too, what we want to
add is platform-dependent adaptivity that is not addressed
in the work.

All previously cited works concern the total migration
approach. In our vision of a future user interacting with an
application through multiple devices, a partial migration
framework can be useful as well. This will allow the user to
spread the application interface onto several devices, one of
which will be used to control all the others. Our approach
differs from the remote control style of the Pebbles
Slideshow commander [7] that allows a user to control a
power point presentation running on a desktop PC from a
PDA. The application is very specific and the system
cannot be applied to any other kind of migration.

Our approach also differs from the one presented in [8]. In
this case a PDA is used as an actual remote controller for
various types of home devices, such as video recorders,
stereo systems, and so on. We are addressing applications
that can run on many devices and allow them to migrate
from one platform to another supporting adaptation, while
in [8] the application can run only on the PDA that adapts
its user interface to the controlled device.

DESIGN OF MULTI-DEVICE INTERFACES
TERESA is a transformation-based environment
(http://giove.cnuce.cnr.it/teresa.html) designed and
developed at the HCI Group of I.S.T.I.-C.N.R. It is
intended to provide a complete semi-automatic
environment supporting a number of transformations useful
for designers to build and analyze their design at different
abstraction levels and consequently generates the concrete
user interface for a specific type of platform. The
abstraction levels considered are: the task model, where the
logical activities to support are identified; the abstract user
interface, composed of interaction objects [11] classified
in terms of their semantics still independent from the actual
implementation; the concrete user interface, and the actual
corresponding code. The main transformations supported in
TERESA are:

Presentation Task Sets and Transitions Generation.
From the specification of a task model [9] it is possible to
obtain the set of tasks, which are enabled over the same
period of time according to the constraints indicated in
the model. Such sets, depending on the designer s
application of a number of heuristics supported by the
tool, might be grouped together into a number of

Presentation Task Sets (PTSs) and related Transitions
among the various PTSs.

From Task Model-related Information to the Abstract
User Interface. Both the task model specification and
PTSs are the input for the transformation generating the
associated abstract user interface, which will be described
in terms of both its static structure (the presentation
part, which is the set of interaction techniques perceivable
by the user at a given time) and dynamic behaviour (the
dialogue part, which indicates what interactions trigger

a change of presentation and what the next presentation
is). The structure of the presentation is defined by
elementary interactors characterized in terms of the tasks
they support, and their composition operators. Such
operators are classified according to the communication
goals to achieve: a) Grouping: indicates a set of interface
elements logically connected to each other; b) Relation:
highlights a one-to-many relation among some elements,
one element has some effects on a set of elements; c)
Ordering: some kind of ordering among a set of elements
can be highlighted; d) Hierarchy: different levels of
importance can be defined among a set of elements.
There is also the option to automatically generate the
abstract UI for the target platform starting with the
currently loaded (single-platform) task model, and using
a number of default configuration settings.

From the Abstract User Interface to the User Interface
for the specific platform. This transformation starts with
the abstract user interface, it is possible to move into the
related concrete user interface for the specific interaction
platform selected. A number of parameters related to the
customization of the concrete user interface are made
available to the designer in order to obtain the concrete
interface. Lastly, the tool generates the code according to
the type of platform selected from the concrete user
interface description. Currently it generates code in
XHTML, XHTML Mobile Profile and VoiceXML.

RUNTIME MIGRATION ANALYSIS
Different types of runtime migration can be identified,
along with different levels of complexity for each one of
them:

Total Migration: the client interface migrates totally
from a device to the other.
Partial Migration: the client interface is divided into
two parts, one for user interaction (control part) and
one for information presentation (visualization part).
The control part remains on one device, while the
presentation one migrates to the other device.
Mixed Migration: the client interface is split into
several parts, concerning both control and presentation

and different parts are distributed over two or more
devices.

The first version of the service we have developed focuses
on Total Migration, with the goal to support a runtime
migration that takes into account the differences between
the two platforms involved. When we migrate an interface
from a platform to another one, the runtime support first
retrieves the corresponding presentation, hence identifies
the closest presentation in the target platform and the
associated target page. The difference between
presentations in different platforms is calculated in terms of
the number of logical tasks supported. A task can be
supported through different interaction techniques.
However, the logical meaning of the task is still the same.
Taking into account interactive applications developed by
means of TERESA we can identify the following situations
concerning the runtime mapping of a presentation from
source onto target platform:

One to One. The source presentation corresponds to
one target presentation. In this case the target page to
be loaded on target device can be immediately
identified through a one by one mapping. The two
presentations can differ in the number of supported
tasks.
One to Many. The source presentation corresponds to
multiple target presentations, among which the tasks
set of the source presentation are spread. In this case
the target presentation is identified by computing the
one having the highest number of tasks in common
with the source one. In case that more than one target
presentation has the same similarity degree according
to this criterion, it is chosen the one supporting the task
associated with the last concrete object through which
the user interacted with the application on the source
side.
Many to One. Multiple presentations for the source
platform correspond to one presentation in the target
platform. In this case the migrating task set will
correspond to part of the task set supported by one of
the target presentations.

The abstract user interface produced by TERESA also
includes information that can be deployed to design the
partial migration module. This will be discussed in the
section dedicated to partial migration.

TOTAL MIGRATION SERVICE
Supporting many platforms means making use of a wide
quantity of static data concerning the application features
of each platform. The implementation of a migration
engine residing only on client side, in a peer-to-peer style,
causes a set of data and processing too heavy for very small
devices. For this reason we have chosen a solution based

on the service provided by a server machine. The server
works both as a Web server making accessible the
platform-specific application implementations and as a
migration server managing context information to support
migration requests. The platform that wants to access the
migration service, only has to load the migration client
directly from the server. The migration client allows the
user to enable or disable the possibility of receiving
incoming applications and migrating Web applications.
References to all platforms, which enable the reception of
incoming applications, are stored in the server.

The user interface for the control service makes it possible
to access the list of migratory applications available and the
list of target systems that are currently enabled to the
migratory service. It is also possible to request a dynamic
update of such information and trigger the migration of the
current application. The service offers support for
interfaces developed by the TERESA tool and residing on
the server machine. When a platform asks for migration,
the request sent by the migration client running on the
source platform reaches the migration server, which will
exploit both runtime and static context data to perform the
presentation mapping process as described ahead in this
section. The corresponding page and its runtime context for
the target device will be finally sent to the migration client
in the target platform that will open a local browser
window allowing users to continue their interaction (the
sequence of functionalities to perform is indicated in Figure
1).

Figure 1: The Migration Process.

Our migration service is designed to meet three main
requirements, device awareness, interaction continuity and
support of usability criteria. To keep interaction continuity
it is necessary to collect information concerning the
runtime state of the migrating application, to activate the

application on the target device, from the same point where
it left.
Since migration will involve different types of platforms,
runtime state will not be migrated as it is. Data concerning
the platform type will be used to adapt the runtime data
collected on the source platform to the target one. Hence
we have implemented a mapping algorithm that make use
of both runtime state and involved platform data, to load on
the target the application version fitting its features, and
keeping state consistency with the state the application had
at migration time.

Information concerning the platform requesting migration
and the state of the application running on it is collected
and processed in order to activate the application on the
target platform without losing interaction continuity. Since
the number of presentations and the tasks supported by the
various platforms may be different, it is not possible to
create a one-to-one correspondence between presentations
for different platforms. Source and target platform versions
are generated by TERESA separately, using the
information contained in the two corresponding task
models. One important issue is how to identify the
presentation for the target platform corresponding to the
one active on the platform requesting migration, while
maintaining the state of its interaction objects. To this aim,
the run-time state of the application, consisting of the
visualised page and the state of its objects, is deployed.
First, the abstract presentation corresponding to the
migrating page is retrieved. At this point the corresponding
task set is retrieved too. The page to be visualised on the
target device will be identified using the inverse process:
from the task set to support, the tool identifies the most
similar abstract presentation and then the corresponding
page in the application version for the target platform (see
Figure 2).

Figure 2: Runtime Presentation Mapping.

Similarity is calculated in terms of supported tasks, the
more similar the tasks associated to the two presentations
are, the more similar the presentations will be.
Presentation similarity is the basic criterion to be
considered, but under particular conditions it may not be
enough. When the migrating presentation supports a task
set that is associated with multiple presentations in the
target version, each of which supports the same number of
tasks, then the similarity will be the same for each potential
target presentation. Thus, a further criterion is used to
decide which target presentation to activate. To this end, we
identify the target presentation supporting the task
associated with the interaction object last modified by the
user, since the user is most likely to continue interaction
from that point.
Once the target presentation has been identified, it is
necessary to calculate the state of the objects contained in
the corresponding page, which will be communicated to the
target device along with its URL. For this purpose, data
referring to the runtime state of the application will be
associated to the corresponding tasks and adapted to the
object implementation for the target device, while data
concerning tasks not supported by the target device, will be
ignored. The objects on the target page, supporting tasks
that where not available on the source one, will assume
their default state.
One potential issue for migrating interfaces to a target
device where the same task is supported by means of
different interaction objects is whether the change of user
interface can disorient the users. Since our migration
service is designed to address TERESA-generated
interfaces, this potential problem is considered because the

tool takes into account the tasks that the application should
support and for each of them only the interaction
techniques suitable for their support through the current
platform are used for the implementation.

PARTIAL MIGRATION
The total migration service basically allows the user to
change the device deployed to interact with an application.
In this operation the intelligent core of the system is in
charge of keeping interaction continuity and supports
interface adaptivity to different platforms. What we are
addressing with partial migration is the ability to move
from interacting with an application through a single
platform, to controlling one platform from another. This
allows users to comfortably control, for example, videos
displayed on a wall-sized screen from their handheld PDA,
or projecting a presentation stored in a personal device like
a PDA to the desktop-controlled maxi video screen in a
conference hall, while maintaining control on the personal
device. Partial migration requires more complex processing
than total migration.

The interaction continuity and platform awareness criteria
that we adopted in the prototype version of the total
migration service have been deployed in partial migration
as well. The novel and most difficult issue to consider is
the splitting of the application into its visualisation and
control parts.

Figure 3:

Sample Application.

Figure 4:

Control Part on PDA.

Figure 3 shows a sample PDA application, to which partial
migration towards a desktop PC is applied. Figure 4
illustrates the result on the PDA, where only the control
part remains and the objects on the page have been

rearranged in order to provide a pleasant and usable
interface. The user can now select images using the
handheld device and look at them on the desktop PC as
shown in Figure 5. In this case, we have partial migration
from the device maintaining the control part to the one that
will visualise the result of the user interactions; the service
is designed to support the inverse case too.

As for total migration, applying partial migration to every
possible Web page is not simple. This necessarily calls for
restricting the range of applications to take into
consideration. Based on our total migration prototype
experience, we have decided to continue considering
applications developed with the TERESA tool.

Even with this approach, which provides a useful logical
description of pages, the range of cases to be considered is
still wide. In particular, it is not always possible to split the
application into exactly two parts. Problems arise when the
presentation resulting from a control action contains some
additional control objects, and partial migration could thus
lead to an unusable and confusing split interface, with
control objects on both the source and target platform.

Analysing the different possibilities that may arise, we have
identified two fundamental cases we consider well-suited
for partial migration:

Case1(page splitting): the migratable page contains
both control objects and the result of control actions.
Partial migration will be performed by loading a page
containing only the control objects of the migrating page
onto the source platform. The target platform, on the other
hand, will show the content part, which will disappear
from the source, where only control objects are to remain.
Any time the user selects a control object to modify the
visualization part, then the result of the action will be
shown on the target and no longer together with the
controls on the source.

Case2(remote content control): the page contains
control objects that, when selected, cause the loading of a
new page on the device. When partial migration is
performed, the source still shows the page with control
objects and when the user performs an interaction, the
referred page is loaded on the target in a suitably adapted
version. The user can continue selecting new pages from
the source device and the result of the actions will be
shown on the target.

Figure 5: Visualisation Part on Desktop PC.

PARTIAL MIGRATION SOLUTION
The logical description of the application produced by
TERESA provides more information than that used for total
migration. Such information is fundamental to help decide
which objects in the page must be considered the control
part and which make up the visualisation part. In the first
case, which is the splitting of the interface, a first analysis
is based on the types of objects contained in the page. The
description of a presentation is made in terms of two types
of interactors: Interaction objects, for example objects
supporting selection, editing, control, ; and OnlyOutput,
for example text and graphic presentation objects. This
first simple classification is not enough to decide how to
actually split the interface for partial migration. Thus,
control objects, which belong to the Interaction interactors,
are classified into two types: activators and navigators.
Activators are control objects used to generate some events
that cause changes in the page containing them, while
navigators are control objects that cause a new page to be
loaded. Secondly, OnlyOutput and Interaction interactors
can be strictly connected and dividing them may affect the
logic behind the whole application. For example, an
OnlyOutput interactor could contain the description of
some Interaction interactor and they should thus be kept
together.

Such relations are also described in the abstract user
interface by means of the composition operators Ordering,
Grouping, Hierarchy and Relation, already discussed in the
section dedicated to the logical description of user
interfaces. The strongest relation is the one concerning

objects affected by Grouping, this operator applies to
objects intended for tightly related tasks, hence they must
not be separated. Relation is a candidate for splitting
because it is often composed of a control part and
controlled ones. The Hierarchy operator (H) is an indicator
of the importance of the elements contained in the page. It
identifies the tasks that must be highlighted in the actual
interface, in effect giving them a sort of higher visual
priority over the other elements of the page. In the process
of page splitting, the element having the highest level for
the H operator is considered a possible candidate for
display in the larger screen. Hence, the H operator will be
split in the event that the set of arguments can be divided
into two parts: the first one contains the main visualization
part and the second only interaction objects.

The Ordering operator (O) can also identify a potential
splitting point. It relates to elements that are correlated by
some kind of order, such as temporal, and can apply to both
visualization and control elements. This is the case in which
performing some operations like making a selection, causes
some other data to be visualised. In such a situation a set of
interaction objects has to be manipulated in order to change
the content of some other application objects.

As the O operator arguments are mostly interaction objects,
they will usually precede all application objects. From this
consideration we will consider O operator splittable only in
case the set of its argument can be divided into two parts,
the first of which contains only interaction objects and the
second one containing only application objects.

Figure 6 outlines the logical interactions involved in a
sample application and how operators compose them. In
particular, we have PickImage1, PickImage2, PickImage3,
BackHome, PreviousImage, NextImage as Interaction
interactors and ShowMainInfo, being an OnlyOuput
interactor.

Figure 6: Operators and Tasks.

Using G to identify Grouping and R for Relation, the
compositions of operators applied to the abstract interactors
of the sample is:

R(ShowMainInfo,G(G(BackHome,G(PreviousImage,
NextImage)), G(PickImage1, PickImage2, PickImage3)).

Indeed, in the interface we can see that NextImage and
PreviousImage are grouped through lateral adjacency, then
they are grouped with Home, as they are kept in the same
line. The result is grouped by vertical adjacency with the
three image selections (which are once again grouped
through adjacency). All of them are related to
ShowMainInfo because if one of them is selected then the
main information presented changes. The automatic
identification of this potential split point allows the
migration service to define how to split the user interface
into two parts presented simultaneously on two different
devices.

When considering Case2, the page loaded on the current
control platform remains as is, and the new pages selected
are loaded one by one on the target platform. The issue
here is how to automatically distinguish the two cases. To
this end, we use information in the abstract interface where
the control interactors are classified depending on whether
they correspond to elements that generate new content on
the current page or cause the loading of a different page.
The two cases are distinguished on the basis of the type of
control interactors contained. When all the control
interactors on a page support navigation, we are dealing
with Case2.

If the source page contains control interactors for accessing
content and navigation, we use a mixed approach. The
splitting of the page is performed, and if the user interacts
with a navigation interactor on the control platform, then
the visualisation page is sent to the target device.

CONCLUSION AND FUTURE WORK
We have presented a solution to support total and partial
interface migration for applications developed using a
model-based approach. The semantic information produced
in the development process is used for building an efficient
migration service. The total migration framework deploys
only part of the information contained in the abstract
description of the user interface. Careful analysis of the
description of control objects can be used in order to
support partial migration able to split a presentation into a
control part and a presentation part.

Web interfaces not developed with TERESA can also
migrate, but they do not benefit from the adaptation to the
new platform, since it is not possible to retrieve the logical
description required by the migration server. A possible
approach to overcome the limitation could be to apply a
reverse engineering tool calculating the logical description
of the page at runtime. Future work will also be dedicated
to extending the partial migration cases considered and to
engineer the implementation of run-time support. We also
plan to consider a further solution where the abstractions
are used at run-time to track and support run-time
operations for the migration service and other
functionalities such as context-dependent help.

ACKNOWLEDGMENTS
We gratefully acknowledge support from the IST EU R&D
CAMELEON project (http://giove.cnuce.cnr.it/
cameleon.html) and would like to thank our colleagues in
the project for useful discussions.

REFERENCES
1. Bandelloni, R., and Paternò, F. Platform Awareness in

Dynamic Web User Interfaces Migration. Proceedings
Mobile HCI 2003, LNCS 2795, Springer Verlag, 2003,
pp.440-445.

2. Coutaz, J., Lachenal, C., Dupuy-Chessa, S. Ontology
for Multisurface Interaction. Proceedings INTERACT
2003. pp.447-453, IOS Press. Zurich, September 2003.

3. Johanson, B., Ponnekanti, S., Sengupta, C., and Fox, A.
Multibrowsing: Moving Web Content Across Multiple
Displays. In proceedings of UBICOMP 2001. LNCS
2201, Springer Verlag. pp 346-353.

4. Kaikkonen, A., and Roto, V. Navigating in a Mobile
XHTML application. In Proceedings ACM CHI 2003.
Ft. Lauderdale, Florida, 2003. Vol.5, pp. 329-336.

5. MacKey, B. The gateway: A Navigation Technique for
Migrating to Small Screens. Doctoral Consortium, CHI
2003. Ft. Lauderdale, Florida, 2003. pp. 684-685.

6. Mori, G., Paternò, F., and Santoro, C. Tool support for
designing nomadic applications. In Proceedings of IUI
2003. ACM Press, 2003. pp. 141 148.

7. Myers, B.A. Using Hand-Held Devices and PCs
Together. Communications of the ACM. Volume 44,
Issue 11. November, 2001. pp. 34 - 41

8. Nichols, J., Myers, B.A., Higgins, M., Hughes, J.,
Harris, T.K., Rosenfeld, R., Pignol, M. Generating
remote control interfaces for complex appliances.
Proceedings ACM UIST 02. Paris. Vol.4, pp.161-170.

9. Paternò, F. Model-Based Design and Evaluation of
Interactive Application. Springer Verlag, ISBN 1-
85233-155-0, 1999.

10. Paternò, F., Santoro, C. A Unified Method for Designing
Interactive Systems Adaptable to Mobile and Stationary
Platforms. Interacting with Computers, Vol.15, N.3, pp
347-364, Elsevier, 2003.

11. Paternò, F., Leonardi, A. A Semantics-based Approach
to the Design and Implementation of Interaction
Objects. Computer Graphics Forum, Blackwell
Publisher, Vol.13, N.3, pp.195-204, 1994.

12. Puerta, A., Eisenstein, J. Towards a General
Computational Framework for Model-based Interface
Development Systems. Proceedings ACM IUI 99,
pp.171-178.

13. Song, H., Chu, H., Kurakake, S. Browser Session
Preservation and Migration. In Poster Session of
WWW 2002, Hawai, USA. 7-11. May, 2002. pp. 2.

14. Vanderdonckt, J., Bodart, F. Encapsulating Knowledge
for Intelligent Automatic Interaction Objects Selection,.
In ACM Proc. of INTERCHI'93, ACM Press, New
York, 1993, pp. 424-429.

