
Model-Based Approaches to Reengineering Web Pages

Laurent Bouillon, Jean Vanderdonckt
Université catholique de Louvain

Belgian Lab. of Computer-Human Interaction
IAG-ISYS, Place des Doyens, 1

B-1348 Louvain-la-Neuve, Belgium
+32-10/47.{8349, 8525}

{bouillon, vanderdonckt}@isys.ucl.ac.be

Jacob Eisenstein
University of Southern California
Department of Computer Science

941 W. 37th Place
Los Angeles, CA 90089-0781 USA

+1 213 740 4496
jacob@isi.edu

ABSTRACT
Today's web sites are increasingly being accessed through a
wide variety of computing platforms ranging from the
workstation to a laptop and through multiple access devices
such as Internet Screen Phone, TV Set Top box, PDA, and
cellular phones. Web sites are rarely de-signed and devel-
oped to fit such a large variety of contexts of use as each
context (e.g., each computing platform, each device) has its
own set of constraints. This pa-per describes a model-based
approach for reengineering web pages into a presentation
and a dialog model stored with XIML, a model-based user-
interface specification language. These models are then
further exploited to reengineer other user interfaces either
for the same context of use (by changing presentation de-
sign options) or for different contexts of use (by changing
properties of computing platform model). For this purpose,
three key elements of the presentation model (i.e. presenta-
tion units, logical windows, and abstract interaction objects)
and two key elements of the dialog model (i.e., navigational
structure and transition) were defined.

Keywords
Model-based user-interfaces, reengineering, knowledge
bases, web sites, presentation model.

INTRODUCTION
The growing interest in web site design, development, and
evaluation, as well as the underlying cost, has increased the
demand for engineering methods that are more structured
than traditional ad hoc development or “rush to code” ap-
proaches.
It is obviously desirable that any web site should be made
accessible from the widest range of computing platforms,
including the variation of browsers on each platform, for
the widest range of users. The rapid evolution of the HTML
language itself exacerbated the need for backward compati-
bility, for instance, from version 2.0 to 4.0. Moreover, the
technological push of newly marketed access devices—such
as PDAs and WAP-enabled telephones—has generated a
new need to access the same web site, from different access
devices. With the demand for Internet access increasing for
e-mail, shopping, electronic commerce, current events, and
quick information, the need for Internet-capable access de-

vices has extended beyond the professional desktop to the
home office, the other rooms of the house, and beyond.
This demand can only increase, as we will surely become
more dependent on the web for information.
To address these demands, ad hoc development is no longer
acceptable in terms of the cost and time required for soft-
ware engineering and maintenance. Forward engineering
[3] has been consequently considered as a good candidate
for producing quality web sites. For instance, model-based
approaches [22,23,26] can produce a user interface (UI) for
a web site by exploiting knowledge captured in various
models, such as the presentation and dialog models.
Forward engineering is said to be simple when one UI is
generated from the initial models; when many UIs are gen-
erated, it is said to be multiple. However, most existing web
sites have been developed without any model-based ap-
proaches, thus creating a need for reverse engineering to
generate the models, which can later be exploited by future
forward engineering, simple or multiple.
In this paper, we first report on what the assumptions are
for adopting a model-based approach for forward engi-
neering. Then, we describe a model-based approach for re-
verse engineering web pages implemented as an automatic
or mixed-initiative process in the VAQUITA software, with
an eye to applying forward engineering subsequently.
Reengineering methods are then considered to produce new
UIs for other contexts of use, thus creating a capability to
rapidly produce UIs for different computing platforms,
various access devices, etc.
As supporting all variations of contexts of use is very am-
bitious, we will focus on accommodating those features that
are most likely to vary across platforms. We will then com-
pare the above model-based approach with respect to re-
lated work and present some conclusions in a general
framework for UI reverse engineering of web pages. In this
framework, other forms of re-engineering will be situated
with respect to the approach we adopted. We will also in-
troduce the category of redesigning with respect to previ-
ously defined approaches.

mailto:vanderdonckt}@isys.ucl.ac.be

FORWARD ENGINEERING OF WEB PAGES
For many years, the research and development community
of model-based approaches has shown interest for forward
engineering [23,26] with many models (fig. 1):
� A domain model [4] defines the objects that a user can

view, access, and manipulate through a UI. In nature, it is
very similar to a data model but it is also intended to ex-
plicitly represent the attributes of objects and the rela-
tionships among the various domain objects (e.g., an en-
tity-relationship model or an object-oriented model).

� A presentation model [2,9,24,25] is a representation of
the visual, haptic, and auditory elements provided by a UI
to its users. For example, a presentation element might be
a window that contains additional elements such as wid-
gets that appear in that window. This model also includes
static presentation attributes, such as font styles and ori-
entation of button groups.

� A dialog model [8,19] defines the way in which the pres-
entation model interacts with the user. It represents the
actions that a user may initiate via the presentation ele-
ments and the reactions that the application communi-
cates via those same elements.

� An application model [22] captures some abstraction of
se-man-tic functions of the semantic core component
called by the UI and maintains connections with it. It
specifies services applications provided to the UI.

For almost a decade, models have been exploited to auto-
matically generate a UI in two ways (fig. 1) [26]:
1. At design time by exploiting passive models: models are

parsed to generate the UI code for a given computing
platform. The generation process ranges from completely
automatic (the designer does not see anything during this
process) to full mixed-initiative (where the system
prompts the designer for design options to decide, for

control parameters). The generated code is integrated
with the code of the semantic core component and com-
piled to obtain the intended application.

2. At run time by exploiting active models: the specifica-
tions contained in the models are scanned and interpreted
at run-time to obtain a running UI connected to the code
of the semantic core component. For instance, FUSE [8]
uses an attributed grammar to abstract a UI to execute the
specification contained in the models. Apart from being
executable at run-time, this approach is more suitable for
generating UIs depending on parameters that only be-
come known at run-time. The alternative is to attempt to
predict all alternatives at design-time and then generate a
UI that supports all these circumstances. But the resulting
code would be inefficient, more complex to produce, not
so compact. In some cases, it may be impossible to have
all UI alternatives contained into one single piece of
code.

Whether at design-time or at run-time, one or many models
are typically exploited to generate one UI for one applica-
tion. To generate many UIs for the same application and in
order to support user-centered design, the traditional model-
based approach has been extended to a task-based approach
(fig. 2) where two new models are introduced:
� A task model is a description of the task to be accom-

plished by the user of an application through the UI. In-
dividual elements in this model represent specific actions
that the user may undertake. Information regarding sub-
task ordering (e.g., sequence, unordered) as well as con-
ditions on task execution is also included.

� A user model represents the different types of users of an
application. It defines attributes, roles of users, and may
include information describing their preferences.

Scenario Interactive
application

Task
model

Domain
model

User
model

Semantic
core code

User inter-
face code

U
I I

nt
eg

ra
tio

n

Application
model

Data
model

Semantic core
component

Presentation
model

Dialog
model

User-task elicitation User interface modeling and generation

Application modeling and development

Interactive
application

Domain
model

Semantic
core code

User inter-
face code

U
I I

nt
eg

ra
tio

n

Application
model

Data
model

Semantic core
component

Presentation
model

Dialog
model

Domain modeling User interface modeling and generation

Application modeling and development

Fig. 1. Traditional model-based approach.

Fig. 2. Task-based approach.

REVERSE ENGINEERING OF WEB PAGES
Several environments today support forward engineering of
Web pages as presented in Section 2. For example, Allegro
Serve (http://allegroserve.sourceforge.net) is a web server
that can dynamically generate Web pages and web-enable
existing applications with a browser front-end. However, as
most existing Web sites were not built according to such an
approach, adopting a reverse engineering of these web
pages is a required preliminary step to further benefit from
any future forward engineering. The goal of reverse engi-
neering here is to recover both presentation and dialog
models of a set of web pages (fig. 3). The UI code should
be extracted from the global code and separated from the
code of the semantic core component. From this UI code,
presentation and dialog models need to be reverse engi-
neered. For this purpose, relevant abstractions need to be
defined for each of these two models.

Interactive
application

Semantic
core code

U
I E

xt
ra

ct
io

n

User inter-
face code

Presentation
model

Dialog
model

User interface reverse engineering

Fig. 3. Reverse engineering.

Abstractions for the Presentation Model
UI presentation of web pages can be abstracted using four
concepts, the hierarchy of which is depicted in fig. 4:
1. Concrete Interaction Object (CIO): this is a real object

belonging to the UI world that any user can see (e.g., text,
image, animation) or manipulate such as a push button, a
list box, a check box. A CIO is said to be simple if it can-
not be decomposed into smaller CIOs. A CIO is said to
be composite if it can be decomposed into smaller units.
Two categories are distinguished: presentation CIO,
which is any static CIO allowing no user interaction, and
control CIO, which support some interaction or UI con-
trol by the user.

2. Abstract Interaction Object (AIO): this consists of an ab-
straction of all CIOs from both presentation and behav-
ioral viewpoints that is independent of any given com-
puting platform. AIOs have been used success-fully for
both forward [8,9,20,24] and reverse engineering
[10,13,14]. Each AIO is here identified by a unique ge-
neric name (e.g., check box), general and particular ab-
stract attributes (e.g., height, width, color, states), abstract
events (e.g., value selection, mouse click), and abstract
primitive (e.g., Pr-EditBoxContent). By definition, an
AIO does not have any graphical appearance, but each
AIO is connected to 0, 1 or many CIOs having different
names and presentations in various computing platforms.
32 AIOs were described in a “is-a” hierarchy of classes
into a knowledge base [25].

3. Logical Window (LW): this root window can be consid-
ered either as a logical container for AIOs or as a physi-
cal window, a dialog box or a panel. Every window is it-
self a composite AIO as it is composed of other simple or
composite AIOs. All LWs are supposed to be physically
constrained by the user's screen. The three abstractions
that have been considered so far are quite related to ex-
isting presentation objects. However, none of the presen-
tation abstractions described thus far are closely related
to task aspects. The following abstraction is introduced
for this purpose.

4. Presentation Unit (PU): a PU is assumed to be the com-
plete presentation environment required for carrying out a
particular interactive task. Each PU can be decomposed
into one or many LWs, which may or may not be all dis-
played on the screen simultaneously. Each PU is com-
posed of at least one window called the basic window,
from which it is possible to navigate to the other win-
dows. For instance, a tabbed dialog box is here mapped
onto a PU, which is itself de-composed into LWs corre-
sponding to the dialog box appearances depending on the
active tab; conversely, a web form can be mapped onto a
composite AIO in a particular LW of a given PU.

Presentation Unit

Logical Window

Composite AIO

Simple AIO

Presentation AIO Control AIO

1-n 1-n

0-n

0-n

0-n

0-n

0-n0-n

is-a

is composed of

1-n 1-n

1-n 1-n

Fig. 4. Hierarchy of presentation concepts.

Abstractions for the Dialog Model
Web sites are typically developed within a graphical or
textual editor according to a page & link approach: the
presentation of a family of web pages is first designed and
the links are added as this design proceeds. The abstraction
level of these design concepts can be raised to more en-
compassing concepts of a transition and navigational struc-
ture. A transition is defined as any control capability ena-
bling users to move from a source LW to a target LW. It
consequently consists in a control AIO (e.g., an anchor, an
icon, a push button) allowing a directional control (e.g.,
unidirectional or bi-directional) between LWs with opera-
tions on these LWs: maximization, titling, minimization,
display with tiling technique, display with normal overlap-
ping technique, display with user-defined overlapping tech-
nique, display with system-defined overlapping technique,
or closing. A navigational structure applies any graph pat-
tern between LWs of a given PU of a given type.

Sequential navigation. This navigation structure enables a
user to move between LWs according to a pre-defined se-
quence. In this structure, unidirectional transition allows a
user to move from one LW to another (fig. 5), while bi-
directional transition allows a user to switch between a set
of LWs, these LWs being closed, restored or redisplayed.

Fig. 5. Unidirectional and bi-directional sequences.

Indexed navigation. This structure is aimed at providing a
regular index mechanism in which multiple target LWs are
suggested from one single source LW. Having unidirec-
tional transition prevents the user to come back to the
source LW, while bi-directional transition will (fig. 6).

PAGE

PAGE

Fig. 6. Unidirectional and bi-directional indexes.
Guided navigation. Guided navigation is similar to a
guided tour: a source LW suggests the user a first LW to
switch to, this first LW is connected to a second one, and
do forth to the last LW suggesting the user to come back to
the source LW. In some sense, this navigation is similar to a
sequential navigation where the dialog is closed. Unidirec-
tional transition only allows the user to move to the con-
nected LW one way, whereas bi-directional transition al-
lows a round trip (fig. 7).

PAGE

PAGE

Fig. 7. Unidirectional and bi-directional guided tours.
Mixed navigation. This navigation type groups two previ-
ously defined abstractions into a new one: a guided naviga-
tion is augmented by an index to combine navigation flexi-
bility provided by an index and guidance provided by a
guided tour. This type therefore allows a user to be guided
in a guided tour and leave the tour or reinitiate it at every
step (fig. 8).

PAGE

PAGE

Fig. 8. Unidirectional and bi-directional mixed tours.

Global navigation. This navigation type is considered to
be the most complete as it allows the user to move from any
LW to any other one. Bi-directional transitions are therefore
considered not useful as they reproduce the same transition
(fig. 9).

Fig. 9. Global navigation.
Using transition and navigation structures as basic concepts
not only raise the abstraction level with respect to the tradi-
tional page & link model, but also enables designers to ma-
nipulate entire navigation structures and to combine them in
a more logical way. Rather than modifying transition con-
trols on each LW, a collection of behaviorally-equivalent
transition controls is established and maintained across a
series of related LWs. Navigation structures can be defined
in isolation or directly combined by referring to a particular
LW inside their definition.
In fig. 10 for instance, the designer can first decide to have
a sequential navigation A across a family of LWs named A1
through A4. Any LW of this navigational structure can then
be a good candidate to form the source LW for any other
type of navigational structure. For example, the logical
window A3 can be designed as the source LW for an unidi-
rectional indexed navigation. Any combination of the basic
navigational structures can be imagined. However, some
observed structures do not exactly match these basic or
combined structures. In this case, the closest combination is
selected instead, thus introducing some modification in the
original navigation.

B1 B2 B3 B4

B

A1 A2 A3 A4
A

Fig. 10. Combining navigation structures.

REVERSE ENGINEERING ALGORITHM
Having defined abstractions relevant to presentation and
dialog models, we can exploit them to reverse engineer
these abstractions for a series of web pages. This process
basically consists in (i) downloading the HTML code of
Web pages of interest, (ii) extracting from their code the UI
part and separating it from the part belonging to the seman

tic core component, and (iii) submitting it to the static
analysis algorithm for reverse engineering depicted in fig.
11. Thanks to the HTML code accessibility, remote reverse
engineering of Web pages is permitted; in addition, the de-
sign of automated tools for reverse engineering should be
much easier for web pages than for compiled program code
in C or Pascal. The phases of this algorithm are now de-
tailed in the subsequent subsections as they are considered
in VAQUITA (http://www.isys.ucl.ac.be/bchi/research/vaqui
ta.htm), a tool that enables designers to reverse engineer a
web page into one or several presentation models. Cur-
rently, only the presentation model is reverse engineered.

Inclusion/exclusion of presentation elements
Initialization of the Web pages pool

Web pages pool empty?

Selection of an individual Web page

Identification of Concrete Interaction Objects

Transformation of Concrete Interaction Objects
into Abstract Interaction Objects

Selection of Logical Window

Hierarchy building for LWs and PUs

Update vectors of links and Web pages pool

Identification of links

Abstraction of links into Windows Transitions

Identification of Navigation Structures

Building
of
presentation
model

Building
of
dialog
model

yes

no

Fig. 11. Reverse engineering algorithm.
Initialization. To initiate the process, the designer specifies
whether she wants to reverse engineer a whole web site (by
providing the home page’s URL), any portion of a site (by
providing a starting URL and the depth level up to which
pages will be considered) or a series of web pages (by en-
tering their URLs locally and/or from the Web). A first pool
of candidate pages’ URLs is formed.
To allow more flexibility in the reverse engineering proc-
ess, the designer can include or exclude not only any
HTML tag or element, but also any attribute of each tag. To
avoid reparametrization, this setting canbe saved in a con-
figuration file for future usage.

Presentation modeling. An individual web page is first
selected in the pages’ pool and then submitted to identifica-
tion of CIOs. The basic idea of the algorithm is to identify
individual HTML elements, to map them onto relevant
AIO, while building a hierarchy of AIOs. The HTML code
of the web page is parsed to identify these HTML elements.
The mapping is based on a set of heuristics that depend on
the HTML element or tag analyzed. Examples of such heu-
ristics include:
� Each web page is mapped onto a LW in the selection of

LW phase. The <TITLE>, if any, is mapped onto the label
slot of this AIO. Any HTML element can be mapped to
one or many AIOs with one or many properties included.

� Heading levels (e.g., H1, H2, H3) are mapped onto re-
spective composite presentation AIOs and to some
structure in the progressively forming hierarchy. The text
provided within the <H>...</H> scope is mapped onto the
Label abstract attribute of the AIO.

� Each <FORM> tag is mapped onto a composite control
AIO. Multiple or embedded forms generate multiple
composite AIOs on corresponding hierarchy levels.
<TR>, <TD> tags denoting tables are treated similarly.

� Web page’s frames are mapped onto separate LWs as
they are themselves partial views on other pages.

� Static banners, icons, graphics, illustrations, and GIF files
are listed in the “images” category of a “Graphics” sim-
ple presentation AIO; animated GIFs or video are listed
in its “animation” category, while JPEG files are believed
to relate to the “photograph” category.

� Portions of text are equally treated like labels, with their
static properties being fed into the abstract attributes of
the AIO, e.g., the currently active BGCOLOR is mapped
onto BackGroundColor and TEXT is mapped onto Fore-
GroundColor. When text is subject to an anchor, an addi-
tional control AIO is created.

� HTML proprietary CIOs are mapped onto their corre-
sponding simple control AIOs. Examples include the
<SELECT> and <TEXTAREA> tags, and the TYPE at-
tribute of the <INPUT> tag. The NAME tag is mapped
onto an identification label for the related AIO. The con-
tent of the VALUE tag is mapped onto the abstract attrib-
ute DefaultValue and so forth.

Dialog modeling. To reverse engineer a dialog model and
finding out instances of transitions and navigational struc-
tures, a vector of links is created for each page according to
the following format:

V(URL)={list of intra-page links, list of extra-page links}
where each link has the form:

L = (AIO_name, target_URL, link_type, occurrence)
where AIO_name = identifier in the presentation model

of the AIO holding the link source considered
target_URL= URL of the page linked
link_type = (intra-page, extra-page, request)
occurrence = amount of same links in the page

http://www.isys.ucl.ac.be/bchi/research/vaquita.htm)
http://www.isys.ucl.ac.be/bchi/research/vaquita.htm)

Once any individual page has been processed regarding to
its own presentation model and regarding to its own vector
of links, this vector is parsed to update the pool of candi-
date web pages to analyze. In the identification of links, this
analysis exploits positive and negative filters defined in the
initialization. For example, all external links or all extra-
page links up to a certain depth level are omitted. The ana-
lyzed web page is then withdrawn from the pages’ pool.
The pool is examined to find a candidate recursively until
no candidate page still exists. After exhausting the whole
pages’ pool, the remainder of both dialog and presentation
models is reverse engineered. First, vectors of links that
have been built for the collection of web pages in consid-
eration are examined to identify LW transitions from each
pair of LWs. Transformation rules include:
� Any link with multiple occurrences within the same page

is reduced to a single link to avoid repetition.
� All links with multiple sources within the same page

(e.g., a textual link, a push button, an icon) to the same
target page are gathered. Depending on parameters, all
instances of such links can be kept or reduced to any par-
ticular type. For instance, links can be restricted to only
one occurrence of anchor and one occurrence of icon. In
this case, the presentation model can combine both AIOs
into a single one, of the “icon” type, whose label is the
anchor text. Again, positive and negative filters can
automatically expand or reduce the scope of AIOs in
concern, for example, considering only push buttons and
forgetting all other types of AIOs for links.

� Any one-way link is transformed into a unidirectional
transition. Depending on the link type, the operations on
the source and target LWs are specified:
1. When a link replaces one page by another, the transi-

tion will contain a “close” operation on the source LW
and a “maximize” operation on the target LW.

2. When a link just pops up another page, the transition
will contain only a “display with normal overlapping”
operation on the target LW.

3. When a link pops up another page in a constrained
window, the transition will contain a “display with
system-defined overlapping” on the target LW.

� Any pair of reciprocal links between two pages is trans-
formed into a single bi-directional transition between the
two LWs.

� Any intra-page link is transformed into a control AIO
branching to the related composite AIO belonging to the
same LW. Normally, intra-page links are intended to
fasten visualization and avoid scrolling rather than pro-
viding LW transitions. This information is still re-corded
as, in the future, these AIOs may be replaced by some-
thing else, for example another LW. In this design option,
parts of a web page that are accessed by intra-page links
may be replaced by separate LWs.

Transitions between logical windows abstracting these links
are subsequently stored in a matrix. Each matrix column
denotes a source LW, while each matrix line denotes a tar-
get LW. Thus, any cell denotes a window transition be-
tween a pair of windows.
The resulting matrix is then passed to a pattern-matching
algorithm that is in charge of identifying navigational
structures among the LWs. This algorithm begins by
guessing the simplest navigational structures (such as se-
quential or indexed navigation) and continues with more
rich structures (such as guided or mixed navigations). As
the window transition matrix can be rather sparse or non
regular, finding the exact materialization of these naviga-
tional structures can be infrequent.
The next step is to generalize the existing structure to the
closest abstract structure type. Of course, each existing
structure can be generalized into a global navigation struc-
ture. But this network of LWs probably generates too many
window transitions. In order to moderate this generalization
process, a threshold can be specified. This parameter can,
for example, regulate how many transitions can be added in
order to match to the closest strict navigational structure. As
this algorithm may be incomplete, the designer is allowed to
check the resulting navigational structures. The designer
may accept, reject or modify the structure produced the al-
gorithm, and she also may declare undiscovered structures.
This concludes the building of the dialog model.

RE-ENGINEERING OF WEB PAGES
Now that presentation and dialog models are available from
reverse engineering of web pages, these two models can
theoretically benefit from forward engineering: any model-
based approach should be able to generate a new UI from
these two models to be further re-integrated with the se-
mantic core component. Before reengineering web pages
into a new UI according to the process depicted in fig. 12, it
is important to specify the context in which this new UI will

Interactive
application

Semantic
core code

U
I E

xt
ra

ct
io

n

User inter-
face code

Presentation
model

Dialog
model

User interface reverse engineering and reengineering

New UI
code N

ew
 U

I I
nt

eg
ra

tio
n

New interactive
application

Fig. 12. UI Reengineering

take place. As indicated in the introduction, technological
push and user pull are both increasing the demand for ac-
cessing web sites in various contexts of use. These varia-
tions may depend on:
1. User: several users will access the site, each user be-

longing to a specific stereotype of the user population.
Each stereotype ha its own set of parameters, such as
preferences, customized features, interaction history,
cognitive profile, typing vs. selection skills, motor-, sight-
, or auditive-impairment, and specific needs.

2. Computing platform: many different computing plat-
forms can be used to access a site, and each platform
brings its own set of constraints, such as screen resolu-
tion, number of colors, color palettes, planes, UI lan-
guage (programming language, script language or
tab)based language are very different), network, and in-
teraction devices. These two last constraints possess
themselves further constraints such as network band-
width, interaction devices capabilities and availability.

3. Environment: users access a site in different environ-
ments. Ambient conditions add a new set of constraints,
including physical parameters (e.g., noise, light, working
space room, heat) and psychological, social parameters
(e.g., stressful time slot, productivity, task criticality, un-
stable environment, collaborative or cooperative condi-
tions, home vs. work).

Reengineering web pages to support all these variations of
the context of use would be an ambitious task. As we as-
sumed in the introduction to mainly address cross-plat-form
support, this paper is focused on adding a computing plat-
form model only. We feel that techniques that are found to
be useful for addressing platform constraints will also be
able to handle constraints that come from the user and the
environment. The rapid proliferation of various platforms
for web accessibility makes this a particularly timely con-
cern. Users increasingly want to compute while moving
between locations, thus moving from one platform (e.g., a
Windows PC) to another (e.g., a Windows CE-compatible
device). Other users do not want to move from one place to
an-other, but want to have multiple access from a single
place (e.g., connecting a PDA to a PC).
Many parameters vary across platforms. VAQUITA only
support screen resolution variation for one UI language
(i.e., HTML) as summarized in table 1. The concepts re-
main the same without loss of generality.

Con-
text

Resolution Language Approaches

� Fixed Fixed Reengineering
� Fixed Varying Redocumentation
� Varying Fixed Restructuring and re-

documentation
� Varying Varying Restructuring

Table 1. Variations of considered parameters.

Context � with no parameter varying
In this context, a new presentation model can be inferred
from the existing models by considering at least 5 designs:
1. Redistribution of LWs within a single PU;
2. Redistribution of Composite AIOs within a single LW;
3. Redistribution of Simple AIOs within a single LW;
4. Redistribution of all AIOs within a single LW;
5. Redistribution of all AIOs within a single PU.

Individual AIOs should remain unchanged, but any redistri-
bution of these elements can be imagined provided that the
screen constraints are satisfied. To verify these constraints,
the presentation model needs to be enriched by two AIO
abstract attributes: typical height and length. These attrib-
utes are assigned to an average value in pixels for dimen-
sion-fixed widgets (e.g., a check box, a radio button).

These attributes are assigned to a value that equals a multi-
plying coefficient in pixels times the character length for
dimension-varying widgets (e.g., an edit box, a list box).
Other dimensions are inferred or estimated from the origi-
nal CIOs themselves (e.g., an image thanks to the
HEIGHT=x, WIDTH=y tags.) Analyzing all possible above
reconfigurations is beyond the scope of this paper. We refer
to [2,25] for analyzing redistribution of LWs within a same
PU (i.e., minimal, maximal, input/output, functional, user
defined, grouped, ungrouped).

Context � with varying UI language
In this context, only the underlying UI language changes.
This often occurs when multiple computing platforms run-
ning different operating systems and presentation managers
are considered. Some languages are Internet-compatible
(e.g., HTML, Java, WML), some are not (e.g., Visual Ba-
sic, C++). Beyond redistributions described in Section 4.1,
this context poses a new challenge: all these languages do
not share similar capabilities in terms of CIOs of the source
computing platform.
For instance, an AIO may be mapped onto zero CIOs (the
corresponding CIO does not exist in the target language),
one (the most frequent and easy case where a one-to-one
relationship exists between an AIO and its corresponding
CIO), or many CIOs (several CIOs are required to repro-
duce the same behavior of the intended AIO). To allow
these mappings, a platform-specific transformation table
allows any AIO instance to be assigned to corresponding
CIOs.
When no corresponding CIO exists, an alternative CIO is
proposed (ultimately, the edit box is suggested), but can be
tailored by the designer. Nevertheless, most access devices
or specific computing platforms coming with their own
proprietary language also impose some screen resolution
change. For instance, Wireless Markup Language (WML)
can only be used on cellular phones; Voice XML, only on
with a screen reader. A third context is then considered.

Context � with varying screen resolution
It is a property of HTML that many HTML-compliant
browsers on many types of screen can display it. Although
this display is technically feasible (i.e., the browser adapts
the presentation with respect to the platform), it may be un-
usable to the end-user for one or another reason, e.g., loss
of information structure, overcrowded screen, too many
scroll bars, image reduction). Therefore, it makes sense to
consider how to re-engineer the UI for different screen
resolutions. This need is exacerbated by multiple HTML
browsers
� On different platforms equipped with different monitors

(ranging from workstation screen to small laptop)
� On different access devices with built-in browser (rang-

ing from the Internet ScreenPhone with 640x480 reso-
lution to HTML-compatible PDA).

If the screen resolution is increasing, the centered table with
three columns can be used to keep a presentation centered
on the screen with borders (fig. 13). If the resolution is de-
creasing, the above redistributions are no longer applicable.
Three strategies have been explored so far:

30303030 30 3030 303030 3030 30 3030 303030 3030
30303030 30 3030 303030 3030 30 3030 303030 3030

Fig. 13. Presentation centered on the screen.
1. AIO replacement: each AIO definition is augmented

with a list of potential replacements considered as either
behaviorally equivalent, but consuming less space (e.g.,
a list box to a drop-down list box) or degraded (e.g., an
accumulator to a multiple-value list box).

2. AIO size reduction: typical height and length of AIOs
are submitted to a possible reduction, depending on us-
ability constraints. For example, images and icons can
be reduced to a certain limit specified by a threshold,
e.g., the minimally usable size of icons.

3. AIO ungrouping: when individual AIOs cannot be re-
duced according to the two first strategies, the distribu-
tion of AIOs may be reconfigured. AIOs can be grouped
or ungrouped and new LWs can be created to contain a
limited amount of AIOs.

Again, the development of these strategies bears further ex-
planation, which we hope to conduct in a later paper.

Context � with varying language and resolution
This context is most likely to occur when a completely dif-
ferent computing platform of access device is considered.

For example, a cellular phone only supports WML, WebTV
only accepts a subset of HTML V.3, and screen readers
only accept VoiceXML. This context can be handled using
a combination of the approaches described in previous
contexts.

RELATED WORK
Cross-platform development is not new as several environ-
ments provide support for this purpose: Galaxy [6] and
Open Interface [17] render the same UI on different plat-
forms with their native look & feel, while SUIT [18] em-
ploys a unique UI definition that can be processed on mul-
tiple platforms. However, not one of these systems truly
adopts a model-based approach, although SUIT's common
definition holds some presentation abstractions. CT-UIMS
[9] pioneered the platform model by supporting some AIO
[15] redistribution for OSF/Motif large screen and small
Macintosh screens. AUIDL [10,11,12] is probably the first
set of abstractions for reverse and re-engineering UIs: from
internal hierarchical structures, type and variable declara-
tions, a UI can be recovered in IDL with a presentation
model (based on OO paradigm) and a dialog model (based
on Milner’s process algebra). MORPH exploits production
rules [13] to infer AIOs [14] from CIOs and thus produces
a graphical UI from a textual UI [15]. This transformational
approach is similar in principle to ours. Forward engineer-
ing can be executed by model composition [20], binding
[21] or derivation, thus proving that the approach is feasi-
ble. MORALE [1] is an extensive set of techniques and
tools for reverse engineering legacy systems, rather than
web pages. CELLEST [7] reverse engineers similar sys-
tems, but into DHTML, thus adopting active models, rather
than passive models.

CONCLUSION
This paper has introduced a model-based approach sup-
porting both reverse and re-engineering of web pages. The
architecture outlined in fig. 14 assumes that all models are
stored in a model repository, each model being specified
with the eXtensible Interface Markup Language (XIML)
promoted by the XIML Consortium [28]. This model tex-
tual specification is declarative, analyzable, and editable
[22].

HTML
page

VAQUITA: Web page
reverse engineering

User interface
Re-engineering

XIML
Presentation

model

HTML
page

WML
deck

…...

Model editor, validator

Fig. 14. Model-based approach architecture.

Interactive
application

Semantic
core code

U
I E

xt
ra

ct
io

n

User inter-
face code

Presentation
model

Dialog
model

User interface reverse engineering and redocumentation

New UI
code N

ew
 U

I I
nt

eg
ra

tio
n

New interactive
application

Platform
model(1) (2)

Fig. 15. UI Redocumentation

Interactive
application

Semantic
core code

U
I E

xt
ra

ct
io

n

User inter-
face code

User interface reverse engineering

Task
model

Domain
model

User
model

Application
model

Data
model

Semantic core
component

Presentation
model

Dialog
model

Application reverse engineering

U
se

r,
ta

sk
, a

nd
 d

om
ai

n
re

ve
rs

e
en

gi
ne

er
in

g

Log files
Predictive models
Design heuristics

Usability guidelinesFig. 16. UI Design recovery

This ongoing work is just at the beginning, as it will require
a significant amount of work to create a comprehensive en-
vironment with tool-support for model-based reengineering
of web sites. The described approach inevitably suffers
from many restrictions and lack of support such as:
� Non-standard HTML elements (e.g., embedded objects,

browser-specific tags) or languages (e.g., JavaScript
functions, ActiveX controls) are ignored as their support
would require expensive development efforts.

� Dynamically created web pages are not supported since
their HTML code is generated on the fly. The callback
routines attached to AIOs producing dynamic pages can
be replaced by direct calls to the semantic core. Active
models are in this case too expensive to manage re-
engineering on the fly. However, we can imagine to par-
tially support applications that use explicit template-
based page generation (e.g., XSLT, JSP): in this case, the
static analysis, should be able to differentiate variable
parts from run-time provided parts.

� Style sheets are unsupported in the outlined algorithm, as
are other relevant presentation aspects. For instance,
graphical images designed as tabs (e.g. on www. ama-
zon.com) or links placed on top of such graphics are not
recognized and, therefore, cannot be mapped onto several
LWs of a same PU.

On the other hand, the environment we have described may
envision other forms of UI reverse engineering [3] as repre-
sented in table 1:

� Redocumentation (fig. 15): this flow is similar to re-
engineering, except that the platform model is no longer
needed, as it remains constant over time.

� Restructuring (fig. 15 with arrow (1) used only): the UI
remains basically the same for semantics and dialog, but
the presentation model changes. The scope of the plat-
form model is restricted to re-engineering.

� Redesigning (fig. 15 with arrows (1) and (2) used): the
UI remains identical regarding its semantics, but both the
dialog (e.g., other interaction styles, techniques, or gen-
res) and the presentation (e.g., any redistribution) models
can change due to platform constraints. This may consists
in a new category of UI re-engineering.

� Design recovery (fig. 16): in this process, it is expected
that task and domain models could be recovered. Guess-
ing these models from HTML code seems impractical,
but other information sources might be investigated, such
as log files produced by user traffic, comparison with
predictive models, design heuristics to identify usage
patterns, and automated usability analysis based on
guidelines.

REFERENCES
[1] Barclay, P.J., Griffiths, T., Mc Kirdy, J., Paton, N.W., Coo-

per, R., Kennedy, J.: “The Teallach Tool : Using Models for
Flexible User Interface Design”. Proc. of 3rd Int. Conf. on
Computer-Aided Design of User Interfaces CADUI’99 (Lou-
vain-la-Neuve, 21-23 October 1999). Kluwer Academics,
Dordrecht (1999) 139–158. Accessible at http://img.cs.
man.ac.uk/teallach/publications/Cadui99/CADUI99.ps

[2] G. Abowd, A. Goel, D.F. Jerding, M. McCracken, M.M.

http://www.amazon.com/
http://www.amazon.com/

Moore, J.W. Murdock, C. Potts, S. Rugaber, and L. Wills,
“MORALE–Mission Oriented Architectural Legacy Evolu-
tion”, Proc. of Int. Conf. on Software Maintenance (1997)

[3] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, and J.
Vanderdonckt, “Computer-Aided Window Identification in
TRIDENT”, Proc. of the 5th IFIP TC13 Conf. on Human-
Computer Interaction Interact’95 (Lillehammer, 25-29 June
1995), Chapman & Hall, London, 1995, pp. 331-336. Acces-
sible at http://www.info.fundp.ac.be/cgi-publi/pub-spec-
paper?RP-95-021

[4] E.J. Chikofsky and J.H. Cross, “Reverse Engineering and
Design Recovery: A Taxonomy”, IEEE Software, Vol. 1, No.
7, January 1990, pp. 13-17.

[5] J.-M. De Baud and S. Rugaber, “A Software Re-engineering
Method Using Domain Models”, Proc. of Int. Conf. on Soft-
ware Maintenance (October 1995), pp. 204-213.

[6] J. Eisenstein and A. Puerta, “Adaptation in Automated User-
Interface Design”, Proc. of ACM Int. Conf. on Intelligent
User Interfaces IUI’2000 (New Orleans, 9-12 January 2000),
ACM Press, New York, 2000, pp. 74-81.

[7] “Galaxy Application Environment”, Ambiência Information
Systems, Inc., Breckenridge, 2000. Description accessible at
http://www.ambiencia.com/galaxy/galaxy.htm

[8] L. Kong, E. Strouila, B. Matichuk, “Legacy Interface Migra-
tion: A Task-Centered Approach”, Proc. of 8th Int. Conf. on
Human-Computer Interaction HCI International’99 (Mu-
nich, 22-27 August 1999), H.-J. Bullinger and J. Ziegler
(eds.), Lawrence Erlbaum Associates, Mahwah/London,
1999, pp. 1167-1171. Accessible at http://www.cs.ualberta.
ca/~stroulia/Papers/hci99.ps

[9] F. Lonczewski and S. Schreiber, “The FUSE-System: an In-
tegrated User Interface Design Environment”, Proc. of 2nd

Int. Workshop on Coputer-Aided Design of User Interfaces
CADUI’96 (Namur, 5-7 June 1996), Presses Universitaires
de Namur, Namur, 1996, pp. 37-56. Accessible at ftp://
hpeick7.informatik.tu-muenchen.de/pub/papers/sis/fuse_ca
dui96.ps.gz

[10] Ch. Märtin, “A UIMS for Knowledge Based Interface Tem-
plate Generation and Interaction”, Proc. of Interact’90, El-
sevier Science Pub., Amsterdam, 1990, pp. 651-657.

[11] E. Merlo, J.F. Girard, K. Kontogiannis, P. Panangaden, and
R. De Mori, “Reverse Engineering of User Interfaces”, Proc.
of 1st Working Conference on Reverse Engineering
WCRE’93 (Baltimore, 21-23 May 1993), R.C. Waters, E.J.
Chikofsky (eds.), IEEE Computer Society Press, Los
Alamitos, 1993, pp. 171-179.

[12] E. Merlo, P.-Y. Gagné, and A. Thiboutôt, “Inference of
graphical AUIDL specifications for the reverse engineering
of user interfaces”, Proc. of Int. Conf. on Software Mainte-
nance (19-23 September 1994), IEEE Computer Society
Press, Los Alamitos, 1994, pp. 80-88.

[13] E. Merlo, P.-Y. Gagné, J.-F. Girard, K. Kontogiannis, L.
Hendren, P. Panagaden, and R. De Mori, “Reengineering
User Interfaces”, IEEE Software, Vol. 12, No. 1, January
1995, pp. 64-73.

[14] M.M. Moore, “Rule-Based Detection for Reverse Engineer-
ing User Interfaces”, Proc. of 3rd Working Conf. on Reverse
Engineering WCRE’96 (Monterey, 8-10 November 1996), L.

Wills, I. Baxter, E. Chikofsky (eds.), IEEE Computer Society
Press, Los Alamitos, 1996, pp. 42-48. Accessible at
http://www.cc.gatech.edu/fac/Melody.Moore/papers/WCRE9
6.ps

[15] M.M. Moore, “Representation Issues for Reengineering In-
teractive Systems”, ACM Computing Surveys, Vol. 28, No. 4,
December 1996. Article # 199. Accessible at http://www.
acm.org/pubs/articles/journals/surveys/1996-28-4es/a199-
moore/a199-moore.html

[16] M.M. Moore and S. Rugaber, “Using Knowledge Repre-
sentation to Understand Interactive Systems,” Proc. of the
Fifth International Workshop on Program Comprehension
IWPC'97 (Dearborn, 28-30 May 1997), IEEE Computer So-
ciety Press, Los Alamitos, 1997. Accessible at http://www.
cc.gatech.edu/fac/Melody.Moore/papers/WPC97.ps

[17] M.M. Moore and S. Rugaber, “Domain Analysis for Trans-
formational Reuse”, Proc. of 4th Working Conf. on Reverse
Engineering WCRE’97 (6-8 October 1997), IEEE Computer
Society Press, Los Alamitos, 1997.

[18] “Open Interface™”, Neuron Data, 156 University Avenue,
Palo Alto, CA 94301, 1992.

[19] R. Pausch, M. Conway, and R. DeLine, “Lessons Learned
from SUIT, the Simple User Interface Toolkit”, ACM Trans.
on Office Information Systems, Vol. 10, No. 4, October
1992, pp. 320-344. Accessible at http://www.cs.virginia.edu/
~uigroup/docs/publications/Suit.lessons.paper. ps

[20] A.R. Puerta, “The MECANO Project: Comprehensive and
Integrated Support for Model-Based Interface Development”,
Proc. of the 2nd Int. W. on Computer-Aided Design of User
Interfaces CADUI’96 (Namur, 5-7 June 1996), Presses Uni-
versitaires de Namur, Namur, 1996, pp. 19-36.

[21] R.E.K. Stirewalt and S. Rugaber, “Automating UI Genera-
tion by Model Composition”, Journal of Automated Soft-
ware Engineering, Vol. 7, No. 2, 1998, pp. 101-124. Acces-
sible at http://www.cc.gatech.edu/reverse/repository/gener.ps

[22] R.E.K. Stirewalt, “MDL: A Language for Binding User-
Interface Models”, in [26], pp. 159-184.

[23] P. Szekely, P. Luo, and R. Neches, “Beyond Interface Build-
ers: Model-Based Interface Tools”, Proc. of ACM Conf. on
Human Aspects in Computing Systems InterCHI’93, ACM
Press, New York, 1993, pp. 383-390.

[24] P. Szekely, “Retrospective and Challenges for Model-Based
Interface Development”, Proc. of 3rd Int. Workshop on Com-
puter-Aided Design of User Interfaces CADUI’96 (Namur,
5-7 June 1996), Presses Universitaires de Namur, Namur,
1996, pp. xxi-xliv.

[25] J. Vanderdonckt and F. Bodart, “Encapsulating Knowledge
for Intelligent Interaction Objects Selection”, Proc. of In-
terCHI’93, ACM Press, New York, 1993, pp. 424-429.

[26] J. Vanderdonckt and P. Berquin, “Towards a Very Large
Model-based Approach for User Interface Development”,
Proc. of 1st Int. Workshop on User Interfaces to Data Inten-
sive Systems UIDIS’99, IEEE Computer Society Press, Los
Alamitos, 1999, pp. 76-85.

[27] J. Vanderdonckt and A. Puerta (eds.), Proc. of the 3rd Int.
Conf. on Computer-Aided Design of User Interfaces CA-
DUI’99, Kluwer Academics Publishers, Dordrecht, 1999.

[28] The XIML Consortium, http://www.ximl.org, 2002.

http://www.info.fundp.ac.be/cgi-publi/pub-spec-paper?RP-95-021
http://www.info.fundp.ac.be/cgi-publi/pub-spec-paper?RP-95-021
http://www.ambiencia.com/galaxy/galaxy.htm
http://www.cs. ualberta.ca/~stroulia/Papers/hci99.ps
http://www.cs. ualberta.ca/~stroulia/Papers/hci99.ps
ftp://hpeick7.informatik.tu-muenchen.de/pub/papers/sis/fu se_cadui96.ps.gz
ftp://hpeick7.informatik.tu-muenchen.de/pub/papers/sis/fu se_cadui96.ps.gz
ftp://hpeick7.informatik.tu-muenchen.de/pub/papers/sis/fu se_cadui96.ps.gz
http://www.cc.gatech.edu/fac/Melody.Moore/pa pers/WCRE96.ps
http://www.cc.gatech.edu/fac/Melody.Moore/pa pers/WCRE96.ps
http://www. acm.org/pubs/articles/journals/surveys/1996-28-4es/a199-moore/a199-moore.html
http://www. acm.org/pubs/articles/journals/surveys/1996-28-4es/a199-moore/a199-moore.html
http://www. acm.org/pubs/articles/journals/surveys/1996-28-4es/a199-moore/a199-moore.html
http:// www.cc.gatech.edu/fac/Melody.Moore/papers/WPC97.ps
http:// www.cc.gatech.edu/fac/Melody.Moore/papers/WPC97.ps
http://www.cs. virginia.edu/~uigroup/docs/publications/Suit.lessons.paper. ps
http://www.cs. virginia.edu/~uigroup/docs/publications/Suit.lessons.paper. ps
http://www.cc.gatech.edu/reverse/repository/ gener.ps
http://www.ximl.org/

	ABSTRACT
	Keywords

	INTRODUCTION
	FORWARD ENGINEERING OF WEB PAGES
	REVERSE ENGINEERING OF WEB PAGES
	Abstractions for the Presentation Model
	Abstractions for the Dialog Model

	REVERSE ENGINEERING ALGORITHM
	RE-ENGINEERING OF WEB PAGES
	Context (with no parameter varying
	Context (with varying UI language
	Context (with varying screen resolution
	Context (with varying language and resolution

	RELATED WORK
	CONCLUSION
	REFERENCES

