
OPEN Partners:

CNR-ISTI (Italy)
Aalborg University (Denmark)

Arcadia Design (Italy)
NEC (United Kingdom)

SAP AG (Germany)
Vodafone Omnitel NV (Italy)

Clausthal University (Germany)

OPEN Project
STREP Project FP7-ICT-2007-1 N.216552

"The information in this document is provided "as is", and no

guarantee or warranty is given that the information is fit for any

particular purpose. The above referenced consortium members shall

have no liability for damages of any kind including without

limitation direct,special, indirect, or consequential damages that

may result from the use of these materials subject to any liability

which is mandatory due to applicable law. Copyright 2008 by all OPEN

Partners."

Title of Document: Testing and Validation Methodology

Author(s): Grasselli Agnese, Marzorati Stefano, Mazzei Simone,

Piunti Mattia

Contributor(s): C. Santoro, R. L. Olsen, H. Klus, M. Henning, S.

Labeaga, A. Nickelsen, F. Moreddu

Affiliation(s): Vod, AAU, CNR, ClU, SAP, NEC, AD

Date of Document: 1-07-2009

OPEN Document: D6.4

Distribution: Public

Keyword List:

Version: 1.6

Title: Id Number: 0

 1 1

Abstract

This document is expected to serve as a handbook for the evaluation and validation

of OPEN technological solution.

Title: Id Number: 0

 2 2

Table of Contents

1 INTRODUCTION .. 5

2 USABILITY .. 7

2.1 METHODOLOGY ... 7
2.1.1 Test Participants Characteristics ... 8

2.2 EXPLORATORY USABILITY STUDY .. 9
2.3 ASSESSMENT USABILITY TEST .. 10

2.3.1 Test Moderator Characteristics ... 11
2.3.2 Application Adaptation ... 12
2.3.3 Migration Process ... 14
2.3.4 Execution of a pilot testing session ... 15

2.4 VALIDATION USABILITY TEST ... 16
2.4.1 Test Moderator Characteristics ... 17
2.4.2 Application Adaptation ... 18
2.4.3 Migration Process ... 18
2.4.4 Execution of a pilot testing session ... 19

3 PROGRAMMABILITY .. 20

3.1 PROGRAMMABILITY ASSESSMENT ... 21
3.1.1 Programmability assessment – first iteration .. 25
3.1.2 Programmability assessment – final evaluation .. 28
3.1.3 Workflow patterns .. 28

3.2 PROGRAMMABILITY VALIDATION .. 31
3.2.1 Programmability validation – first iteration .. 32
3.2.2 Programmability validation – final iteration ... 32

3.3 PARTNERS‟ CONTRIBUTION-FIRST ITERATION .. 32

4 TECHNOLOGICAL EVALUATION .. 34

4.1 METHODOLOGY FOR TECHNICAL TESTING ... 34
4.1.1 Template for test cases definition ... 38
4.1.2 Test plan .. 38

4.2 PROTOTYPES TO BE TESTED DURING FIRST ITERATION ... 41

5 USABILITY TEST PLANS .. 44

5.1 FROM D1.1: OPEN REQUIREMENTS .. 44
5.2 FROM D5.1: SOCIAL GAME APPLICATION DESIGN .. 44

5.2.1 Purpose, Goals and Objective of the Test ... 44
5.2.2 Participant Characteristic .. 45
5.2.3 Method .. 45
5.2.4 Test Environment, Equipment and Logistics .. 45
5.2.5 Data to Be Collected and Evaluation Measures .. 45
5.2.6 Usability Questionnaire... 45

5.3 FROM D5.1: EMERGENCY APPLICATION DESIGN ... 50
5.3.1 Purpose, Goals and Objective of the Test ... 50
5.3.2 Participant Characteristic .. 50
5.3.3 Method .. 50
5.3.4 Test Environment, Equipment and Logistics .. 50
5.3.5 Data to Be Collected and Evaluation Measures .. 50
5.3.6 Usability Questionnaire... 51

Hypotheses .. 51
Tasks .. 51
Sample Application ... 52

5.4 FROM D2.1 AND D3.2: WEB MIGRATION WITH DEVICE SELECTION MAP 55
5.4.1 Purpose, Goals and Objective of the Test ... 55
5.4.2 Research Questions ... 56
5.4.3 Participant Characteristic .. 56
5.4.4 Method .. 57
5.4.5 Task List ... 60
5.4.6 Test Environment, Equipment and Logistics .. 60
5.4.7 Test Moderator Role ... 61
5.4.8 Data To Be Collected and Evaluation Measures ... 61

5.5 FROM D5.2: SOCIAL GAME PROTOTYPE .. 63
5.5.1 Purpose, Goals and Objective of the Test ... 63
5.5.2 Research Questions ... 63
5.5.3 Participant Characteristic .. 64
5.5.4 Method .. 64
5.5.5 Task List ... 66
5.5.6 Test Environment, Equipment and Logistics .. 66
5.5.7 Test Moderator Role ... 66
5.5.8 Data To Be Collected and Evaluation Measures ... 67

5.6 FROM D5.2: EMERGENCY PROTOTYPE .. 68
5.6.1 Purpose, Goals and Objective of the Test ... 68
5.6.2 Research Questions ... 68
5.6.3 Participant Characteristic .. 68
5.6.4 Method .. 69
5.6.5 Task List ... 70
5.6.6 Test Environment, Equipment and Logistics .. 70
5.6.7 Test Moderator Role ... 70
5.6.8 Data To Be Collected and Evaluation Measures ... 71

5.7 FURTHER WORK: REPORTING AND SECOND TESTING ITERATION .. 71

6 PROGRAMMABILITY TEST PLANS.. 72

6.1 CONTEXT MANAGEMENT FRAMEWORK .. 72
6.2 MIGRATION ORCHESTRATION ... 76
6.3 TRIGGER MANAGEMENT ... 78
6.4 POLICY ENFORCEMENT ... 80
6.5 MOBILITY SUPPORT (SERVER SIDE) ... 82
6.6 WEB UI ADAPTATION ... 83
6.7 SERVER SIDE APPLICATION LOGIC RECONFIGURATION ... 86
6.8 MULTICORE GUI TOOLKIT .. 89
6.9 FURTHER WORK: REPORTING AND SECOND TESTING ITERATION .. 91

7 TECHNOLOGICAL TEST PLANS .. 93

7.1 FROM D2.1: WEB MIGRATION TEST PLAN .. 93
7.2 FROM D3.2: MOBILITY SUPPORT AND CONTEXT INFORMATION MANAGEMENT TEST PLAN 96
7.3 FROM D3.2: DEVICE SELECTION MAP TEST PLAN ... 98
7.4 FURTHER WORK: REPORTING AND SECOND TESTING ITERATION .. 99

APPENDIX A .. 101

I. SOCIAL GAME QUESTIONNAIRE... 101
II. EMERGENCY APPLICATION QUESTIONNAIRE ... 103
III. WEB MIGRATION TASK LISTS ... 105
IV. SOCIAL GAME TASK LISTS .. 115
V. EMERGENCY PROTOTYPE .. 117

APPENDIX B .. 118

I. CONTEXT MANAGEMENT FRAMEWORK .. 118
II. WEB UI ADAPTATION ... 119

APPENDIX C .. 125

I. WEB MIGRATION TEST CASES .. 125
II. MOBILITY SUPPORT TEST CASES .. 137
III. DEVICE SELECTION MAP TEST CASES ... 149

APPENDIX D .. 154

I. AVAILABILITY ... 154
II. RELIABILITY .. 155
III. PERFORMANCE .. 155
IV. ACCESSIBILITY .. 156
V. SCALABILITY ... 156
VI. SECURITY .. 156
VII. ADHERENCE TO THE STANDARDS .. 157
VIII. SPECIFIC REQUIREMENTS ... 157

REFERENCES .. 163

 5

1 Introduction

This document is intended to be the baseline for the execution of testing

procedures within the OPEN project. The evaluation of the OPEN migratory

platform and the related applications will be divided in two different experiences,

involving two sets of prototypes developed by the OPEN partners.

 The first testing iteration aims to evaluate the result of the first

prototypes (the ones described in D2.1, D3.2 and D5.2), they don‟t

represent completely the final outcome of the project but they can be seen

as useful “Proof of concept”: the prototypes are simple demonstrator of

some of the basic concept that the project is aiming to implement. The

expected outputs of this iteration are useful feedback for improving the

final solution.

 A second phase of the development will lead to embedded applications in

the “OPEN eco-system”; if correctly validated in the second testing

iteration (final testing iteration), they will benchmark the success of such

a project.

Testing involves three different evaluation areas (usability, programmability, and

technology), whose testing methodology will be described in the next three

sections of the document:

 Usability will be analyzed through three steps: an exploratory study on the

description of some prototypes, an assessment of the usability level

reached by some prototypes during the first testing iteration, and the

following validation, performed during the final testing iteration. A key

element of such a process is the characterization of test participants.

 Also for programmability an assessment is needed to underline where a

configuration facility is implemented and how (thus analyzing context

variables, migration rules, et cetera); then, a following validation of it is

provided for all the configurable modules present in at least one available

prototype.

 Technological evaluation will verify the level that has been reached for

some technical indicators commonly used to determine the working of a

service/product; the analysis will be enriched by checking the satisfaction

of specific requirements for the OPEN project.

Each section will define the overall testing methodology that will be applied to a

set of prototypes submitted to the testing; after that, the sections related to the

three areas‟ test plans will shape the testing procedures to be followed for each

prototype during the first stage.

The results of the evaluations will be collected in D6.5 “Evaluation results”.

The second iteration testing activity will be shaped using the same guidelines and

templates described in this document. Since D6.4 could only contain the test plans

for the available modules and prototypes, it is worth to foresee an internal report

 6

in order to specify the test plans for the final prototype(s), which depends on

future developments.

 7

2 Usability

2.1 Methodology

During the OPEN project development cycle, three usability evaluations have

been scheduled.

The first usability evaluation is an exploratory study about users‟ opinion on

some important design concepts. A questionnaire about fundamental

characteristics of OPEN prototypes has been proposed to a selected group of

users. Furthermore, a study has been carried out to review the requirements of the

OPEN project. In this case, the usability level has been evaluated by a theoretical

analysis of the process used for the OPEN requirements elicitation, in a User-

centered-design (UCD) optic, giving some input for further work. This is not a

test to be performed on a working prototype, but a preliminary study about some

fundamental design concepts.

The second usability evaluation is an assessment test. This kind of test is

conducted either early or midway into the product development cycle, usually

after the fundamental or high-level design or organization of the product has been

established [HUT]. The objective of this test is to evaluate the user‟s feelings

about the product during the execution of realistic tasks.

The last usability evaluation to be performed on the OPEN platform is the

validation test. It will be conducted when the project development cycle will be

near to the end. In this case, a more formal approach will be used, because it will

be needed to individuate in a very accurate way the software usability problems to

be communicated to the development team. When this test is performed it is

expected that every software structural usability problem has already been solved,

thanks to the results of the assessment test. So, there could be only some problems

on how initial usability requirements and the requirements defined after the

assessment test have been implemented.

The exploratory and assessment analysis will be carried out for the first iteration

evaluation, while the validation test will be performed for the final prototype.

Figure 1: Usability evaluations during the OPEN project development cycle

 8

2.1.1 Test Participants Characteristics

In this section some guidelines will be given concerning the selection of the

OPEN project usability tests participants.

First of all, it is necessary to individuate the OPEN end user characteristics. This

is a not trivial issue and the success of an usability testing activity is often related

to this point.

Usually, for commercial products, the marketing department performs some

analysis about the end user characteristics. This kind of information is not

complete for a usability test, but it is surely a good starting point. For the OPEN

project it is not possible to have such information, and, moreover, the user

characteristics can change with the tested application running over the

middleware. In fact, the OPEN middleware is designed to support a wide range of

applications (e.g. games, simulators, etc.) and for each application there is a

specific target user. Thus, the better way of proceeding is to define some common

characteristics of the OPEN platform user, and then, for each tested application

prototype, specific characteristics will be defined. Finally, applications and

middleware specifications can be used in order to find an appropriate group of

users for usability evaluations.

Figure 2: Selection process of users for OPEN usability tests

The profile of a generic user to be employed on usability evaluations of the OPEN

platform includes the following characteristics (they are valid for each tested

prototype):

 Technology: select participants that are familiar with used devices. It is

quite important that every user is already able to use the devices where the

tested applications are migrated, because we need to individuate the OPEN

platform usability problems, and not the problems related to the devices

capabilities or to their learnability.

 Have not been in contact with OPEN project before. The users should not

be influenced by any previous knowledge, prejudice and bias gained

through contact with the project.

 9

 Are not friends/family/acquaintance of the test moderator. It will not be

possible to maintain a strictly neutral attitude with someone known. This

requirement is valid only for usability evaluations that require an

interaction between test moderator and user (i.e. it is not valid for

exploratory tests).

When first contacting the candidates, it is important that the following information

is presented to them and fully understood:

 Presentation: who is the person that is contacting him/her, what this person

is doing and why this person needs they to perform a testing activity (what

the expectations are). This information is needed to prevent „confusing‟

the respondents with wrong (and maybe undesirable) information.

 Duration: how much time they have to complete the testing activity. Make

clear how much time it will be necessary. It is very important to take into

account, during the calculation of the required time, also possible

problems that could slow down the testing activity. For long lasting tests it

is necessary to take also into account some coffee breaks. This is

important because, if the user is tired, or frustrated, the test results are not

accurate.

 Agreement: make clear that they need to sign an agreement stating that:

o The sessions will eventually be audio- and/or video recorded but will

only be used for internal purposes to OPEN project.

o Any ideas that will be shown during the interview to the respondent

must be kept confidential.

To make it possible to compare the data in a reliable way there must be a minimal

number of respondents for each user group. For the usability questionnaires

compilation that is performed during the exploratory study a number of users

between 10 and 20 is required, in order to have a representation of a homogenous

target.

For assessment and validation tests, instead, the minimum number of respondents

required for end-users are 4 per each user group. In this way, using an informal

approach, it is possible to identify 80% of the usability issues and probably all of

the severe ones [HUT]. This result is considered acceptable for the OPEN project

because it represents a good compromise between the obtained test accuracy and

the required effort (i.e. a further increase of the test accuracy couldn‟t justify the

required extra effort).

2.2 Exploratory Usability Study

The objective of the exploratory usability study is to get an evaluation about a

software design at the beginning of the development cycle.

As foreseen in the D6.1 (Usability criteria for project phases: use cases selection,

design, development, test and deployment), the first stage of usability testing is

based on the output of preceding deliverables and proposed prototypes. There are

 10

some key deliverables and prototypes to be taken into account for an effective

usability evaluation. For each of them, a draft of test plan has been elaborated to

be then compiled in collaboration with the deliverable work team. Finally, it has

been distributed to all OPEN partners for comments.

Applications described in the D5.1 (Initial application requirements and design)

are very important for this study. In this case, Vodafone team, working together

with Arcadia for the Social Game and with SAP for the Emergency Prototype,

respectively, will deliver a questionnaire to be presented to target users of both

these two services in order to preliminarily evaluate their usability. The first point

to define is what to present to the responders; in this case, some screenshots and a

brief description of the application have been used in order to have an immediate

rendering of it, so that users can provide their opinions.

Moreover, a usability study about the OPEN project deliverable D1.1

(Requirements for OPEN Service Platform) is performed. This study is an

analysis of the deliverable using a user-centred-design optic, in order to verify that

during the drafting of such a requirements document the usability towards final

users has been taken into account in the proper way. The following aspects are

considered during such analysis: the method used for scenarios and requirements

proposition, the method used to reach an agreement about proposed scenarios and

requirements, the obtained requirements and scenarios.

Through this brief analysis we also want to define some guidelines for the D1.3:

this deliverable, in fact, will finalize the requirements to be followed and

respected during the implementation of the OPEN platform.

2.3 Assessment Usability Test

This kind of usability evaluation will be performed on OPEN prototype

applications, in order to get some information about their usability level.

Moreover, some suggestions from applications users will be used in order to guide

the following of the development activity.

Only an informal evaluation will be performed, without any measure about the

user‟s behaviour. This is because at this stage, a complete and integrated version

of proposed applications is still unavailable and qualitative evaluations, together

with discussions with users, will be more useful than tasks completion times and

user‟s error rates in order to get some improvement suggestion. For this reason,

during this test phase, a very important role will be held by the test moderator.

For every tested prototype, there are two aspects that will be evaluated: the

application adaptation (when the application migration is performed between

devices with different characteristics) and the migration usability.

At the end of the assessment usability test, a careful analysis of the testing results

will be performed. For each application, a list of weak and strong points will be

individuated. Moreover, every suggestion brought forth by users during the

talking with the moderator will be communicated to the development team. In this

way, a set of usability requirements will be individuated to be implemented for the

validation usability test.

 11

In this section a general methodology is described for assessment usability tests in

the OPEN project. However, during the application of the methodology to tested

prototypes, it could be slightly modified, in order to adapt it to the specific

characteristics of each prototype. .

2.3.1 Test Moderator Characteristics

The test moderator (or test administrator) is the most important component of the

testing team. He is ultimately responsible for all preparations including test

materials, participant arrangements, and coordination of the testing activity

[HUT].

During the execution of the task list, the test moderator is the only person allowed

to interact with the end user. The moderator must not help the user to complete

her/his tasks, but she/he can only interact with her/him in order to understand

her/his impression and her/his difficulties. Moreover, she/he must take notes about

the user behaviour, her/his errors or her/his problems. Even if the testing session

is audio / video registered, it is important to take notes of the user behaviour

because the analysis of registrations could take a great amount of time.

During the testing activity, if a hardware or a software problem makes it

impossible for the user to complete a task, or if the user is particularly slow during

the task list execution, the test moderator is allowed to modify the test plan.

However, a change on the task list can be performed only for some exceptional

cases and when there is no alternative solution available.

At the end of the task list execution, the test moderator must direct the debriefing

session, in order to inspect carefully any problem previously noticed. During this

phase, if some observers attended the test session, they are also allowed to discuss

with the user.

The test moderator must not be a developer of the tested application, in order to

not interfere (even unintentionally) to the test result.

During the assessment usability evaluation, the interaction between the user and

the test moderator is very important. In fact, there should be a continuous

interaction between moderator and user, in order to take an insight of how the

application user interface is perceived. The “thinking aloud” method will be

employed. The user, therefore, during the test execution must be encouraged to

talk about his impressions and about his thoughts. It is not simple, for a user, to

describe every performed action, thus the moderator must encourage her/him to

share her/his point of view. Sometimes, there are users that are not able to talk

continuously during every task execution, in particular when it is a quite complex

action. For this kind of users, the test moderator must continue asking questions

about their impressions, but without insisting when the answer is a little concise.

The risk is that the user, talking with the moderator, is a little distracted from

her/his principal activity (i.e. the task list execution).

When the thinking aloud method is employed, it is not possible to use the tasks

execution times as a usability evaluation measure, since some users can be slowed

down by the talking.

 12

Figure 3: Main tasks performed by the test moderator during assessment tests

2.3.2 Application Adaptation

The OPEN platform allows the user to use applications on several devices (e.g.

personal computers, mobile phones, etc.). In order make it possible to perform the

same actions on devices with different capabilities, an application adaptation is

performed. A usability evaluation of this aspect is needed because it strongly

affects the user experience.

The usability test of the application adaptation is a complex problem, because

there is not a single application to evaluate, but a mechanism for the application

UI generation and, for some applications, for the logic reconfiguration (if the

result of reconfiguration is reflected in the user experience).

In order to achieve an accurate evaluation of the OPEN platform, a comparison

usability test will be performed. This type of test is used to compare two or more

versions of an application. A comparison test can be performed at every level of

the application development cycle. Comparison tests are usually performed in

order to compare the developed product with the one offered by a competitor or to

compare the new version of a product with the previous one. For each tested

OPEN prototype a usability comparison test will be performed between the

original version (usually running on a PC) and the adapted version (running on a

different device or with a different configuration).

In the OPEN platform the different versions of tested applications are running on

different devices, with different capabilities. For this reason, it is necessary to

individuate , if each usability problem is related to the adaptation performed by

the OPEN middleware or to the device capabilities (e.g. if the user has a problem

using a touch screen device, this problem could be related to the device).

However, the adaptation performed by the OPEN platform should compensate for

some limitations of the devices and the user must be able to complete the assigned

task list on every device.

The user, in a comparison test, should evaluate two versions of the same product,

in order to individuate usability weak and strong points in each application.

 13

Indeed, it is often impossible to state which version is the best one, but each of

them will have some positive and some negative aspects.

When the user starts using an application and s/he completes her/his tasks, s/he

also learns how to use the application. So, when s/he starts using the second

version, s/he can be helped by this learning (for example when tested versions are

very similar) or, in some cases s/he can encounter more problems (for example,

when tested versions are very different and the user thinks that assigned tasks can

be completed on the second version in the same way s/he did on the previous one,

s/he is misled).

In order to get more accurate results, it is necessary to have two different groups

of users (say group A, and group B). Let‟s suppose that the tested application can

run over two devices: D1, and D2.

The users of the group A will start using the application with the device D1, they

will perform a migration using the OPEN platform and then they will use the

device D2. At the end of each device usage (and after a migration to the other

device), they will compile a questionnaire in order to evaluate it. However, for

application prototypes that require a short task list, it is preferable to compile

every evaluation questionnaire at the end of the test.

The users of the group B will perform the same tasks performed by the group A

users, but starting with the test of the device D2.

Figure 4: Method used in order to avoid bias problems during comparative usability tests

 14

In this way, it is possible to identify any problem related to the learning process

during the usability test.

This is the general method that will be applied during the available prototypes

usability evaluation. However, some modifications will be produced to this

method during its application to each prototype (for example if some features are

not implemented yet).

2.3.3 Migration Process

The migration process in the OPEN platform can be manually started by the user

(for example when s/he is about to leave her/his apartment s/he can migrate its

application from the PC to her/his mobile phone) or automatically started by the

OPEN middleware (for example, when the user is using a device with a low

battery level).

The migration process must be comprehensible for the user, even if s/he never

used the OPEN platform. It is very important that the user is able to know what

application (and what application component in case of partial migrations) will be

migrated and where it will be migrated. For this reason, names in human-readable

format that are known by the user must be employed in order to identify

applications, application components, and devices (for example, the identification

of devices via IP addresses is strongly discouraged).

The effects of a migration must be predictable. For example, if a user is about to

migrate an application, s/he must be informed about the fact that at the end of the

migration the running version s/he is currently using will be terminated.

During a migration, it must not be possible to perform, by mistake, any action that

will cause data loss for the user. Every action performed by the user about the

migration must be reversible. For example, it the user performs by mistake a

migration to a wrong device, s/he must be able to migrate again the application to

the required device.

The following aspects will be considered during the migration process usability

evaluation: user interface and status maintenance.

The user interface offered by the OPEN platform for the migration management

must be very simple to use and it must not interfere with the usual application

usage. For migrations automatically proposed by the OPEN platform, the user

must be able to know what will be migrated, where it will be migrated, and why

such migration is suggested (for example because a more capable device is

available or because the current device battery level is too low).

At the end of the migration, a good state maintenance must be perceived by the

user. She/He must therefore be able to start using the application in the target

device from the point s/he abandoned it in the source device. In order to achieve a

good user experience, some mechanism could be provided in order to help the

user to remember what task s/he was performing and what parts of it were already

 15

completed. This is not a technical evaluation of the state maintenance, but only

the feeling of the user about this aspect will be evaluated.

The migration process usability can be evaluated during the user interface

adaptation testing. In fact, for every application, at least one migration for each

device is needed. Moreover, in every application task list, a migration can be

inserted for each migration trigger available policy (manual, or automatic with

and without a confirmation prompt).

Therefore, in the usability questionnaire, the user will also be able to answer some

questions about the migration process. In this way, it is also possible to check the

interaction between the OPEN migration management user interface and every

demo application in different devices, in order to identify different kind of

problems.

During this test phase, the migration process will be still not integrated in the

OPEN platform, but every tested prototype will use its own process. For this

reason, the main objective of this test is to provide some usability requirements

and suggestions that could be taken into account during the integration of

available application prototypes in the OPEN platform.

Figure 5: Migration process usability requirements

2.3.4 Execution of a pilot testing session

It is recommended to execute, before the usability test of an application, a pilot

test session, in order to validate the test execution plan.

A member of the usability testing team should execute every task, in order to

make sure that there isn‟t any problem during such operations (i.e. there are no

software bugs that interfere with the task execution). Moreover, during the

 16

execution of the pilot test, it is possible to measure the execution time of every

task (i.e. the time employed by a user to complete an assigned task). If this

amount of time is greater than the one already communicated to the users during

their recruitment (par 2.1.1), some modifications to the task list can be

implemented.

However, the test plan feasibility must be evaluated before the pilot test in

collaboration with the application development team. Only minor changes can be

implemented in the test plan after the pilot test execution, because it is performed

shortly before the test with real users.

The pilot test is also useful for the test moderator that in such way can be more

prepared for the testing sessions. However, for this test phase the pilot test

execution is not mandatory because an informal approach will be used during the

testing activity. For tests that requires a set of measurements it is more important

to perform a pilot test, in order to make sure that every parameter will be

measured in an accurate way.

2.4 Validation Usability Test

The validation usability test is performed when the application development cycle

is almost completed and it is more formal than an assessment test. Usually, during

this test phase, only minor usability problems are individuated. Most of important

usability problems, in fact, are individuated (and fixed when possible) during the

assessment usability test.

During this test phase a more formal approach will be used, in order to evaluate

the overall usability level of the OPEN project. Moreover, the application

usability problems (for example the erroneous implementation of a usability

requirement) will be found and classed according to their impact on the user

experience. For severe usability problems the support of the development team

will be required in order to fix them.

This section describes the proposed method for the validation usability test to be

performed over the OPEN platform. This method will be slightly modified during

its application for each application running over the OPEN middleware.

Moreover, some additional modifications will be implemented if some platform

features will be added/removed during the following of the development cycle.

 17

Figure 6: Flowchart of validation usability testing process

2.4.1 Test Moderator Characteristics

The role of the test moderator during this test is similar to its role during the

assessment test (par. 2.3.1), with some modifications about its interaction with

users.

During this usability test, in fact, besides the questionnaires compiled by users,

some instrumental measures will be performed. In particular, execution times (i.e.

the amount of time employed by an user to complete an assigned task) and error

rates (calculated by taking into account the errors committed by the user during

the application usage) will be measured during the test. For this reason, the test

moderator should interact as less as possible with users, in order not to distract

them from tasks execution.

Moreover, the test moderator will be responsible of all measurements that will be

performed using an appropriate software tool. An alternative solution could be to

manually perform every required measurement. In this case, the help of another

member of the testing team could be required. In this way, the test moderator

could perform the required measurements while her/his collaborator takes notes

about the ongoing testing session. For long task lists an automatic tool is

preferable, while for short task lists manual measurement is probably the best

solution.

At the end of the task list execution, the test moderator will analyze the

questionnaire compiled by the user and the performed measurements and then

s/he will direct the debriefing session.

 18

2.4.2 Application Adaptation

The method that will be used during this test phase for the application adaptation

mechanism offered by the OPEN platform is the same used during the assessment

test (par. 2.3.2), with some modifications. The fundamental difference is that

during the validation test a more formal approach will be used and that the

debriefing sessions will be probably shorter than the ones performed during the

previous test phase.

Moreover, some thresholds will be defined for the maximum difference between

some usability parameters (to be defined for every tested application) over

different devices (such thresholds will be defined taking into account the different

capabilities of the used devices). In this way it is possible to verify that the

difference of usability of a application on different devices is lower than a

threshold value.

Figure 7: Flowchart of the application adaptation usability evaluation

2.4.3 Migration Process

During this test phase, it is expected that all tested applications will be integrated

in the OPEN middleware. So, every migration will be performed using a complete

version of the OPEN platform. This aspect and the employing of a more formal

approach (with execution times and error rates measurement) are the only

differences with the procedure proposed in the paragraph 2.3.3.

It is expected to obtain an excellent usability level for this component of the

OPEN platform. A threshold level for some usability parameters (to be defined in

 19

the test plan of every tested application) will be used in order to identify whether

the migration usability is the expected one.

2.4.4 Execution of a pilot testing session

As stated in the paragraph 2.3.4, the execution of a pilot test could be useful for

every usability evaluation. Before performing validation tests of the OPEN

project, it is necessary to perform a pilot test, in order to make sure that all

software and hardware infrastructures are correctly configured, and that the

chosen measurement tools for execution times and error rates provide accurate

values. Without a pilot test session there is the risk not to get an accurate

evaluation during the tests performed with the first user.

 20

3 Programmability

As defined in the deliverable D6.2 [D6.2], programmability is the capability

within hardware and software to accept a new set of variables and instructions that

alter its behaviour [http://encyclopedia2.thefreedictionary.com/programmability].

In the OPEN environment, the following definitions apply:

 Variables: context information

 Instructions: rules describing the migration process behaviour depending

on the context information

 Migration process:

o Migration triggering (when to migrate) and orchestration (where,

what, how to migrate)

o Application Logic Reconfiguration

o User Interface Adaptation

Figure 8: Programmability block diagram.

The concept of programmability (or configurability) agreed inside the consortium

and described in D6.2 [D6.2] is the capability for the user of the platform

(developer, platform administrator…) to define:

 new context variables (to be used for the platform behaviour definition)

 new rules (function of the context variables) describing the platform

behaviour

Example:

Suppose I have a mobile phone that provides me the following information:

 Battery

 Signal strength

In the platform, migration triggering rules depending on these variables are

defined.

Rules
Input: Context information Output: Migration

new Rules
new Context Information

http://encyclopedia2.thefreedictionary.com/programmability

 21

Suppose that afterwards I have another mobile phone that can provide also the

“user_location” (latitude and longitude), I should be able to:

 Instruct the middleware in order to acquire the new “user_location”

variable

 Define a new rule depending on this new variable. E.g.: if

"user_location"="home" then trigger the migration towards the TV.

The programmability evaluation will address the different components of the

migration process, which are mapped in different middleware modules. For each

module, the programmability evaluation will consider two different phases:

 Programmability Assessment

 Programmability Validation

The assessment and validation phases will be carried out for both testing

iterations: the first iteration and the final iteration. The different approaches are

explained in the following paragraphs.

3.1 Programmability Assessment

The first phase of the programmability evaluation process is the

“programmability assessment”. With respect to the programmability, we

distinguish two different middleware tasks:

 Context variable collection and distribution: different middleware

modules can participate in this task, as for example the Device Discovery

and the Context Management. For these modules, enabling the

programmability means providing the capability of managing all the

available variables without constraints. E.g., a possible constraint could

be: the module accepts only numerical variables: it does not handle

Boolean or String; the module accepts only the variables defined in a

predefined structure as for example:

<context variables>

 <battery>0.55</battery>

 <signal_strength>12</signal_strength >

 </context variables>

 Migration and adaptation rules definition: different modules apply rules

for migration triggering and orchestration, application logic

reconfiguration and user interface adaptation. For these modules, enabling

the programmability means providing some facilities to define the module

behaviour depending on the available context information.

It could be useful to map these two tasks in the previous example, in which the

platform should:

 22

 Instruct the middleware in order to acquire the new “user_location”

variable (this aspect will be evaluated in the scope of “context variable

collection and distribution”)

 Define a new rule depending on this new variable. E.g.: if

"user_location"="home" then trigger the migration towards the TV (this

aspect will be evaluated in the scope of “migration and adaptation rules

definition”).

The aim of the assessment phase is, for each OPEN middleware module,

understanding which of the previous programmability aspects it should address or

if it should address both, and depending on it, understanding if appropriate

facilities are available.

In order to carry on this phase, the following template is proposed. Depending on

the specific module that will be analysed, small changes can be done on the

template in order to fit the specific needs of the related evaluation. The template

will be compiled for each module during the first testing iteration and then revised

during the second iteration, in order to incorporate the possible evolution.

Table 1: Programmability Assessment template.

Title: OPEN Programmability Assessment moduleName

ID: OPEN Programmability_ moduleName_x

Version Issue Date Author

 Module owner/Vodafone team

Module name moduleName

General considerations

[to be filled by module owner]

Please specify if the module enables the programmability

in its current implementation related to both

programmability aspects:

 context variable collection and distribution

 migration and adaptation rules definition

Reference prototypes

[to be filled by module owner]

List of prototypes using the specified modules

Synthetic description

[to be filled by module owner]

User: (developer, system manager, service provider…)

Supported context variables type: (int, double, boolean…)

Manageable variables: (only predefined, all variables that

 23

can be represented by an integer number, all…)

Available tools for configuration (only for modules

addressing migration and adaptation rules definition):

 configuration file

 graphic tool

 workflow definition tool

 other (specify)

Workflow patterns supported (only for modules

addressing migration and adaptation rules definition):

 Sequence

 Parallel split

 Synchronization

 Exclusive choice

 Simple merge

(Refer to paragraph 3.1.3 for workflow patterns

description)

Context variable collection and

distribution

[to be filled by module owner]

Only for modules addressing context variable collection

and distribution.

Please describe how the module is able to collect and

make available context variables to other modules

Language/tool available for the

module behaviour description

[to be filled by module owner]

Only for modules addressing migration and adaptation

rules definition.

Please describe how the user can define the rules for

module configuration

Parametrical evaluation

[to be filled by Vodafone evaluation team]

For modules addressing context variable collection and

distribution:

 Extensibility (capability of accepting and

managing new variables): 1..5

For modules addressing migration and adaptation rules

definition:

 Conciseness (capability of specifying the module

 24

behavior in a synthetic way): 1..5

o weight: 1

 Fulfillment (capability of specifying the required

workflow patterns): 1..5

o weight: 3

 Usability(*) (usability of the provided tool): 1..5

o weight: 2

Note: consistency, runtime efficiency and robustness will

be evaluated in the programmability validation phase

Qualitative evaluation

[to be filled by Vodafone evaluation team]

A qualitative evaluation of the provided facilities will be

provided

Synthetic description of the

adopted verification and

validation strategies

[to be filled by Vodafone evaluation team]

In this field the objectives of the programmability

validation phase will be highlighted and a brief

description of the test cases will be provided. Log files or

stub methods eventually required will be defined. The

validation phase will take into consideration the

following parameters:

 Consistency

 Robustness

 Runtime efficiency

(*)The evaluation will provide a qualitative analysis of the usability of the provided tool for the

programmability. Since the user of this tool is not the end user but one of the actors involved in the

service development (developer, system manager…) this evaluation is not part of the usability

assessment.

In the “Title” should be indicated the name of the module, the “ID” field should

be used to distinguish between the evaluation iteration performed for the first

iteration prototype and the final evaluation. A different “version number” should

be given to the document if substantive changes to the contents of the document

have been made. Different “issue” numbers within a given version indicate minor

changes such as spelling and grammatical corrections.

The synthetic description of the information expected for each field is described in

italic. In the following paragraph the detailed description of the required

information for each field is provided.

 25

3.1.1 Programmability assessment – first iteration

The first iteration of the programmability assessment will be carried on taking into

account the modules defined in D4.2 [D4.2], in order to put the basis for the final

evaluation and to provide useful feedback for the development activity. As stated

in the previous paragraph, the aim of the assessment phase is understanding, for

each OPEN middleware module, which programmability aspects it should

address, and consequently, understanding if appropriate facilities are available. In

order to collect all the required information for this analysis, the proposed

template should be filled.

The “General considerations” field must be filled by the module owner, who

will specify if the module enables the programmability in its current

implementation. As already stated, the module could enable the programmability

with respect to:

 Context variable collection and distribution: the module enables the

programmability with respect to the context variable collection and

distribution if it supports capability of setting new variables. One of the

modules that should enable this kind of programmability is the Context

Management Framework. E.g.: the context information is provided by the

mobile phone, which communicates to the Context Management Node the

battery level and the signal strength. This information is mapped in two

variables in the Context Management Node. Supposing that another mobile

phone has also the location information based on GPS, the Context

Management Node should be able to allocate a variable for this information.

Allocating a new variable is not enough, because in order to use this

variable for applying a specific logic, it is necessary to be able to trace the

variable meaning.

 Migration and adaptation rules definition: the module enables the

programmability with respect to the migration and adaptation rules

definition if it supports capability of setting new rules. One of the modules

that should enable this kind of programmability is the Application Logic

Reconfiguration. E.g.: the programmability of the Application Logic is the

capability of imposing rules depending on context information that define

the application logic reconfiguration behaviour.

If the module does not support programmability, in this current implementation,

there are two different ways of proceeding, depending on the reason why it does

not support programmability:

 The programmability support is not required. In this case the module

owner should specify why enabling the programmability is not a

requirement for the module. All the subsequent fields of the template will

not be filled.

 The programmability support is required but not still implemented yet. In

this case:

o If the programmability approach has been already defined but not

implemented, the module owner should specify the designed

 26

approach and the subsequent field of the template will be filled

providing information related to this solution.

o If the programmability approach has not been already defined, the

module owner should specify why. All the subsequent field of the

template will not be filled.

The “Reference prototypes” field must be filled by the module owner listing the

first iteration prototype using the specified module.

The “Synthetic description” field must be filled by the module owner and should

provide the following basic information:

 User: who is the user of the provided facilities for programmability?

(developer, system manager, service provider…)

 Supported context variables type: which kinds of variable are supported?

(int, double, boolean…)

 Manageable variables: how many variables can be supported? (only

predefined variables, all variables that can be represented by an integer

number, all variables…)

 Available tools for configuration (only for modules addressing rules

definition):

o configuration file

o graphic tool

o workflow definition tool

o other (specify)

 Workflow patterns supported (only for modules addressing migration and

adaptation rules definition):

o Sequence

o Parallel split

o Synchronization

o Exclusive choice

o Simple merge

The “context variable collection and distribution” field must be filled only for

modules addressing this aspect of programmability. The module owner should

describe how the module is able to collect and make available to other modules

context variables.

The “Language/tool available for the module behaviour description” field

must be filled only for modules addressing migration and adaptation rules

 27

definition. The module owner should describe how the user can define the rules

for module configuration.

The subsequent fields will contain the programmability evaluation of the module

given the information provided by the module owner in the previous field. This

evaluation will be carried on by the Vodafone testing. These fields will be

completed after the evaluation activities.

The “Parametrical evaluation” field will provide a first quantitative evaluation

of module programmability providing a value between 1 (poor) and 5 (excellent)

of the following parameters. For each identified parameters, a weight between 1

(low importance) and 3 (high importance) has been defined in order to underline

that different parameters have different influence in the programmability

evaluation: e.g. the Extensibility has weight “3” because the capability of

accepting and managing new variable is very important for enabling the module

programmability, while the Conciseness (capability of specifying the module

behavior in a synthetic way) has weight “1” because it is less relevant. The

quantitative evaluation will assign a value to the parameters listed below

depending on the information provided in the previous fields.

The parameter identified for modules addressing context variable collection and

distribution is:

 Extensibility (capability of accepting and managing new variables): 1..5

o weight: 3

The parameters identified for modules addressing migration and adaptation rules

definition are:

 Conciseness (capability of specifying the module behavior in a synthetic

way): 1..5

o weight: 1

 Fulfillment (capability of specifying the required workflow patterns): 1..5

o weight: 3

 Usability (usability of the provided tool): 1..5

o weight: 2

The “Qualitative evaluation” field will be filled with a first qualitative

evaluation of the provided programmability facilities.

The “Synthetic description of the adopted verification and validation

strategies” will be filled only if the module is currently used by one of the first

iteration prototype and therefore the validation phase of the programmability

evaluation will be carried on for the module. In this field the objectives of the

programmability validation phase will be highlighted and a brief description of

the test cases will be provided.

 28

3.1.2 Programmability assessment – final evaluation

The final evaluation of the programmability assessment will be carried out taking

into account all the modules responding to the following criteria:

 Modules that in the first iteration already have been indicated as enabling

the programmability, in order to verify that the feedbacks provided during

the first iteration of the programmability evaluation have been

incorporated where possible.

 Modules that in the first iteration were indicated as not enabling the

programmability but for which the programmability supports were

required, in order to verify if enhancements have been done.

The final evaluation of the programmability assessment will not involve modules

that have been classified during the first iteration as modules that do not require

programmability facilities. During this evaluation, the proposed template will be

recompiled for the selected modules.

The “General considerations” field must be filled by the module owner, who

will specify if the module enables the programmability with respect to:

 Context variable collection and distribution.

 Migration and adaptation rules definition.

If the module does not support programmability the module owner should specify

the reason why. All the subsequent fields of the template will not be filled.

Refer to 3.1.1 for the other field‟s compilation.

3.1.3 Workflow patterns

In D4.1 [D4.1] the Workflow Patterns [WP] have been introduced as tool for

evaluating the various perspectives that need to be supported by a workflow

language or a business process modelling language of an orchestration tool.

However, in the OPEN project, it can be used to understand the capability of the

specific tool provided for the module programmability of specifying dependencies

between various tasks (e.g. parallelism, choice, synchronization etc). This analysis

can be applied to:

 Middleware modules implementing the migration triggering and

orchestration

 Modules for the UI adaptation

 Modules for the Application Logic Reconfiguration (for both orchestration

and wiring approach)

As for Workflow patterns, various perspectives can be distinguished:

1 The control-flow perspective depicts aspects related to dependencies

between various tasks (e.g. sequence, parallelism, etc.). Originally, the

 29

Workflow Pattern Initiative proposes twenty patterns, but in the latest

iteration this has grown to over forty patterns.

2 The data perspective aim to capture the various ways in which data is

represented and utilised in workflows (passing of information, scoping

of variables, etc.)

3 The resource perspective deals with resource to task allocation,

delegation, etc.

4 The exception handling perspective aims at defining the different

causes of exceptions and the actions that need to be taken as a result of

exceptions occurring.

In the programmability assessment, only the control-flow perspective is

considered, in order to understand the capability of the specific tool provided for

the module programmability of specifying dependencies between various tasks

(e.g. parallelism, choice, synchronization etc). As previously mentioned, the

control flow patterns are more than forty: in order to simplify the analysis, the

Basic Control-flow patterns have been selected. This class of pattern captures

elementary aspects of process control. The capability of representing these

patterns enables a satisfying level of programmability. The basic Control-flow

patterns are:

 Sequence

 Parallel split

 Synchronization

 Exclusive choice

 Simple merge

Although the workflow patterns have already been described in D4.1 [D4.1], it is

relevant to add some information in order to explain their use for the

programmability assessment:

 A brief explanation is provided, also through some simple examples not

directly related to the methods/tasks implemented by the actual OPEN

middleware modules.

 The evaluation criteria to be used for determining if the provided

tool/language enables the use of the specific pattern.

Following the Basic Control-flow patterns description:

 Sequence: a task in a process is enabled after the completion of a

preceding task. E.g.: the “verify account”(B) task executes after the

“obtain credit card details”(A). The Sequence pattern is an essential

building block for processes. It is used to construct a series of consecutive

tasks which execute in turn one after the other. Evaluation criteria: support

for this pattern is demonstrated by any tool/language which supports a

representation of dependency between two tasks. E.g.: for evaluating if the

Application Logic Reconfiguration module supports this workflow pattern,

we can try to answer to the following question: after the rewiring, is the

 30

module able to execute tasks in sequence? If yes, the rewiring is able to

represent this workflow pattern (e.g.: depending on the context variable x,

the components A and B are wired. A execute the task “a” and then B

execute the task “b”)

 Parallel Split: the divergence of a branch into two or more parallel

branches each of which execute simultaneously. E.g.: when a migration

trigger is received (A), triggers the “retrieve state”(B) task and the

“retrieve device information” task simultaneously. The Parallel Split

pattern allows a single thread of execution to be split into two or more

branches which can execute tasks concurrently. Evaluation criteria: support

for this pattern is demonstrated by the provision of an implicit or explicit

construct allowing the thread of control to be split into two or more

concurrent branches.

 Synchronization: the merge of two or more branches into a single

consequent branch: the thread of control is passed to the task immediately

following the synchronizer once all of the incoming branches have

completed. E.g.: The “start migrated application”(C) task runs

immediately after both the “migration check”(A) and “receive state”(B)

tasks are completed. Evaluation criteria: support for this pattern is

demonstrated by any tool/language providing a construct which allows the

convergence of the execution threads of two or more parallel branches in

one task.

 Exclusive choice: the divergence of a branch into two or more branches:

when the incoming branch is enabled, the thread of control is given to one

of the outgoing branches based on a rule that can choose one of the

outgoing branches. E.g.: Depending on the value of context information

“x”- evaluated by the “check x”(A) task -, either the “trigger partial

migration”(B) or “trigger total migration”(C) task is initiated. Evaluation

criteria: support for this pattern is demonstrated by the provision of a

construct (either implicit or explicit) that allows the thread of control at a

given point in a process to be defined depending on a specific condition.

 Simple Merge: the merge of two or more branches into a single

consequent branch: each enablement of an incoming branch results in the

thread of control being passed to the consequent branch. E.g.: At the

conclusion of either “trigger partial migration”(A) or “trigger total

migration”(B) tasks, a “notify migration”(C) task is started. Evaluation

criteria: support for this pattern is demonstrated by any tool/language

providing a construct which allows different execution threads to have the

same subsequent task.

The exhaustive description of the workflow patterns is out of the scope for this

document, a complete description can be found in (Aalst et al., 2007) [Aalst04].

 31

3.2 Programmability validation

The programmability validation will be carried out taking into account all the

modules responding to the following criteria:

 Modules that in the programmability assessment were indicated as

enabling the programmability

 Modules present in at least one available prototype

While the Programmability Assessment provides a theoretical evaluation of the

module programmability, during the Validation phase the described module

features will be verified and evaluated through some measurable parameters:

 Consistency: is the module behaviour compliant with the rules set using

the tool/language selected? (yes/no).

 Robustness: how much is the module affected by errors in defining the

module behaviours? E.g.: if there is an error in a parameter value is the

module able to limit the error consequences?

 Runtime efficiency: this parameter will evaluate if the runtime efficiency

is affected by changing the module configuration, e.g.: the module has

different runtimes for the standard configuration and for different

configurations. The runtime efficiency could be evaluated if specific

measuring tools are available.

During both the first and the final iterations, for each module satisfying the

previous criteria, an exhaustive set of test cases should be defined, in order to

validate the correct behaviour defined for the different modules. The test cases

definition should be carried on by both module owners and Vodafone testing

team.

The template that will be used for these test cases is the following.

ID Univocal identifier of the test case

Module Related module

Description Objective of the test case

Input Input provided to the module

Expected

output

Expected output in terms of module behaviour

Actual output Output obtained

General

considerations

Comments derived by the test result

For each module, the test result will be shared using the following test report:

 32

Title: OPEN Programmability Test Report moduleName

ID:

Version Date Comment

Test Case

ID

Description Status (pass,

failed, fixed)

Actual

behaviour

Severity

1

2

3

4

5

3.2.1 Programmability validation – first iteration

The validation for the first iteration of the programmability evaluation will

involve:

 the modules that in the programmability assessment-first iteration, were

indicated as enabling the programmability

 modules present in at least one available prototype

3.2.2 Programmability validation – final iteration

The validation for the final iteration of the programmability evaluation will

involve:

 the modules that in the programmability assessment-final iteration were

indicated as enabling the programmability

 modules present in the final prototype

3.3 Partners’ contribution-first iteration

In the following workflow diagram, the contribution for the programmability

evaluation requested from each module owner is depicted. It is foreseen that most

of the evaluation in the first iteration will stop after the first activity (Compile

“General considerations” field of the Programmability Assessment template)

 33

because most of the first iteration prototypes do not support programmability in

their current implementation.

Figure 9: Programmability evaluation: partner’s contribution.

Start

Does the module enable the

programmability?

NO

END

Compile “General

consideration” field of

the Programmability

Assessment template

Compile the

remaining fields

of the

Programmability

Assessment

template

YES

Is the module currently used by one

of the first iteration prototype

NO

Compile

Programmability

Validation test

cases

YES

 34

4 Technological evaluation

The previous deliverable D6.3 [D6.3] defined the common parameters used to

perform a technical evaluation and described how to realize a translation of them

for testing purposes.

In particular, some specific requirements for the OPEN project were added in that

deliverable, as they were considered as useful to be verified; but especially this

document constitutes the basis for the test plan concerning the technical

evaluation, thus shaping the realization of it and the fields to be considered and

agreed among all the OPEN project partners.

Two testing timeframes have been scheduled: the first experience (currently

foreseen between M15 and M20 of the OPEN project) acts as an input for a

following phase of software development, aimed at correcting technical issues

that will arise; this choice has been made, since technical aspects are primary for

the outcoming prototypes from the project, and they can be a future proof for the

final development. After that, another evaluation stage will definitively

demonstrate the technical solidness of OPEN platform, in order to complete the

final report by M28.

Therefore this document, for the sections concerning the technological evaluation,

has the scope of:

1. Clarifying the overall methodology that will be strictly observed for the

technical testing of the various prototypes within the OPEN project

2. Describing in detail the test plan (whose format has been defined in D6.3)

for each first iteration prototype to be submitted to the technical evaluation

3. Putting the basis for further work, regarding both the collection/evaluation

of the results and the organisation of the second testing iteration

4.1 Methodology for technical testing

The indicators to be analyzed for an effective technical evaluation have been

defined in the D6.3 that followed two testing paths.

The first (and more complex) path is the evaluation and measurements of a set of

parameters (mainly taken from the Description of Work for the OPEN project).

This is the most complex step, because for each prototype these indicators can

wear different meanings, and the analysis will not provide a pure success/fail

output. The evaluated indicators and the measurements have to be compared with

the expected results, with a subsequent check among the OPEN partners.

Furthermore, the analysis should be repeated for each migration scenario (from a

device to another and back, to verify possible degradations), when this is allowed

from the prototype.

The second path is based on a set of specific OPEN requirements, elicited in the

D1.1; they will be verified for each prototype, thus producing a clear outcome,

since they have a Yes/No format: they are, in fact, functional requirements

 35

concentrating on what the system should do, while the previous indicators focus

on how well. The requirements are surely a valuable evaluation benchmark:

during the drafting of D1.1, they have been defined through consolidated and

reliable methods (VOLERE, Ben Achour, etc.) and are specific for the OPEN

platform and the applications embedded, so they can verify the fulfilment of the

objectives of this project.

These approaches have to be adapted to the first iteration prototypes, with the goal

of making sure that the software system to be tested fulfils the expectations about

the indicators and the functional requirements. This could be a complicated

process, if a complete testing of all software modules involved in the OPEN

system is considered. However, a trade-off is needed, since it is not possible

during an efficient evaluation to verify that the system responses as it is designed

to do given every possible combination of inputs and resulting outputs, while an

exhaustive testing would be required in order to test all logical execution paths.

Therefore, a practical goal for software testing would be to maximize the

probability of finding errors using a finite number of representative test cases, to

be executed with the minimum effort: this is why simulations that foresee the

behaviour of OPEN platform in high load scenarios have been considered in the

D6.3 as being out of scope for this technical testing experience.

An example of such an approach can be identified in the performance indicators

described in the D6.3: the separation of performance measurement among

different functional elements allows identifying the source of possible issues,

failings, bottleneck, and so on.

This will be very useful for these first prototypes, which don‟t completely

reproduce the end to end OPEN behaviour, but currently focus on particular

features/modules: since the whole system is not still mature and available at this

time, the evaluation approach (for these prototypes) will not be a completely

integrated testing.

However, it will be more than a pure module testing. In fact, according to the

British Standards Institution definition, “Module testing, also known as unit or

component testing phase, is concerned with the testing of the smallest piece of

software for which a separate specification exists”: this meaning should be

enriched basing on the technological scopes at this point (with some possible

exceptions depending on the particular element /product to be tested).

So the first iteration will give focus to the prototypes, starting from some building

blocks that combine individual software modules and testing them as a group.

During the second stage, on the other hand, a complete integration testing will be

feasible, in order to arrive to the overall product/service (this topic would be

enlarged when talking about partial/system integration).

Another key point to underline concerns the difference between “white box” and

“black box” testing (these are common terms from the mathematical modelling

theories), of course in relation with the purpose of such an evaluation:

 36

White box testing (a.k.a. clear box testing, glass box testing, transparent box

testing, translucent box testing and structural testing) uses an internal perspective

of the system to design the analysis and the test cases [WBDef]. It requires

programming skills from the tester to identify all paths through the software: the

inputs are chosen to especially verify paths through the code, determining the

proper outputs. This means for example that if the implementation changes, the

tests (based on the current one) probably will need to change, too. So a white box

testing is finally more suitable to a debugging phase from the developers, and it

will be considered out of scope for the technological evaluation in the OPEN

project.

Black box testing, on the other hand, takes an external perspective of the

product/service to derive test cases. These tests can be functional or non-

functional so, again using a previous clear definition, they can verify both what

the system should do and how [BBDef]. The testing design phase aims to select

valid and invalid inputs and determines the correct output, without needing a strict

knowledge of the test object's internal structure. The dimensioning of this black

box is applicable to different levels of testing: the higher the level, and hence the

bigger and more complex the box, the more one is forced to use such a testing to

simplify, even if one cannot be sure that all the possible paths are tested (but this

method can uncover parts of the specification finally unimplemented).

Technological evaluation within the OPEN project will be completely referable to

the black box approach.

Figure 10: Separation between white box and black box testing for OPEN testing

After the first iteration and the following timeframe of development, a new phase

of testing will aim not to only verify the way of working of each module, but it

will evaluate the level of integration [IDef] reached within the OPEN platform

 37

and its components (this recalls the so-called bottom-up approach, since the

analysis starts from lowest levels of integration, to be then incremented). About

this point, such an evaluation can imply partial integration or system

integration testing:

Partial integration acts again as a black box testing, but this time it doesn‟t

observe the level of the single module; the areas being involved in the evaluation

cover several modules, through a product/service related to this set. This means

that with a finite number of areas, all the modules are tested while being

integrated with other ones (but not all the possible ones).

System integration is the final complete validation of the product/service the

project aims at, in which all the modules are tested while contributing to it and

being integrated each other. So the testing process exercises the system's

coexistence with all the others.

Since the objective of the OPEN project is to realize and validate the complete

migratory platform, enriched through the two final target applications, the second

iteration should aim at a system integration; partial integration is somehow

included in the first stage prototypes, and in the second test experience it will be

previously verified only in case of specific exceptions, such as prototypes that

need it, according to a clear indication from the developers. So the structure of the

complete evaluation process will be the following:

Figure 11: Level of integration in the different phases of the testing process

Further sections of this document will define the template for test cases definition,

which prototypes (among the ones from the first phase) will need a technological

evaluation, and especially why this can give added value to the project; but before

 38

of these specific topics, it is necessary to first define how the generic indicators or

requirements presented in D6.3 could be adapted to a particular prototype.

The main point of this adaptation, from previous WP6 deliverable to the test plan,

concerns the general indicators, since the same process is going to be very simple

for the specific functional requirements (Section 3 of D6.3): this set needs only to

be shaped to each prototype, cutting the requirements that don‟t concern it at all

and inserting the others that are applicable in the prototype test list. The summary

of indicators and requirements can be found in the Appendix D.

4.1.1 Template for test cases definition

Internally to each prototype test plan, a test list will be defined, basing it on some

test cases. Since tests within the OPEN project cover not only technical

evaluation, but also other areas, a common template for the test case definition

will be used where possible for these test experiences, being then shaped on the

particular necessity for the specific test. This simple template, as seen in Chapter

3, can satisfy these needs for both the technological and the programmability

evaluation:

ID

Module

Description

Input

Expected

output

Actual output

General

considerations

Figure 12: Generic template for test cases definition

In fact, this is a typical template for black box testing, in which we have only a

description of what should be done and with what result: the template doesn‟t

mind internal configuration of the test object, but only what results are achieved

and eventually how. Of course this template can be enlarged or modified for the

specific prototype/test case, to maintain a stricter adherence to the testing

purposes.

4.1.2 Test plan

A test plan format has been defined in the D6.3: it is made of eighteen different

sections to totally shape and lead the execution of the technical evaluation. Such a

test plan is oriented to the prototype, since this is more suitable to verify if and

 39

how a product/service works; the modules involved in each prototype can be used

to underline the possible origin for a fault or an unsatisfying indicator.

The format of D6.3 follows, this time it has been structured in a table that

underlines for which section a contribution is needed from the developers of the

prototype to reach an agreement on the testing procedures:

Test plan Identifier: It is a

unique way to refer as to the

test plan, related to the ongoing

project

OPEN Technological test plan prototype Name

Version Issue Date Author

 Prototype owner/Vodafone testing group

Prototype name Prototype name

References

[by tester]

The set of documents within the ongoing project to which the

test plan refers

Lesson learned from

previous experiences

[by tester]

If testing is divided in more phases, each phase can contribute

to modify the approach during the following, both at high

level and in detail

Test items

[by tester]

It is a categorization of the whole testing evaluation in

different areas
[by prototype owner]

Analysis of which indicators/requirements are feasible to test

Risk

[by tester]

Potential risks, which must imply mitigation actions
[by prototype owner]

Eventual risk from direct experience on the prototype

Features to be tested

[by tester]

In-scope functionalities
[by prototype owner]

Support for test cases definition and validation

Features to be not tested

[by tester]

Out of scope functionalities, so the other indicators and

requirements, not listed in the previous section.

Approach

[by tester]

Describes the cooperation of partners executing the

evaluation and their role/actions during testing
[by prototype owner]

Agreement for the assignment of possible actions

 40

Entry/Exit criteria

[by tester]

Describes, if it is feasible, how a partner can join/leave an

ongoing test – OUT OF SCOPE FOR OPEN PROJECT

Test environment

[by tester]

Describes the testing environment with a special section

dedicated to possible limitations

Item pass/fail criteria

[by tester]

Identifies how to declare a test case passed/failed; usually

where there are multiple steps then the case shall fail if any of

the steps fail
[by prototype owner]

Expected output for test cases (e.g. indicators)

Suspension criteria and

resumption requirements

[by tester]

Describes, if it is feasible, why partners can stop and then

resume testing, and with what kind of requirements – OUT

OF SCOPE FOR OPEN PROJECT

Test deliverables and

reporting

[by tester]

Identifies the deliverable/report files that will be used both

during and after testing to collect the results

Remaining test tasks

[by tester]

If the testing of the same prototype is divided in more phases,

this section describes what can be the added features to verify

in the following ones
[by prototype owner]

Define if there are possible future developments to be further

tested

Staffing and training

needs

[by tester]

Describes the resources and the know how needed to

participants
[by prototype owner]

Contribute from direct experience on the prototype

Roles and responsibilities

[by tester]

Identifies precise actions for people involved in the test

experience
[by prototype owner]

Agreement/Validation

Schedule

[by tester]

Defines the timing of testing, agreed among partners
[by prototype owner]

Agreement/Validation

 41

Post trial analysis

[by tester]

Describes, if there, some analysis/evaluations, to do after the

closure of testing, such as tracking analysis, statistics, and so

on

4.2 Prototypes to be tested during first iteration

In order to choose which prototypes are going to be submitted to the technological

evaluation, the aspects to consider are:

 The real added value that could be given from a technical testing

 The feasibility of a testing based on the approaches previously described

 The relevance of the prototype for the following development within the

OPEN project

 The key OPEN functionalities demonstrated in the prototype

Depending on this line, three prototypes will be part of the first stage of the

technological evaluation: the web migration application (from D2.1), the mobility

support (from D3.2) and the device selection map (again D3.2). So the indicators

and the requirements to test will be shaped on these prototypes to realize the test

plans in a suitable and feasible way.

Web migration has been chosen since this will be the basis for the final

middleware of the OPEN platform: the middleware, as from the definition,

“automatically supports the main functionalities, adaptation and state persistence

across multiple devices with various interaction resources”. So this prototype

includes the seamless migration concept for an interactive application (the web

shopping list) between different devices, maintaining the current state; this

already involves many different modules working together:

 42

Figure 13: Modules involved in the web migration / An adapted web page

The other two prototypes aim to support the application migration; there is a third

prototype within this stream (included in the D3.2), but it mainly concerns the

configurability area and especially the application logic reconfiguration. The two

solutions to be considered for a technological evaluation are currently working

more or less independently, but they represent a strong basis for further work,

since in the future they will work together in the integrated OPEN platform.

Mobility support and context information management concerns the migration

of a video-streaming application based on context information (e.g. user location),

so it is a context aware management of the mobility (for instance the volume can

depend on the numbers of users):

LAN 2

Change of location Video server

User

Switch

Access point

Access point

Switch

Switch

LAN 1

Video display migrated

Figure 14: Mobility support for video-streaming migration

 43

Such a prototype, like the web migration, needs the interaction of different

functional elements to correctly perform the functionalities which it is aimed at.

Device selection map is, from the description of the prototype itself, “a graphical-

interaction component embedded on the OPEN-client that may facilitate it in

discovering the available target devices, their capabilities and their state”. Of

course to do this, the device selection map has to be context-aware concerning

user location, movements and so on, thus being a context provider. Some

examples of different graphic follow:

Figure 15: Graphical choices for device selection map

c d

a b

 44

5 Usability test plans

5.1 From D1.1: OPEN Requirements

Note: This is not a standard test plan because it represents an exploratory study

about the process of eliciting OPEN requirements. In particular, no

product/service intended for the final user is evaluated by a group of users, but

only a theoretical analysis is performed.

Test plan:

1. Description: This is an exploratory usability study about the OPEN project

deliverable D1.1 (Requirements for OPEN Service Platform).

2. Purpose: This study is an analysis of the deliverable using a user-centred-

design optic, in order to verify that during the elicitation of such a

requirements document the usability towards final users has been taken

into account in the proper way. Through this brief analysis we also want to

define some guidelines for the D1.3: this deliverable, in fact, will finalize

the requirements to be followed and respected during the implementation

of the OPEN platform.

3. Schedule: The analysis has been performed during May 09 (M16), before

the finalization of D1.3 in order to provide a useful input for people

working on it.

4. Owner: The analysis is performed by VF-IT team.

5. Approach: The following aspects are considered during such analysis

 Method used for scenarios and requirements proposition

 Method used to reach an agreement about proposed scenarios and

requirements

 Final requirements and scenarios obtained in the D1.1

6. Outcome: The analysis will be communicated to the owner of D1.3 (SAP)

and after that to the OPEN partners with a report file.

5.2 From D5.1: Social Game Application Design

5.2.1 Purpose, Goals and Objective of the Test

D5.1 (Initial application requirements and design) is a key part of exploratory

usability study. This test plan aims at evaluating the usability of the Social Game

application only through a description and some screenshots of it, to be presented

to possible target users of such a solution. The result is intended to be useful as a

feedback for the future development of this application.

 45

5.2.2 Participant Characteristic

Participants to the testing are typical user of such an application, so people 18-35

aged, basically keen on gaming, with no particular technical background and

know-how. Their number is intended to be from 10 to 20, since they quite

represent a homogenous target.

5.2.3 Method

Vodafone team, working together with Arcadia, delivers a questionnaire to be

presented to participants. The first point to define is what to present to the

responders; in this case some screenshots and a brief description of the application

have been used in order to have an immediate rendering of it, so that users can

provide and write their opinions. The questionnaire has a dedicated section in this

test plan.

5.2.4 Test Environment, Equipment and Logistics

Questionnaire can be provided both directly and from remote to the participants,

the same is happening to collect the answers as they finish.

5.2.5 Data to Be Collected and Evaluation Measures

The usability evaluation focuses on user feedback about graphics and format of

the social game application, comments on some UI options, and suggestions for

the future development, such as other functionalities, similar products and so on.

The answers, classifiable as preference data, are to be collected; they can be

analyzed and described with proper diagrams, and provided to developers to help

their further work.

In the next paragraph, the template of the usability questionnaire is reported.

5.2.6 Usability Questionnaire

Dear user, you‟ll find here the “grand vision” of a migratory game concerning

Formula 1. Through this application, you‟ll be able to switch the social race game

between different devices both as you wish and automatically (when particular

conditions are present) in a seamless way.

The following screenshots will help you to understand the user approach to this

kind of application; four situations have been identified, each of them involving

different types of migrations:

1. From college library to home

2. From the living room to the kitchen

3. Change of user

 46

4. At the pub

Thomas and Brad, two young gamers, will join the game with you in this

storyboard, by showing the levels of the game and the different scenes and goals:

Figure 16: Scenario (part 1)

 47

Figure 17: Scenario (part 2)

 48

Furthermore, to help you better understanding the game, this is a screenshot of

how the application could outcome:

Figure 18: Scenario (part 3)

 49

Figure 19: Social Game user interface

Finally here is to you a simple and fast questionnaire to collect your feedback

about the application that has been presented to you; the first part will help us to

understand your approach to this kind of services, while the second one will be

useful to improve it.

The complete version of the questionnaire is available in Appendix A (par. Social

Game Questionnaire)

 50

5.3 From D5.1: Emergency Application Design

5.3.1 Purpose, Goals and Objective of the Test

D5.1 (Initial application requirements and design) is a key part of exploratory

usability study. This test plan aims at evaluating the usability of Emergency

application only through a description and some screenshots of it, to be presented

to possible target user of such a solution. The result is intended to be useful as a

feedback for the future development of this application.

5.3.2 Participant Characteristic

In this case, participants to the testing present stricter requirements than the

previous case, since they have to be possible target user of a business emergency

application, i.e. with a particular technical background and know-how. Their

number is intended to be about 10 (due to the strict requirements, in case of

availability problems this number can be restricted to 8), with a classification

based on their skills and background:

 Professionals with strong informatics know how

 People accustomed to manage emergency situations

 People without such skills, but whose company can face such

scenarios

5.3.3 Method

Vodafone team, working together with SAP, delivers a questionnaire to be

presented to participants. The first point to define is what to present to the

responders; in this case some screenshots and a brief description of the application

have been used in order to have an immediate rendering of it, so that users can

provide and write their opinions. The questionnaire has a dedicated section in this

test plan.

5.3.4 Test Environment, Equipment and Logistics

Questionnaire can be provided both directly and from remote to the participants,

the same is happening to collect the answers as they finish.

5.3.5 Data to Be Collected and Evaluation Measures

The usability evaluation focuses on user feedback about graphics and format of

the emergency application, comments on some UI options, and suggestions for the

future development, such as other functionalities, similar products and so on.

 51

The answers, classifiable as preference data, are to be collected; they can be

analyzed and described with proper diagrams, and provided to developers to help

their further work.

5.3.6 Usability Questionnaire

This section describes the usability questionnaire in order to qualitatively assess

the usability of the OPEN migration platform for the Emergency Scenario. The

general aim of usability tests is to observe people using the product to discover

errors and areas of improvement and to measure how well test subjects respond in

four areas: efficiency, accuracy, recall, and emotional response. In this case, since

this is still a usability exploratory study, users will observe only a description of

the application tasks, enriched by some pictures and screen shots: the results of

this first study can be treated as a baseline or control measurement; all subsequent

tests can then be compared to the baseline to indicate improvement.

Hypotheses

The test hypotheses describe a reasoned proposal predicting a possible causal

correlation among multiple phenomena.

1. The OPEN platform facilitates the smooth operation in an emergency

operations centre (EOC).

2. The migration services are easy to use.

3. The migration services are self-explained.

4. The migration services enable new usable application formats.

5. The new application formats boost the usability of emergency applications

Tasks

The main representative tasks for the EOC application are now provided to carry

out the usability study. After finishing reading the task descriptions, the user has

to fill in the questionnaire in order to state his personal opinion about the product.

1. Register a device (video wall) to the OPEN platform

2. Start the flood simulation application on the PC

3. Choose the video wall as migration target

4. Initiate the migration towards the smart wall

Figure 20 sketches the test scenario. The migration of the graphical user interfaces

of both simulations could be triggered by detecting the nearby smart wall via a

personal area network like Bluetooth. Over Bluetooth the OPEN system can

negotiate the migration policies of a laptop and the smart wall. The smart wall has

a high resolution screen that allows the display of different application views at

the same time. In order to take full advantage of modern rich Internet applications,

 52

the smart wall is also equipped with an OPEN-enhanced Mash-Up generator that

combines the outputs of different applications into a coherent view (see Figure 22-

Figure 23). Also the controls of the different applications have to be merged in a

usable manner. The simulation applications can still simultaneously be controlled

via the PDA or laptop as well as via the smart wall.

Figure 20: Migration test scenario

Sample Application

The following pictures show screenshots of the OPEN migration platform as well

as of the emergency scenario applications to the according tasks:

Flood

Forecast

Simulation

Data Interface

Output

Controls

EOC Application

View

Toolbox

Controls

Application

View

Controls

Mash-Up

Generator

Application

Interface

 53

Figure 21: Register a device (video wall) to the OPEN platform through the address of the

OPEN server

Figure 22: Start the flood simulation application

 54

Figure 23: Choose the video wall as migration target

Figure 24: Video Wall after migration

The questionnaire proposed to the user is available in Appendix A (par.)

 55

5.4 From D2.1 and D3.2: Web Migration with Device Selection
Map

5.4.1 Purpose, Goals and Objective of the Test

The web applications migration prototype [D2.1] offers the option to use the same

web application from different devices, with a user interface adaptation.

Moreover, the migration functionality is offered, and thus it is possible to start

using the application on a device and to continue using it in another one, while

maintaining the current state.

The first purpose of this usability test is to evaluate the user interfaces that the

OPEN platform generates from original web applications for PDA devices.

This is not a standard usability test because there is not a single user interface to

evaluate, but a mechanism for user interfaces generations (par. 2.3.2).

A comparative test will be performed between the original web applications

accessed from PC and the corresponding adapted versions displayed on the

mobile device. For the latter, a little usability decrease is accepted only if it is

related to the devices capabilities (for example if it is related to the device screen

size or to the available bandwidth). A usability evaluation will also be performed

for the original web application accessed from a PDA device (i.e. without using

any component of the OPEN platform), in order to determine the OPEN web

interface adaptation perceived usefulness.

The second purpose of this usability test is an evaluation of the migration process

offered by the OPEN platform. In particular, a user interface is available, that

allows to perform a migration of the current web application from the current

device to another one. The selection of the target device is performed using a

“Device Selection Map” [D3.2].

Figure 25: usability evaluations that will be performed on the web migration prototype

In the next paragraphs a complete description about the proposed testing activity

will be provided.

 56

5.4.2 Research Questions

This paragraph contains a list of aspects that will be considered during the

usability evaluation of the tested prototype.

The following research questions will be addressed to web applications

adaptation. These questions are referring to the usage of the adaptation module on

a PDA device. At the end of the usability test it will be possible to answer all of

these questions.

 Do adapted web pages generated by the OPEN platform offer an

acceptable level of readability? In order to answer this question, it is

necessary to compare adapted web pages with their original version.

 Is it possible to recognise every component of a web page (for example

titles, forms, etc.) in the adapted version generated by the OPEN platform?

 Are adapted web pages generated by the OPEN platform more usable than

the original ones (displayed on the same device)?

The following research questions will be addressed about the migration process:

 Is the migration process intuitive? (i.e. is it possible to know in an intuitive

way what will be migrated and what is the destination device of the

migration?)

 Is the migration process reversible? This question is needed because when

the user commits an error during a migration (for example when he selects

a wrong target device) he must be able to roll-back to the previous

situation.

 Is the perceived continuity acceptable for the end user?

5.4.3 Participant Characteristic

This paragraph contains the OPEN web migration user profile. The user selection

will be performed using this profile and the generic OPEN user profile.

 Age. This application‟s users can have an age between 18 and 60 years.

There are not particular constraints on the user‟s age.

 Sex. There are no constraints about the user sex. It could be preferable to

have almost the same number of male and female users.

 Internet usage. This application‟s users are very familiar with web sites

and web applications. It could be preferable that they access the web on a

daily basis.

 57

Figure 26: OPEN and web migration user profiles

5.4.4 Method

The application will be tested with three web applications. A complete test list

will be executed for the first two web sites, and an informal evaluation will be

provided for the last web site.

Web applications containing only html and JavaScript code will be taken into

account. Moreover, in order to make sure that the UI adapter does not encounter

any problem during the original web pages elaboration, only web pages

containing well formed html code will be taken into account. Such condition will

be verified using the W3C Validator (http://validator.w3.org). This tool allows to

check if an html page, even if it is correctly displayed by web browsers, contains

some errors (for example a tag that is never closed). All of these verifications

have been performed before the task list creation, in order to avoid any adaptation

problem during the usability test.

The web applications will be tested on a PC, on a PDA using the OPEN platform,

and on a PDA without using the migration platform (in the last case no evaluation

will be performed on the migration process).

As explained in the par. 2.3.2, two groups of users will be employed. The first

group will execute a task list on the PDA without using the OPEN platform, then

will execute it on a PC, and finally will migrate the application, in order to

execute the task list on the PDA (using, this time, the OPEN platform).

The second group of users will perform the same operations, but starting from the

PDA with the OPEN platform, then migrating on a PC and in the end using a

PDA without the OPEN platform.

The task list execution on the PDA device without using the OPEN platform is

useful only for the Web UI Adaptation module evaluation. In this case, indeed, it

is it isnot possible to perform a migration and the state maintenance is not offered.

http://validator.w3.org/

 58

It is worth noting that this method does not completely solve the bias issue since,

for both of the user groups, the PC is used after another device. However,

considering that only simple and intuitive web applications will be used, and that

an informal study will be performed, this effect could be considered acceptable.

An alternative solution could be to employ a third group of users, but the

advantages that could be obtained from such an approach would not justify the

required extra-effort.

At the end of the testing activity, a debriefing session will be performed with the

user, the moderator and test observers. In order to identify at least the 80% of

usability problems, each testing group must contain at least 4 users.

Figure 27: usability testing activity for web migration prototype

A few days before the usability test, users will compile a questionnaire about their

experience on web applications (for example, what kind of web sites they prefer,

how much time they spend surfing on the internet, etc.). Moreover, each user will

provide a list of her/his most used web sites. These answers will be then used to

individuate for every user a web site considered very significant for her/him and

that is supported by the OPEN web migration prototype. During the test, the user

will perform some tasks on this web site and s/he will provide a qualitative

feedback. However, this phase can be skipped if it is not possible to identify a

web site that can be correctly adapted and migrated.

 59

The first application taken into account is a web site proposed by the application

developers and it is called: “Shopping Assistant”. It is an e-commerce web site

that offers the option to focus on the migration client capability to maintain the

application status during migrations (in particular when they are performed during

not completed transactions) and on the web pages navigability.

The second web site tested is one of the most famous applications available on the

internet, i.e. wikipedia.org. The Italian version will be taken into account (at least

for Italian users). This web site, with its several articles, offers the option to

analyze, in particular, the web user interface readability.

The last web site to be tested will be individuated using the user‟s initial

questionnaire. This site represents a web application that the user considers very

useful and it is, obviously, different for each user. For this reason, during this test

phase, a less formal approach will be used. Then, user comments or suggestions

will be taken into account more carefully than numerical parameters (it will not be

possible to calculate mean usability parameters for user groups, because every

user will use, in this phase, a different web site).

During all the testing activity, the “thinking aloud” method will be employed: the

user will be encouraged to explain her/his thoughts during all the testing activity.

At the end of a user testing activity, a mean level of usability will be calculated

for each web application and for each device (using the parameters defined in par.

5.4.8). This value is obtained calculating the arithmetic mean of the usability

parameters expressed by the user during the usability questionnaires compilation.

The expected result is that the PDA-adapted UI usability is a little less than the UI

displayed on the PC usability (because the PC has a larger screen, a higher

computational power and usually a greater bandwidth than the PDA) and greater

than the PDA not adapted UI usability.

This calculation will be performed before the debriefing session, so every

unexpected result will be discussed with the user, in order to get some additional

information.

At the end of all the testing sections, a mean usability level will be calculated by

taking into account Shopping Assistant and Wikipedia tests. For the third web site

it is not possible to calculate a mean usability value for all of the users, because it

is different for each user.

If we indicate with UPDA-A the usability on the PDA with OPEN UI adaptation,

with UPDA-N the usability on the PDA without the OPEN UI adaptation, and with

UPC, the usability on the PC, the following result is expected:

The usability on the PDA with the OPEN web user interface adapter must be

greater than the one obtained on the same device without user interface

 60

adaptation. Moreover, the usability of the user interface displayed on the PC can

be slightly greater of the PDA usability with adaptation, but their usability

difference should be minimal (a not formal analysis will be performed, then a

threshold difference hasn‟t been defined).

About the usability evaluation of the migration, an informal evaluation will be

performed and the application usability will be considered good if the most of the

user will consider it good. A mean usability parameter will be calculated, but

there isn‟t any condition about its value.

The test plan proposed in this document will be validated during the execution of

a pilot test. During this phase, either the test list or the expected usability results

could be modified (for example if a test page is no longer available, or if the

application is not able to adapt or to manage its migration in the expected way).

5.4.5 Task List

In Appendix A (par. Web Migration Task Lists) the proposed task lists for the

usability tests performed by the user group A and by the user group B are

available. A few tasks will be added when the preliminary questionnaire of every

user will be analyzed. This task list could be subjected to some modifications

during the pilot test execution.

5.4.6 Test Environment, Equipment and Logistics

The following devices will be used for this usability evaluation:

 PC. A PC connected to a LAN through a WiFi access point is required. It

must be able to reach the migration server (that has a public IP address)

using the TCP protocol and a specific port. Moreover, it must be able to

communicate with other devices on the same LAN using TCP and UDP

protocols.

 PDA. A PDA using Windows Mobile 6.0 will be employed. Dot Net

Compact Framework 3.5 will be installed on the device in order to execute

the application prototype. The device shall have a WiFi connection that

will be used in order to access the same LAN where the PC is located.

TCP and UDP protocols will be used to communicate with the PC and

TCP protocol will be used for the communication with the migration

server.

Preliminary questionnaires (to be compiled some days before the task list

execution) will be compiled in an electronic format.

All of the questionnaires to be used during the task list execution will be printed

and then compiled by the user using a pen.

The moderator will take notes during the task list execution using a proper

module.

 61

No audio/video registration will be performed during this test and no specific

logging tool will be used.

5.4.7 Test Moderator Role

Before the testing activity, the moderator should make sure that the required test

environment is correctly configured and that there are no network problems.

Moreover, he should verify that required test pages are reachable.

During the task list execution, the moderator should talk with the user in order to

know his thoughts. He should have a copy of the test list in order to take notes for

every executed task.

At the end of the task list execution, the moderator must analyze the user

questionnaires and direct the debriefing session. Also in this case, he should take

notes of the discussion.

Moreover, the test moderator could modify the test list in the case of an

unexpected event during the task list execution (for example if a tested web

application is no longer reachable, or if a web page has been modified and its new

version contains an error that makes impossible to use it in the OPEN platform).

5.4.8 Data To Be Collected and Evaluation Measures

This paragraph contains a list of aspects to be evaluated during the task list

execution. Parameters related to the web user interface will be evaluated for each

tested version (using a PC, a PDA with OPEN, or a PDA without OPEN).

Parameters related to the web user interface:

 Text readability. The text content displayed on the user interface must

offer an acceptable readability. This is especially important for medium

length text content (for examples news, scientific articles, and other

information available on the internet), that often have a poor readability on

PDA devices. Every user employed in the testing activity will evaluate this

parameter using a numeric value from 1 (very poor) to 5 (very good).

 Visibility of titles. The user must be able to identify, in thedisplayed web

pages, each title. They could be displayed in a greater size than normal

text, in a different color, or in bold. The important thing is that they are

recognizable, even for users that have never used the tested web

application. Also for this parameter a numerical evaluation between 1

(very poor) and 5 (very good) will be provided.

 Visibility of links. The user must be able to identify each link contained in

the visited web pages. Two evaluations will be provided for this

parameter. A value between 1 (very poor) and 5 (very good) decided by

the user, and the number of errors (i.e. clicks on texts that are not links)

measured by the test moderator.

 62

 Images rendering. Images shall be correctly displayed in the device screen.

Images shall be neither too large, nor too small in comparison with the

screen size. A numerical evaluation between 1 (very poor) and 5 (very

good) will be provided.

 Web forms usability. Web form elements (i.e. text inputs, password inputs,

selection lists, buttons, etc.) must be correctly displayed. In particular, it

must be possible not only to read the content of web form elements, but

also to edit it (when it is possible). Moreover, disabled or not editable

elements must be recognizable. A numerical evaluation between 1 and 5

will be provided, with some (optional) comment about elements whose

rendering is not optimal.

 Navigability. The user must be able to navigate with ease in the web

application and to go back to the previous page without using the web

browser back option. A numerical evaluation between 1 and 5 will be

provided.

Parameters related to the migration process usability:

 OPEN UI user friendly. The OPEN client (the application used to start a

migration) shall be very easy to use even if the user has never used it

before. A numerical evaluation between 1 and 5 will be provided.

 Device selection map usability. The map displayed to the user in order to

select the migration target device must be clear even for users that never

used it before. A numerical evaluation between 1 and 5 will be provided.

 Web browser interaction. The OPEN client shall not create any problem

during the normal web browser usage (i.e. it shall not cover any part of the

current web page). A numerical evaluation between 1 and 5 will be

provided (1 for the worst case, 5 for the best case).

 Continuity. After the migration from a device to another one, the state

must be kept and the user shall be able to continue using the web

application in another device. This is not a technical evaluation, but this

parameter represents the application continuity perceived by the user. For

example, if the migration is correctly performed, but it takes a long

amount of time, even if the state is correctly saved, the end user will

perceive a poor continuity. A numerical evaluation between 1 and 5 will

be provided.

About the reversibility of the migration process, it is evaluated during the task list

execution, and if there will be a problem about this point it will be noticed by the

test moderator and discussed during the debriefing session.

 63

5.5 From D5.2: Social Game Prototype

5.5.1 Purpose, Goals and Objective of the Test

The Social Game prototype is a complex web application, described in detail in

the document D5.2 (Initial prototype applications).

The following functionalities are offered:

 Chat. It is possible to chat with other users of the Social Game.

 IPTV. In the current implementation, a preconfigured clip is displayed

instead of a real IPTV. In the complete implementation of this scenario, it

should be possible to view a real Formula one race while playing the

Racing Game.

 Racing Game. A formula one racing game is available. Every lap

completed by the player is timed and her/his best times are compared with

those of the other players. In the complete implementation of this scenario

players' times would be compared with real drivers' times.

 Betting. It is possible to bet an amount of money on the real race results.

Since in the current implementation only a simulation of the migration of the

controls of the Racing Game is provided, the main purpose of this testing activity

is to evaluate the feeling of the migration process, as well as the application

adaptation for the supported component. Nevertheless, in order to provide some

suggestions regarding possible evolutions of the Social Game development, a

usability evaluation will be also performed for the components that in the current

implementation do not support migration yet.

5.5.2 Research Questions

This paragraph contains a list of aspects to be considered during the usability

evaluation that will be performed on the tested prototype.

The following research questions will be addressed about the prototype migration

features:

 Has the Racing Game the same usability level when it is controlled by a

PC and when it is controlled by a mobile phone?

 Are racing indicators (for example speed, acceleration, etc.) clear enough

when the racing game is controlled by a PC and when it is controlled by a

mobile phone?

 Is the migration process intuitive and simple to use?

The following research questions will be addressed about the social game features

that at the moment cannot be migrated. This could be useful for the following of

the application development:

 64

 Is the chat component readable and simple to use?

 Is the betting component readable and simple to use?

 Is the IPTV simulator correctly rendered and simple to use?

5.5.3 Participant Characteristic

This paragraph contains the Social Game user profile. The user selection will be

performed using this profile and the generic OPEN user profile.

 Age. This application‟s users can have an age between 18 and 35 years.

The social game users should be quite young, because this application is

addressing people keen on games and social web.

 Racing games. This application‟s users have some experience on racing

games.

 Chat applications. This application‟s users are very familiar with chat and

instant messaging software.

Figure 28: Social Game user profile

5.5.4 Method

As stated in the paragraph about the method proposed for usability tests [par. 2.3],

a comparative evaluation will be performed for the features that can be migrated.

In the current prototype version, only Racing Game controls and some indicators

are migrated from a PC to a mobile phone.

In order to take into account the learning process during the Racing Game usage

and then to avoid any bias, two groups of users will be employed, who will

complete the task list with a different execution order. For this application

prototype the task list is quite short and then, it is useful for users to compile only

one questionnaire at the end of the application usage.

 65

Figure 29: Social Game usability testing procedure

Before the task list execution, an extract of the D5.2 will be provided to the users

in order to give them some basic information about the Social Game

characteristics and, in particular, about the Racing Game usage (for example, the

fact that in order to restart the current lap it is necessary to press the “T” key).

After the task list execution and the questionnaire compilation, a debriefing

session will be held, in order to discuss with the user about her/his impressions on

the prototype usability level.

As stated in the usability methodology paragraph [par. 2.3], there are no strict

usability requirements in this phase because application prototypes are still not

completely developed and the usability testing team will be more focused on

finding requirements/suggestions for the following of the development cycle.

However, users employed in the usability evaluation will fill a questionnaire by

answering some questions with a numerical value (between 1 and 5). At the end, a

mean usability value will be calculated for several aspects.

The only usability requirement for this testing phase is that, for the functionalities

that can be used via PC and via mobile phone, there is a similar usability level.

For all of the other aspects of the social game, a careful informal analysis will be

performed.

 66

5.5.5 Task List

In Appendix A (par. Social Game Task Lists) the proposed task lists for the

usability test performed by the user groups A and B are available.

The task lists are very similar (only the execution order is slightly different).

5.5.6 Test Environment, Equipment and Logistics

The following test environment [D5.2] will be used during this usability

evaluation:

 PC. The same device will be used as Game Client, Game Logic Server, and

Physics Server.

The following characteristics are required: Intel or AMD CPU running at

2Ghz with 1Gb RAM, ATI or NVIDIA GPU supporting Shader Model 2.0,

and 100Mb of free disk space, Display with 1280x1024 resolution, WiFi

network connection; Mozilla Firefox 3.x with JavaScript enabled running on

Windows XP SP2 or Vista operating system.

 Mobile Phone. A Nokia N95 mobile phone will be employed. The tested

application could be compatible also with other devices, but the development

team already used the application on this mobile phone, so, in order to avoid

instability problems, usability tests will be performed on this device.

 Network configuration. Each application needs a network connection with at

least 2 Mbit bandwidth and a set of open TCP and UDP ports. Moreover, an

internet connection is needed. A WiFi access point will be employed in order

to connect the PC and the mobile phone on the same LAN.

The questionnaire will be printed and then compiled by every user using a pen.

The moderator will take notes during the task list execution using a proper form.

No audio/video registration will be performed during this test and no specific

logging tool will be used.

5.5.7 Test Moderator Role

Before the testing activity, the moderator should make sure that:

 The game Physics and Logic Server are correctly configured and running

on the test PC. The PC, moreover, should be correctly configured in order

to be used as the social game client.

 The Racing Game application is correctly installed and configured on the

mobile phone.

 The document with the application description and the required

questionnaire are available.

 67

During the task list execution, the moderator should talk with the user in order to

know his thoughts. He should have a copy of the test list in order to take notes for

every executed task.

At the end of the task list execution, the moderator will analyze the user

questionnaire and direct the debriefing session. Also in this case, he should take

notes on the discussion.

Due to the small number of tasks contained in the task list, it is suggested to avoid

any modification of the task list. If it is impossible (for example for an unexpected

network problem) to execute a task, this fact must be taken into account during

the questionnaire compilation (for example, if it is impossible to execute the task

on the chat, the user will not answer any question about this feature).

5.5.8 Data To Be Collected and Evaluation Measures

This paragraph contains a list of aspects to be evaluated during the task list

execution.

Parameters that can be evaluated on both the PC and the mobile phone:

 Racing Game controls. The usability level of the racing game controls will

be evaluated by the user with a numerical value between 1 and 5.

 Racing Game Indicators. The clearness of the indicators displayed when

the user is playing the racing game will be evaluated by the user with a

numerical value between 1 and 5.

Parameters that will be evaluated only on PC:

 Chat Evaluation. An overall usability evaluation about the chat tool will be

provided by the user. A numerical value between 1 and 5 will be used.

 Betting Evaluation. An overall usability evaluation about the betting tool

will be provided by the user. A numerical value between 1 and 5 will be

used.

 IPTV Evaluation. An overall usability evaluation about the IPTV

simulator will be provided by the user. A numerical value between 1 and 5

will be used.

 Migration Evaluation. A usability evaluation about the commands used in

order to simulate the migration of the game commands from the PC to the

mobile phone will be provided. Also in this case, a numeric value between

1 and 5 will be used.

 68

5.6 From D5.2: Emergency Prototype

5.6.1 Purpose, Goals and Objective of the Test

The Emergency Scenario application is intended to be used when two or more

emergency management experts are working on different aspects of the same

problem and they need to merge their results.

This prototype is a web application that offers the option the play a simulation

(i.e. a geo-referenced time-sequenced dataset) on a map and to migrate it to a

smart wall. When two simulations are migrated to the smart wall, they are shown

on the same map in a merged view [D5.2].

The objective of this test is to evaluate the usability level offered by the migration

and when merging of two simulations. In the current implementation the

prototype does not offer the option to split two simulations from the smart wall to

two PCs.

5.6.2 Research Questions

This paragraph contains a list of aspects to be considered during the usability

evaluation that will be performed on the tested prototype.

The following research questions will be addressed:

 Is the migration process intuitive and simple to use?

 Is a simulation with one dataset displayed in a comprehensible way?

 Is a simulation with two datasets displayed in a comprehensible way?

5.6.3 Participant Characteristic

This paragraph contains the Emergency prototype user profile. The user selection

will be performed using this profile and the generic OPEN user profile [par.

2.1.1].

 Age. This application‟s users are older than 25 years, because this scenario

belongs to the business domain.

 Work Experience. This application‟s users have a good experience either

in the IT field or in some other field related to emergency management.

 69

Figure 30: OPEN user profile and Emergency prototype user profile

5.6.4 Method

During this usability test, as stated in the paragraph 2.3, two aspects of the

prototype will be addressed. A comparative evaluation will be performed between

the simulation of a single dataset and the simulation of two datasets (this is the

feature that is modified during the migration) and a usability evaluation will be

performed on the migration process.

For this application it is not possible to employ two groups of users (as stated in

par. 2.3.2) for the task list execution in a different order. In fact, in order to apply

this methodology, users of the second group should start using the application

with the simulation of two datasets and then migrate one of them to another

device. This, with the current implementation, is not possible. So a single group of

4-5 users will be employed during the test. Moreover, the smart wall usage does

not modify the user experience related to the migration and the merging process.

So two common PCs will be employed instead of one PC and a smart wall.

At the end of the task list execution, the user will compile a questionnaire and a

debriefing session will be held, in order to discuss with the user about his

impressions on the prototype usability level.

During the assessment test there are no strict usability requirements to accomplish

because application prototypes are still not completely developed and the usability

testing team will be more focused on finding requirements/suggestions for the

following of the development cycle. However, users employed in the usability

evaluation will fill a questionnaire by answering some questions with a numerical

value (between 1 and 5). At the end, a mean usability value will be calculated for

several aspects.

 70

5.6.5 Task List

In Appendix A (par. Emergency Prototype) the proposed task list for the usability

test on the emergency scenario prototype is available. The application will be

tested by a single group of users and on two different PCs. At this stage, the

migration toward a smart wall is not needed, because the simulation with two

datasets is correctly displayed on a common PC.

5.6.6 Test Environment, Equipment and Logistics

The following test environment [D5.2] will be used during this usability

evaluation:

 2 Client PCs. Two PCs connected to the same LAN, able to access to the

PC used as web server, and to the Internet will be employed by the users.

Used PCs must have a web browser that supports Silverlight (for example

Internet Explorer or Mozilla Firefox, with the required plugin).

 Web Server PC. A PC to be used as a web server is needed for the

prototype testing. It must be accessible by the client PCs. Apache Tomcat

web container and Emergency web application must be installed on this

PC.

The questionnaire will be printed and then compiled by every user using a pen.

The moderator will take notes during the task list execution using a proper

module.

No audio/video registration will be performed during this test and no specific

logging tool will be used.

5.6.7 Test Moderator Role

Before the testing activity, the moderator should make sure that:

 The web server is up and running.

 The web application correctly runs on both of the client PCs.

 The required questionnaire is available.

During the task list execution, the moderator should talk with the user in order to

know his thoughts during the test list execution. He should have a copy of the test

list in order to take notes for every executed task.

 71

At the end of the task list execution, the moderator will analyze the user

questionnaire and direct the debriefing session. Also in this case, he should take

notes of the discussion.

5.6.8 Data To Be Collected and Evaluation Measures

This paragraph contains a list of aspects to be evaluated during the task list

execution.

 Simulations readability. The user will indicate with a numerical value

between 1 and 5 the readability of the displayed simulation (in the case of

a single dataset and in the case of two merged datasets).

 Migration process usability. The user will indicate the migration process

usability with a numerical value between 1 and 5. Moreover, a user

comment could be provided in order to individuate some usability

problems.

5.7 Further work: reporting and second testing iteration

As stated in the paragraph 2.3, at the end of assessment usability tests, an analysis

of the testing results will be performed (it will be contained in the D6.5).

In particular, for every tested application prototype a usability report will be

compiled. It will contain a qualitative usability evaluation, a list of usability weak

and strong points, and some suggestions for the following of the development

cycle.

Validation usability tests will be performed when the OPEN project will be near

to the end of its development cycle. Required test plans will be drawn up when it

will be possible to individuate the final list of features that will be offered by the

tested prototypes. Moreover, the experience gained during assessment tests could

lead to some modifications of the validation test methodology described in this

document.

An internal report will be provided with an update of the employed methodology

(in the case it will be modified) and a detailed description of the test plans that

will be applied during validation tests.

 72

6 Programmability test plans

In this chapter the programmability test plans are collected. For each module, the

Programmability Assessment template has been filled and a brief description of

the Programmability Validation phase will be introduced if foreseen for the

specific module.

6.1 Context Management Framework

Title: OPEN Programmability Assessment Context Management Node

ID: OPEN Programmability_Context_Management_Node_1

Version Issue Date Author

1 1 08-06-2009 AAL/ Vodafone team

Module name Context Management Node

General considerations The context management framework (CMF), consisting

of one management node and several agents distributed

in the network, is able to collect, distribute and provide

easy access to context information. The key points with

respect to programmability of the CMF are:

 The collection is done via small software

components, called retrievers, interacting with

raw sources of data, e.g. device discovery and

Device Selection Map (or DiscoveryMap-see

D3.1) and the CMF, and by processing units

which may produce/infer non-measurable data

types. The Trigger Management will utilize the

processing capability as to infer the right moment

in time, space and context for a potential service

migration.

 The distribution is handled by the internal of the

CMF as needed, but can be influenced by

scoping from the user, and support synchronous

as well as asynchronous access to context

information.

 The information model used is the key to the

interaction, and is extensible in terms of

attributes or entities that may be produced or

provided.

 Configuration of the CMF is done via XML

files which allow a flexible setup of the agents in

the network, allowing also overlay network types

to cross network domains. The configuration of

an Agent is required for both the Context

 73

Management Node (CMN), and for each of the

clients in the network connected to the CMN, but

with different settings.

 The installation of the CMF is ensuring that the

required java packages are also installed, but do

requires the user to setup an environmental

variable “CMF_PATH” to whatever installation

path that has been chosen. Currently this is not

automatic.

The intention at a later stage to run the CMF in

an OSGi environment, simplifying the processing

and retriever component setup procedure

significantly and dynamically, but for now this is

done statically via XML configuration files. By

implementing the retrievers and processing units

as OSGi service bundles, these can easily be

installed, started, stopped and uninstalled as

needed. By utilising remote-OSGi those bundles

can even be found in remote, centralized

repositories from where Context Agents can

locate relevant bundles as needed making the

Context Agent a full automatized, autoconfigured

entity providing access to any information

needed in a distributed environment.

Reference prototypes “mobility support and context information management

prototype” described in D3.2

Synthetic description User: developer

Supported context variables type, Manageable variables:

variables described by the XML file

Available tools for configuration: XML files

Context variable collection

and distribution

Since the CMF is responsible for distribution and access

to any general information types, the model used is key

important to benefit from the system. The information

model is relying on each information element having

some or all of the following elements

 EntityIdentifier: A unique identifier of the

information element

 EntityType: A type element that describes the

information type

 74

 AttributeName and Value: A set of attributes

and values (in pairs). There may be many

attributes per information. Currently simple

values, like integers, floats, strings, etc. are

supported values.

 Metadata: additional information about the

information, e.g. timestamp.

So, for example, the battery voltage of a device could be

described by

<Entity>

 <EntityIdentifier>someDeviceIdentifier</EntityIdentifer>

<EntityType>Device </EntityType>

<AttributeName>

 <name>BatteryVoltage</name>

 <type>float</type>

 <value><float>12.5</float></value>

 <metadata>

 <name>unit</name>

 <type>string</type>

 <value><string>Volt</string></value>

 </metadata>

 <metadata>

 <name>timestamp</name>

 <type>long</type>

 <value><long>1242208577546</ long></value>

 </metadata>

</Attribute>

</entity>

The setup, as mentioned is currently done via XML files,

and is too comprehensive to detail in this document.

However, the intention is to move the CMF to OSGi

framework, from where retrievers and processing units

can be handled like separated services, hence leading to

a minimum of setup via XML files.

A major requirement to the context management

framework, is its ability to collect, distribute and provide

access to general information.

With respect to the collection of information, the context

management framework addresses this by allowing:

o Extensible collection method by allowing

specifically written retrievers components to be

plugged into the framework, which converts raw,

measured data into a common data description

model

o Extensible approach of inferring, deriving new types

of context information based on measured

information, by processing unit. Similar system to

 75

the retrievers, processing units are plugged in, and

may provide any relevant information not directly

measurable by retrievers.

With respect to distribution, the framework

o Informs the Context Management Node (CMN, the

central entity in a CMF network configuration) about

the availability of information at a given Context

Agent. Subsequently, the CMN may be inquired

about the location of context information and then

followed by a direct request to the relevant entity for

the value of the information. In this way, only

information needed to be exchanged/communicated

over the network is exchanged, hereby limiting the

network traffic to only the absolute needed.

With respect to the access of information

o The access of information happens via a dedicated

query language (Context Access LAnguage, CALA).

This offers several ways of conducting searches for

relevant information, mainly by EntityIdentifier

and/or EntityType plus any additional Attributes that

may be desired.

o Furthermore, scoping of context queries, e.g. a query

may be scoped via network domain, location or time.

The CMF then takes this into account when

accessing the rightful device.

o Finally, the CMF offers synchronous and

asynchronous access via either a request/response

model or subscription/notification based approaches

(either periodic or event based, with possibility of

defining events in the subscription query).

Language/tool available for

the module behaviour

description

NA

Parametrical evaluation [to be filled by Vodafone evaluation team]

 Extensibility (capability of accepting and

managing new variables): 1..5

Note: consistency, runtime efficiency and robustness will

be evaluated in the programmability validation phase

 76

Qualitative evaluation [to be filled by Vodafone evaluation team]

A qualitative evaluation of the provided facilities will be

provided

Synthetic description of the

adopted verification and

validation strategies

The proposal is to verify the “consistency” of the CMF

in the variable handling. In this context, consistency

means the CMF ability of collecting and making

available the context information in a consistent way

with respect to its configuration.

The proposed approach foresees the use of Siafu (a

context generation tool):

 Siafu will generate a new context variable

 The CMF is configured using a proper XML in

order to acquire this new variable

 A CALA query is used in order to verify that the

variable is correctly handled by the CMF

The proposed approach foresees the use of Siafu (a context generation tool):

 Siafu will generate a new context variable (e.g.: BatteryVoltage)

 The CMF is configured using a proper XML in order to acquire this new

variable

Please refer to Appendix B for the foreseen test cases.

6.2 Migration Orchestration

Title: OPEN Programmability Assessment Migration Orchestration

ID: OPEN Programmability_Migration_Orchestration_1

Version Issue Date Author

1 1 22/05/2009 Vodafone

Module name Migration Orchestration

General considerations

This component synchronizes all of the actions that must

be performed during a migration. The Migration

Orchestration starts the migration when a trigger is

 77

received from the Trigger Manager or when an user

requests a migration and then he makes sure that all of

the required actions are performed either on migration

source (i.e. the device where the application element is

currently running) and migration target (i.e. the device

where the application element will be migrated). The list

of actions to be performed during a migration is not

subjected to be modified/configured in order to avoid an

unexpected behaviour of the platform.

Reference prototypes NA

Synthetic description NA

Context variable collection

and distribution

NA

Language/tool available for

the module behaviour

description

NA

Parametrical evaluation NA

Qualitative evaluation NA

Synthetic description of the

adopted verification and

validation strategies

NA

The Migration Orchestration receives from the Trigger Manager or from an

OPEN client the request for migration and carries out all the tasks in order to

perform the migration: Since the list of tasks to be performed during a migration

is not subjected to be modified/configured, the migration orchestration is not

supposed to support the programmability, neither related to context variables

collection and distribution nor related to rules definition. For this reason, for the

Migration Orchestration no programmability validation will be performed.

 78

6.3 Trigger Management

Title: OPEN Programmability Assessment Trigger Management

ID: OPEN Programmability_Trigger_Management_1

Version Issue Date Author

1 1 12/05/2009 AAU/Vodafone

Module name Trigger Management

General considerations The ultimate programmability goal of the trigger

management function is to be able to input new

triggering rules into the module during deployment or

even during runtime. This has, however, not been

addressed in the currently implemented version.

The envisioned programmability of new rules would be

in the form of functions that map trigger management

input, i.e. context information, to configuration scores. A

configuration is a specification of devices in use,

network technologies in use and placement of

applications components in the currently running

architecture. The trigger management generates triggers

if the currently highest ranking configuration is different

from the configuration in place. Each configuration rank

is calculated from scores mapped from context

information.

The functions to be input in the trigger management to

enable programmability would most probably be

implemented as processing components in the context

management framework. The new rules could have

several objectives;

 To provide new thresholds or reaction patterns

for already available context information, in the

end resulting in score values different from other

or previous functions.

 To allow triggers to be generated based on new

types of context information. Basically this is a

necessity in order for the platform to be able to

react to new types of context information.

Different ways of specifying rules and configuration

exist:

 Pure software implementation of processing

components, typically programmed by the system

 79

developers or deployment managers.

 One type of processing component may be a

general one reading XML files into rules, which

can then be specified by either a user or a

developer. Whether this specification is done

directly in XML or via graphical user interface

outputting XML is currently undefined.

 Specifications of new configurations would most

probably be done through a graphical user

interface, most probably by a system manager.

The data would be stored in XML, which is then

input to the trigger management.

Reference prototypes “mobility support and context information management

prototype” described in D3.2

Synthetic description NA

Context variable collection

and distribution

NA

Language/tool available for

the module behaviour

description

NA

Parametrical evaluation NA

Qualitative evaluation
NA

Synthetic description of the

adopted verification and

validation strategies

NA

The Trigger Management is the key module for enabling the OPEN platform

configurability. In fact, the user of the platform (application developer, system

manager) should be enabled to set new triggering rules: e.g.: a new application of

traffic news is implemented on top of the OPEN platform and the following

triggering should be added: if there is an available device with a GPS positioning

system, then migrate the traffic news application in this device. Different

solutions could be implemented in order to enable the module configurability, as

described in the “General considerations” field.

 80

Different solutions address different users and enable different degree of

configurability.

Since currently no programmability solutions are implemented, in the first

iteration no programmability validation will be performed for the module.

6.4 Policy Enforcement

Title: OPEN Programmability Assessment Policy Enforcement

ID: OPEN Programmability_Policy_Enforcement_1

Version Issue Date Author

1 1 22/05/2009 Vodafone team

Module name Migration Orchestration

General considerations

The Policy Enforcement will be used in order to

allow/deny a migration according to a set of rules.

This module will support the following aspects of the

programmability:

 definition of variables to be considered. For

example, a privacy level could be considered. In

this case a required privacy level must be

associated to application elements and an offered

privacy level must be associated to every device.

Each variable shall have a data type (int, double,

String, etc.).

 definition of rules applied to defined variables in

order to allow/deny a migration. In the example

of the privacy level, a rule could be: “if the target

device offered privacy level is greater than the

migrated application element required privacy

level then allow the migration”.

A simple way of defining a rule is to allow the

migration when the following expression is

TRUE: “deviceVariable OPERATOR

applicationElementVariable”. OPERATOR can

be one of the following operators:

o “==” (for every type of variable)

o “>”, “>=”, “<”, “<=” (for numeric

variables)

o “OR”, “AND”, “NOT AND”, “NOT OR”

(for Boolean variables). For example, if

the variable “deny migration on mobile

phone” is defined for the migrated

application and the variable “is a mobile

phone” is defined for the device, the

 81

migration must be denied only when both

of these variables are true. The resulting

rule will be:

“deny migration on mobile phone” NOT

AND “is a mobile phone”. E.g.:

“deny migration on mobile phone”: True

“is a mobile phone”: True

Allow migration= True NOT AND True

=False

The Policy Enforcement module is still under definition,

so at the moment its implementation is unavailable.

Reference prototypes NA

Synthetic description NA

Context variable collection

and distribution

NA

Language/tool available for

the module behaviour

description

NA

Parametrical evaluation NA

Qualitative evaluation NA

Synthetic description of the

adopted verification and

validation strategies

NA

The Policy Enforcement will be used in order to allow/deny a migration according

to a set of rules. This module should enable the programmability: the user of the

platform (application developer, system manager) should be enabled to set new

policy. Since currently no programmability solutions are implemented, in the first

iteration no programmability validation will be performed for the module.

 82

6.5 Mobility Support (Server side)

Title: OPEN Programmability Assessment Mobility Support (Server side)

ID: OPEN Programmability_Mobility_Support_1

Version Issue Date Author

1 1 12/05/2009 AAU/Vodafone team

Module name Mobility Support

General considerations The mobility support module is not enabling

programmability. It provides a static set of connectivity

solutions based on the underlying network architecture.

If programmability should be enabled in the mobility

support module, it would be to allow for new

connectivity solutions to be introduced in the set after

development as plug-ins or alike, enforcing the

migration system to be able to use them. But as this

functionality is out of the scope of the considered use

cases of the project, such requirements are not

considered for the mobility support module.

Reference prototypes NA

Synthetic description NA

Context variable collection

and distribution

NA

Language/tool available for

the module behaviour

description

NA

Parametrical evaluation NA

Qualitative evaluation NA

Synthetic description of the

adopted verification and

validation strategies

NA

 83

The Mobility Support module is not enabling programmability. For this reason,

for the Mobility Support no programmability validation will be performed.

6.6 Web UI Adaptation

Title: OPEN Programmability Assessment – Web UI Adaptation

ID: OPEN Programmability_Web_UI_Adaptation

Versio
n

Issue Date Author

1 1 08/06/2009 ISTI-CNR team / Vodafone Team

Module name Web UI Adaptation

General considerations This module aims to adapt the user interface of the source

device to the characteristics of the target device. In order to

do this, this module accepts a CUI (Concrete User Interface

Description), specified in XML-based language and

describing the user interface of the application rendered on

the source device at a concrete level: this means for

instance to specify the UI elements not referring to a

specific final implementation language, but in more abstract

terms, just referring to the specific platform considered.

Then, the Web UI Adaption module transforms a CUI

(designed for the source device) into another CUI adapted to

the characteristics of the target device. This transformation

is performed by following a cost-based algorithm that

calculates the cost of every UI element in a presentation (for

instance, the cost of a textual string is the number of pixels

occupied by it on the screen) and then, depending on the

total cost of the various presentations composing a UI,

calculates a new CUI that is more suitable for the

characteristics of the target device. In addition, from this

new calculated CUI, this module generates the final user

interface using a specific implementation language for

delivering the UI on the target device.

It is worth pointing out that, in order to enable

programmability features on this Web UI adaptation

module, it is possible for the user of the OPEN platform to

e.g. specify/change the costs associated to various UI

elements. Therefore, depending on the values specified by

the user (e.g. the costs of some UI elements), the adaptation

can deliver different results. Regarding the programmability

features, this module allows for modifying the adaptation

rules both for the mapping and the splitting transformations,

 84

which are defined below:

 The mapping rules basically allow for transforming

a specific UI element into another UI element. As an

example of such rules we might consider the

transformation of a radio-button (desktop platform)

into another UI element, which is deemed more

suitable to be rendered onto a mobile platform: for

instance, if the cardinality of a radio-button is

higher than a certain threshold, the radio-button

might be transformed into a pulldown-menu (on a

mobile platform), since the latter element occupies

less screen space. Therefore, in order to have

programmable mapping rules, such transformation

rules should be modifiable.

 Through the splitting rules, this module can change

the structure of a presentation. Then, with such rules,

a single presentation (e.g.: for a desktop platform)

can be translated into multiple, smaller

presentations, which will be rendered onto a mobile

platform. Then, the splitting rules specify the rules

according to which a certain presentation will be

split into multiple presentations (since e.g. the

original presentation does not fit the capabilities of

the target device). Therefore, in order to have

programmable splitting rules, such rules should be

modifiable.

Reference prototypes Web migration prototype, described in D2.1.

It can handle desktop web applications that are well-

designed (e.g. they comply with W3C standards) and can be

specified at a concrete level.

Synthetic description User: service provider, migration platform administrator

Supported context variables: the Web UI Adaptation

module basically handles variables that model the various

aspects managed by the adaptation algorithm. Such aspects

basically refer to device-related characteristics like e.g. the

„cost‟ of a graphical UI element (e.g.: the number of pixels

needed for rendering it on the screen), the number of

characters that can be contained in a single line visualized

on the device screen, the interaction capabilities of a certain

device, etc.. Therefore, this module basically manages

variables that can be represented by integer values.

 85

Available tools for configuration: a graphical tool is

available, together with a configuration file. They are both

currently subject to further improvements.

Workflow patterns supported: NA

Context variable collection

and distribution
 User agent information (for identifying the target

device) + WURFL repository (for retrieving more

detailed information about the various characteristics

of a certain device)

 Device description file specifying the characteristics

of a certain device (this information is supposed to

be exchanged between devices during the device

discovery phase)

Language/tool available for

the module behaviour

description

A graphical tool is available for manipulating the variables

that can be handled in a programmable way by the Web UI

Adaptation module, through the mapping rules and the

splitting rules. Among such variables we cite e.g. variables

like the cost of the various elements of a graphical UI, the

tolerance (number of allowed scrollings within a single

graphical presentation), the number of characters that can be

contained in a single line, etc.. In addition, such variables

(together with their current values) are also specified in a

configuration file.

Parametrical evaluation [to be filled by Vodafone evaluation team]

 Consistency (capability of specifying the module

behavior in a synthetic way): 1..5

o weight: 1

 Fulfillment (capability of specifying the required

workflow patterns): 1..5

o weight: 3

 Usability (usability of the provided tool): 1..5

o weight: 2

Qualitative evaluation [to be filled by Vodafone evaluation team]

A qualitative evaluation of the provided facilities will be

provided

Synthetic description of the Some test cases will be executed on the configuration tool.

 86

adopted verification and

validation strategies

A group of meaningful mapping and splitting rules will be

tested in order to evaluate the tool consistency (by checking

that the adapter behavior is the expected one). Moreover, an

informal usability evaluation will be performed.

The proposal is to test the web UI Adaptation programmability: a group of

meaningful mapping and splitting rules will be tested in order to evaluate the tool

consistency (by checking that the adapter behavior is the expected one).

Moreover, an informal usability evaluation will be performed.

Please refer to Appendix B for the foreseen test cases.

6.7 Server side Application Logic Reconfiguration

Title: OPEN Programmability Assessment Server side Application Logic Reconfiguration

ID: OPEN Programmability_Application_Logic_Reconfiguration_1

Version Issue Date Author

1 1 08/06/2009 ClU/Vodafone team

Module name Application Logic Reconfiguration

General considerations This module is responsible for the adaptation of the

application logic during runtime. Application logic is

realized by components which interact through

interfaces. Thus, the task of this module is to change the

wiring of the components and their internal behaviour

like introduced in deliverable D4.1.

This module is the key module for enabling the OPEN

applications programmability (refer to the example after

the template).

Reference prototypes The PacMan prototype as described in D4.3

Synthetic description User: application developer

Supported context variables type: variables used for the

module configuration are currently hard-coded, so it is

possible to use any type of variable and object supported

by the programming language.

Manageable variables: in the current prototype, the

module is not able to handle context information in a

 87

generic way. If context information has to be used, it has

to be hard-coded into the components. In fact, these

variable types have to be defined during development

time of the application.

In the future version, it will be possible to make use of

all kinds of context variables.

Available tools for configuration: in the current version,

no tool support is provided. In future versions, some kind

of configuration files can be used to describe the

reconfiguration rules, also considering reconfiguration

conditions based on context information, like for

example:

 use components on those devices where

battery>50%

The goal is also to provide a tool which shows a

graphical representation of the current system

configuration in order to ease application administration.

Workflow patterns supported:

 Sequence

 Parallel split

 Synchronization

 Exclusive choice

 Simple merge

As already mentioned before, the application logic is

built out of interacting components, currently

implemented based on OSGi and Java. What the

application developer does is to implement the

components and define their required and provided

interfaces within the code of the component. Required

interfaces are given by an annotated variable, and

provided interfaces by implementing the according

interfaces:

Furthermore, the developer can define an integer value

representing the quality of service of the interface

 88

implementation. The ALR component will automatically

inject the required instance into the given variable as

soon as an according instance becomes available.

Furthermore, it will replace an instance, if another

instance with a higher priority becomes available. As

soon as all required instances are injected into the

according variables, the ALR module will notify and

start the component. Every time a new component

becomes available, the ALR will check if a rewiring of

components or a replacement of a component is

necessary. The result is an application logic

implementation which changes its behavior during

runtime.

For these reasons, each type of workflow patterns can be

realized. However, they have to be implemented by the

component developers. The parallel split pattern for

example can be realized by just calling methods at two

different components. The synchronization pattern on the

other hand can be realized by a component which waits

until all execution threads to synchronize have called a

method at that component. A component can implement

the exclusive choice pattern by deciding which

component to call next based on available information.

It is not intended for the OPEN project to integrate a

workflow specification language into the ALR module.

Thus, the specification of the workflow will still take

place in the code of the components. But for a future

version it is intended to have an application specification

where rules can be specified defining how the

components are wired and adapted based on context

information, like already mentioned above.

Context variable collection

and distribution

NA

Language/tool available for

the module behaviour

description

NA

Quantitative evaluation NA

Qualitative evaluation NA

 89

Synthetic description of the

adopted verification and

validation strategies

NA

The Application Logic reconfiguration is the key module for enabling the OPEN

applications programmability. In fact, the user of the platform (application

developer, system manager) should be enabled to define the application logic

depending on the context variable collected by the OPEN middleware. E.g.: a new

application of traffic news is implemented on top of the OPEN platform and the

following logic should be implemented:

 if the device in which the application is running does not provide the user

location, then visualize the traffic news from the newest to the oldest.

 if the device in which the application is running provides the user location,

then visualize the traffic news form the nearest to the farthest.

Currently, the application logic is embedded in the code and no tools enabling the

programmability are implemented. So, in the first iteration, no programmability

validation will be performed for the module.

6.8 Multicore GUI Toolkit

Title: OPEN Programmability Assessment Multicore GUI Toolkit

ID: OPEN Programmability_ Multicore_GUI_Toolkit_1

Version Issue Date Author

 NEC/Vodafone team

Module name Namuco (Multicore GUI Toolkit)

General considerations The Namuco GUI toolkit is a Java framework that allows

the creation of graphical user interfaces according to

capabilities of the target device and context information

(e.g. battery state).

Namuco will offer three distinct configurations regarding

GUI widget and font sizes, which will be chosen

according to the display resolution of the target device.

Additionally context information regarding CPU

performance determines whether animation effects will

be enabled and to which extent.

Reference prototypes NA

 90

Synthetic description We distinguish two kinds of users. One is an application

developer who uses Namuco to build a GUI for his

program. The second one is an end user who uses an

application which is written for the OPEN platform and

makes use of Namuco. The Namuco library provides

several means for configuration: the prototype

application and Namuco GUI appearance can be

configured to use certain GUI features. This can be done

on several levels:

1. In source code, by setting specific flags that

disable/enable certain behaviours/features.

2. At run-time via user interaction/input: the user can

use several GUI elements to configure the behaviour

of the running application. This interface is provided

by the prototype application implementation.

3. The system can be extended to support configuration

files (which are written, e. g., in XML) that describe

available capabilities of the target device or user

preferences regarding the GUI appearance.

Rules for adaptation are implemented inside certain

Namuco modules. The current configuration settings for

the GUI appearance and behaviour will be stored in a

dedicated Java class in the form of configuration

variables. Upon application start-up a module inside

Namuco will retrieve all required information about

device capabilities which do not change at run-time and

set the corresponding configuration variables.

During run-time another module will keep track of all

relevant dynamic context variables (which change during

run-time (e.g. battery state)) and will disable or enable

certain GUI features accordingly (e.g. disable power-

and performance-consuming animations).

Context variable collection

and distribution

Namuco itself will not distribute context information but

rather request context data from other OPEN platform

modules. These context variables will be mainly related

to the device on which the application that uses Namuco

will run on. While variables like screen resolution and

certain CPU characteristics (e.g. performance indicators

like clock frequency or benchmark results) will not

change at run-time, other information like number of

available CPU cores or battery state is dynamic and may

trigger changes in the behaviour of the Namuco library

 91

and int the appearance of the application using it.

The Namuco library will not provide an interface to

retrieve hardware and context information, as this

information should be provided by other dedicated parts

of the OPEN platform.

Language/tool available for

the module behaviour

description

NA

Quantitative evaluation NA

Qualitative evaluation NA

Synthetic description of the

adopted verification and

validation strategies

NA

For the first iteration, no programmability validation is foreseen for this module.

6.9 Further work: reporting and second testing iteration

The results of the first iteration of the programmability evaluation in term of

strengths and weaknesses of the programmability approaches proposed for the

OPEN modules will be reported in D6.5. The aim of the evaluation is to provide

useful feedbacks and inputs for further improvement of the modules.

The Programmability Validation phase will be carried out for:

 CMF

 Web UI Adaptation

Moreover, a deeper analysis on the solution implemented by the Application

Logic Reconfiguration module will be performed, in order to figure out possible

enhancements.

For the Trigger Management and Policy Enforcement modules, which have been

recognized as key for enabling the programmability, some possible solutions will

be analyzed.

When the final OPEN prototype will be available, the second (and final)

evaluation phase will verify the quality of the final programmability solution. The

 92

template introduced in this document can also be used for the final evaluation

iteration.

 93

7 Technological test plans

This section defines the test plans of the three prototypes that will be evaluated

from a technological point of view during the first iteration. The complete set of

test cases is listed in the Appendix C.

7.1 From D2.1: Web migration test plan

Test plan Identifier:

OPEN Technological test plan Web migration

Version Date Author

3.0 09/06/09 Vodafone Italy / CNR

Test plan section

References
OPEN D6.3 – Indicators for technical evaluation - Test plan

format

OPEN D2.1 – Early infrastructure for migratory interfaces -

The prototype definition

Lesson learned from

previous experiences

Currently none

Test items Testing is based on some test cases, following the format

previously described. It will involve a subset of the technical

indicators and of the specific requirements listed in the

testing methodology description

Risk
To be verified before starting: connectivity and security

policies that could impact testing.

To avoid other issues:

 Devices have to be attached to the same LAN.

 Web contents have to follow W3C specs.

 94

Features to be tested These technical indicators will be tested:

Availability, Reliability, Performances, Accessibility

and Adherence to standards.

 This subset of requirements from D1.1 can be

applied to the prototype: 86-6-82-62-157-54-34-162-

163-106-74-61-115-90-156-80-66-40-20-33.

 Additional requirements:

A1 - Image size must fit the screen of every kind of

device allowed

A2 - Page has to be entirely loaded for a good user

experience

Approach
The test plan has been written based on CNR (owner of the

prototype) contribution about the product description and the

necessary info for testing purposes about it. Test cases are

drafted, checked and approved by CNR and Vodafone Italy.

Test environment Testing will be executed in VF-IT innovation labs, remotely

linked to CNR server. Prototype version available at the

beginning of testing will be frozen for the whole testing

timeframe. The devices involved will be a PC and a PDA

provided by VF-IT.

Item pass/fail criteria
Indicators will be evaluated after the execution of testing and

after the analysis of logs.

Requirements have simple Y/N passing criteria.

Test deliverables and

reporting

Reporting will follow the testing experience, generating a

section of next D6.5.

Remaining test tasks
Future developments of the prototype are currently foreseen.

The decision of what to test in the future will depend on

what is the prototype status at the testing timeframe and on

the results of the evaluation.

Staffing and training

needs

People involved in testing needs an overall technical

background, with at least high level network and informatics

skills, and a detailed knowledge about the OPEN project.

 95

Roles and

responsibilities

VF-IT testing team will execute the testing, while CNR will

support them for the setup and in case of issues, necessities,

problems, etc.

Schedule
Proposed timeframe: W28-30 (6

th
 – 24

th
 of July).

Tests will be within the window from around 9 to 18 CET,

from Monday to Friday.

Post trial analysis
Evaluation of indicators measured is necessary to provide

feedback for future developments.

 96

7.2 From D3.2: Mobility support and context information
management test plan

Test plan Identifier:

OPEN Technological test plan Mobility support

Version Date Author

4.0 17/06/09 Vodafone Italy / Aalborg

Test plan section

References
OPEN D6.3 – Indicators for technical evaluation - Test plan

format

OPEN D3.2 – System support for application migration -

The prototype definition

Lesson learned from

previous experiences

Currently none

Test items Testing is based on some test cases, following the format

previously described. It will involve a subset of the technical

indicators and of the specific requirements listed in the

testing methodology description.

Risk Currently not particular ones

Features to be tested A preliminary test will be performed to validate the

basic prototype operations.

 These technical indicators will be tested:

Availability, Reliability, Performances.

 This subset of requirements from D1.1 can be

applied to the prototype: 7-86-82-54-74-61-131-80-

66-91.

 Additional requirements:

A1 - Image size must fit the screen of every kind of

device allowed

A2 - The offline-online migration must be triggered

by battery too

 97

Approach
The test plan has been written basing on Aalborg (owner of

the prototype) contribution about the product description and

the necessary info for testing purposes about it. Test cases

are drafted, checked and approved by Aalborg and Vodafone

Italy.

Test environment Testing will be executed in VF-IT innovation labs. Prototype

version available at the beginning of testing will be frozen

for the whole testing timeframe. The devices involved will

be a laptop and a fixed workstation.

Item pass/fail criteria
Indicators will be evaluated after the execution of testing and

after the analysis of logs.

Requirements have simple Y/N passing criteria.

Test deliverables and

reporting

Reporting will follow the testing experience, generating a

section of next D6.5.

Remaining test tasks
Future developments of the prototype are currently foreseen,

since it is not fully completed. The decision of what to test in

the future will depend on what is the prototype status at the

testing timeframe and on the results of the evaluation.

Staffing and training

needs

People involved in testing needs an overall technical

background, with at least high level network and informatics

skills, and a detailed knowledge about the OPEN project.

Roles and

responsibilities

VF-IT testing team will execute the testing, while Aalborg

will support them for the setup and in case of issues,

necessities, problems, etc.

Schedule
Proposed timeframe: W37-39 (7

th
– 25

th
 September).

Tests will be within the window from around 9 to 18 CET,

from Monday to Friday.

Post trial analysis
Evaluation of indicators measured is necessary to provide

feedback for future developments.

 98

7.3 From D3.2: Device selection map test plan

Test plan Identifier:

OPEN Technological test plan Device selection map

Version Date Author

3.0 09/06/09 Vodafone Italy / CNR

Test plan section

References
OPEN D6.3 – Indicators for technical evaluation - Test plan

format

OPEN D3.2 – System support for application migration -

The prototype definition

Lesson learned from

previous experiences

Currently none

Test items Testing is based on some test cases, following the format

previously described. It will involve a subset of the technical

indicators and of the specific requirements listed in the

testing methodology description

Risk
To be verified before starting: connectivity and security

policies that could impact testing.

Devices have to be attached to the same LAN.

Web contents have to follow W3C specs.

Features to be tested These technical indicators will be tested:

Availability, Reliability, Performances, Accessibility

and Adherence to standards.

 This subset of requirements from D1.1 can be

applied to the prototype: 86-157-61-63-90-20-33.

Approach
The test plan has been written basing on CNR (owner of the

prototype) contribution about the product description and the

necessary info for testing purposes about it. Test cases are

drafted, checked and approved by CNR and Vodafone Italy.

 99

Test environment Testing will be executed in VF-IT innovation labs, remotely

linked to CNR server. Prototype version available at the

beginning of testing will be freeze for the whole testing

timeframe. The devices involved will be a PC and a PDA

provided by VF-IT.

Item pass/fail criteria
Indicators will be evaluated after the execution of testing and

after the analysis of logs.

Requirements have simple Y/N passing criteria.

Test deliverables and

reporting

Reporting will follow the testing experience, generating a

section of next D6.5.

Remaining test tasks
Future developments of the prototype are currently foreseen.

The decision of what to test in the future will depend on

what is the prototype status at the testing timeframe and on

the results of the evaluation.

Staffing and training

needs

People involved in testing needs an overall technical

background, with at least high level network and informatics

skills, and a detailed knowledge about the OPEN project.

Roles and

responsibilities

VF-IT testing team will execute the testing, while CNR will

support them for the setup and in case of issues, necessities,

problems, etc.

Schedule
Proposed timeframe: W28-30 (6

th
 – 24

th
 July).

Tests will be within the window from around 9 to 18 CET,

from Monday to Friday.

Post trial analysis
Evaluation of indicators measured is necessary to provide

feedback for future developments.

7.4 Further work: reporting and second testing iteration

Consequently to the execution of the technical evaluation (following the previous

test plans), a reporting phase will lead to the drafting of the D6.5 for the first

evaluation summary of results. This will be an input for corrections and for further

work of developers. When the second set of prototypes, representing the final

 100

product of the OPEN project, will be available, a second evaluation phase will test

the complete set of features in a (at least partially) integrated system. Since D6.4

could only shape the current technical validation, it is worth to foresee an internal

report to draft for the second set of prototypes an updated test plan, which

depends on future developments.

Note that the first experience can also underline some aspects related to the pure

execution of tests (e.g. configuration matters, equipment necessity), which have

eventually to be included and mentioned in the first report phase (action point for

the reporting team) to eventually update the methodology in an introductive

section of this internal report. Timeline foreseen for the report should currently be

after the conclusion of the second phase of development (M24). The only

requirement that can currently be presented to the second iteration developers is,

of course when is possible, to keep developing internal log/tools to monitor and

record the technical indicators previously described.

 101

Appendix A

This appendix collects usability questionnaires and usability task lists.

I. Social Game Questionnaire

Question Description Answers

1 How often do you play video games? □ Never

□ Rarely

□ Weekly

□ Almost daily

2 Which kind of game do you prefer? □ First Person Shooter

□ Racing

□ Strategy

□ Arcade

□ Other, specify -

3 Which kind of device do you prefer? □ Portable console

□ Fixed console

□ PC

□ Mobile phone

4 Do you usually play online or offline?
□ Always online

□ Both

□ Always offline

5 How often do you use other services like
chat, betting, video streaming?

□ Never

□ Rarely

□ Weekly

□ Almost daily

6 Are you keen on Formula 1 and other racing
sports

□ Not so much

□ A bit

□ A lot

7 Would you be interested in mixing these two
application areas?

□ Not so much

□ A bit

□ A lot

□ It depends on… specify

8 Is it clear the game concept?

□ yes

□ no, specify why?

9 Are the services around the game (chat,
betting, TV, web) clear?

□ yes

 102

□ no, specify why?

10 Are there additional functionalities you would
like?

□ yes, specify

□ no

11 Do you like the look and feel?
□ yes

□ no, specify why?

12 How do you consider the following UI
options: User is able to play and
chat/browse/watch TV in the meanwhile

□

13 How do you consider the following UI
options: User can share a screen (e.g. pub)
without sharing private info

□

14 How do you consider the following UI
options: Users can communicate each other
before, during and after the game

□

15 Do you appreciate the level of security? Has
it an acceptable impact on the applications
proceeding (betting security, access to STB
and screens…)?

□ yes

□ no, specify why?

16 Would you like to extend the game to other
sports?

□ yes, specify –

□ no

17 Are there additional relevant environments
to describe?

□ yes, specify –

□ no

 103

II. Emergency Application Questionnaire

Question Description Rationale Answers

1 Which job category do you belong

to?

 □

2 How many years of work

experience did you make?

 □ 0-5

□ 5-10

□ 10-20

□ More than 20

3 How would you define your

technical background?

 □ Very basic

□ Average

□ Good

□ Expert

4 Which kind of device do you use

at work?

 □ Mobile phone

□ PC

□ PDA

□ Other, specify

5
Are you ever in dangerous

situations at work, requiring a fast

reaction?

 □ Never

□ Almost never

□ Often

6 What do you think about the

importance (in such situations) of

simulations, remote access and

control, coordination

 □ Not so high

□ High

□ Extremely high

7 Is it clear the application concept?

General user

feeling

□ yes

□ no, specify why?

8
How satisfied are you with the

OPEN migration?

The user is asked

for his overall

impression of the

usability of the

OPEN migration

platform.

□ 1 - Very satisfied

□ 2 - Satisfied

□ 3 - Average

□ 4 - Disappointed

□ 5 - Very disappointed

9 How usable did you find the

registration of devices to the

OPEN migration platform?

This more

concrete question

aims at subjective

feelings of how

easy it was to

register the video

wall.

□ 1 - Very easy

□ 2 - Easy

□ 3 - Average

□ 4 - Hard

□ 5 - Very hard

 104

10 Would you like to migrate user

interfaces in our daily

applications?

In this question

we ask the user

whether the

OPEN migration

platform as a

whole package is

useful for his/her

work.

□ yes

□ no

11 What application elements are

missing in order to boost

performance in the EOC?

 □

12 Which RIA platform do you

prefer?
 □ AJAX

□ FLEX

□ Silverlight

□ Other - Specify

□Indifferent/Don‟t

know

13 Do you like the look and feel of

EOC-application?
 □ yes

□ no, specify why?

14 Are there additional functionalities

you would like to add?
 □ yes, specify

□ no

15 Would you like to enlarge the

application to other environments?
 □ yes, specify –

□ no

16 Comments

Here the user can

enter free style

comments. User

comments might

give useful hints

towards specific

usability

problems, not

foreseen in the

design of the

evaluation or of

the original OPEN

migration

platform.

□

 105

III. Web Migration Task Lists

Group A Task List

Task ID
Device /

Conditions

Web

Application

Task

Description

Comments

SH-A-1

PDA –

without

OPEN

Shopping

Assistant

Buy a specific

product

In order to evaluate

the web application

usability, the task will

not contain the exact

name of the product,

but a description of a

product characteristic.

In this way the user is

forced to navigate

some pages of the web

application in order to

find the required

product. Moreover,

during the product

purchase, the user will

be able to evaluate the

web form rendering.

- -
Shopping

Assistant

Compile a

questionnaire

about the

shopping

assistant UI

used on the

PDA without

OPEN

SH-A-2 PC
Shopping

Assistant

Insert in the

cart the

cheapest

product

The purpose of this

task is to make sure

that the user visits

several pages of the

web site. In such way

it is possible to obtain

a good evaluation of

the web site

 106

navigability.

SH-A-3 PC
Shopping

Assistant

Migrate to the

PDA

This task is performed

to make sure that the

web site state is

correctly maintained

during the migration.

SH-A-4 PDA Shopping

Assistant

Remove the

product from

the cart

With these tasks, the

state maintaining

during the migration

PDA -> PC is tested.

SH-A-5 PDA
Shopping

Assistant

Migrate to the

PC

SH-A-6 PC
Shopping

Assistant

Choose a

product and

start the

purchase

operation (i.e.

compile a part

of the

“purchase”

form)

This additional

migration is used in

order to test the state

maintenance during a

form compilation.

SH-A-7 PC
Shopping

Assistant

Migrate to the

PDA

SH-A-8 PDA
Shopping

Assistant

Complete the

transaction

- -
Shopping

Assistant

Compile a

questionnaire

about the web

UI used on the

PC

The usability test of

the web application

from a PC is

completed.

SH-A-9 PDA
Shopping

Assistant

Insert the most

expensive

product in the

cart

Task used for

navigability

evaluation.

SH-A-10 PDA Shopping
Start the

purchase

Forms and state

 107

Assistant operation (i.e.

compile a part

of the

“purchase”

form)

keeping evaluation.

SH-A-11 PDA
Shopping

Assistant

Migrate to the

PC

SH-A-12 PC
Shopping

Assistant

Complete the

transaction

- -
Shopping

Assistant

Compile a

questionnaire

about the

shopping

assistant UI

used on the

PDA

Compile a

questionnaire

about the

migration

functionalities

W-A-1

PDA

without

OPEN

Wikipedia

Open the page:

http://it.wikipe

dia.org/wiki/5_

settembre

(for not Italian

users:

http://en.wikip

edia.org/wiki/5

_September)

W-A-2

PDA

without

OPEN

Wikipedia

Select “Edit”

for the section

“Holidays and

observances”,

write some text

and then select

“Cancel”

http://it.wikipedia.org/wiki/5_settembre
http://it.wikipedia.org/wiki/5_settembre
http://it.wikipedia.org/wiki/5_settembre
http://en.wikipedia.org/wiki/5_September
http://en.wikipedia.org/wiki/5_September
http://en.wikipedia.org/wiki/5_September

 108

W-A-3

PDA

without

OPEN

Wikipedia

Select the link

“Freddie

Mercury” and

read the page

for a few

minutes.

- - Wikipedia

Compile a

questionnaire

about the

Wikipedia UI

used on the

PDA without

OPEN

W-A-4 PC Wikipedia

Open the page:

http://it.wikipe

dia.org/wiki/5_

settembre

(English

version:

http://en.wikip

edia.org/wiki/5

_September)

W-A-5 PC Wikipedia

Select “Edit”

for the section

“Holidays and

observances”

Forms evaluation

W-A-6 PC Wikipedia

Write some

text in the

proposed text

field

State keeping test

W-A-7 PC Wikipedia
Migrate to

PDA

W-A-8 PDA Wikipedia

Select

“Cancel” in

order to go

back to the

previous page.

http://it.wikipedia.org/wiki/5_settembre
http://it.wikipedia.org/wiki/5_settembre
http://it.wikipedia.org/wiki/5_settembre
http://en.wikipedia.org/wiki/5_September
http://en.wikipedia.org/wiki/5_September
http://en.wikipedia.org/wiki/5_September

 109

W-A-9 PDA Wikipedia

Select the link

“Freddie

Mercury” and

read the page

for a few

minutes.

W-A-10 PDA Wikipedia Migrate to PC

W-A-11 PC Wikipedia

Continue to

read the page

for a few

minutes.

- - Wikipedia

Compile a

questionnaire

about the web

UI used on the

PDA

Compile a

questionnaire

about the web

UI used on the

PC

Compile a

questionnaire

about the

migration

functionalities

For usability

evaluation over this

web application,

usability

questionnaires are

compiled at the end of

the test, because they

takes less time than

the tests performed on

the Shopping

Assistant. Moreover,

in order to get an

accurate evaluation of

the OPEN migration

procedure, there is not

a clean separation

between PC and PDA

usage.

 110

Group B Task List

Task ID
Device /

Conditions

Web

Application

Task

Description

Comments

SH-B-1 PDA
Shopping

Assistant

Insert in the

cart the

cheapest

product

The purpose of this

task is to make sure

that the user visits

several pages of the

web site. In such way

it is possible to obtain

a good evaluation of

the web site

navigability.

SH- B-2 PDA
Shopping

Assistant

Migrate to the

PC

This task is performed

to make sure that the

web site state is

correctly maintained

during the migration.

SH- B-3 PC Shopping

Assistant

Remove the

product from

the cart

With these tasks, the

state maintaining

during the migration

PC -> PDA is tested.

SH- B-4 PC
Shopping

Assistant

Migrate to the

PDA

SH- B-5 PDA
Shopping

Assistant

Choose a

product and

start the

purchase

operation (i.e.

compile a part

of the

“purchase”

form)

This additional

migration is used in

order to verity the

state keeping during a

form compilation.

SH- B-6 PDA
Shopping

Assistant

Migrate to the

PC

SH- B-7 PC
Shopping

Assistant

Complete the

transaction

 111

- -
Shopping

Assistant

Compile a

questionnaire

about the web

UI used on the

PDA

The usability test of

the web application

from a PC is

completed.

SH- B-8 PC
Shopping

Assistant

Insert the most

expensive

product in the

cart

Task used for

navigability

evaluation.

SH- B-9 PC
Shopping

Assistant

Start the

purchase

operation (i.e.

compile a part

of the

“purchase”

form)

Forms and state

keeping evaluation.

SH- B-10 PC
Shopping

Assistant

Migrate to the

PDA

SH- B-11 PDA
Shopping

Assistant

Complete the

transaction

- -
Shopping

Assistant

Compile a

questionnaire

about the

shopping

assistant UI

used on the PC

Compile a

questionnaire

about the

migration

functionalities

SH- B-12

PDA –

without

OPEN

Shopping

Assistant

Buy a specific

product

In order evaluate the

web application

usability, the task

won‟t contain the

exact name of the

product, but a

 112

description of a

product characteristic.

Moreover, during the

product purchase, the

user will be able to

evaluate the web form

rendering.

- -
Shopping

Assistant

Compile a

questionnaire

about the

shopping

assistant UI

used on the

PDA without

OPEN

W- B-1 PDA Wikipedia

Open the page:

http://it.wikipe

dia.org/wiki/5_

settembre

(English

version:

http://en.wikip

edia.org/wiki/5

_September)

W- B-2 PDA Wikipedia

Select “Edit”

for the section

“Holidays and

observances”

Forms evaluation

W- B-3 PDA Wikipedia

Write some

text in the

proposed text

field

State keeping test

W- B-4 PDA Wikipedia Migrate to PC

W- B-5 PC Wikipedia

Select

“Cancel” in

order to go

back to the

http://it.wikipedia.org/wiki/5_settembre
http://it.wikipedia.org/wiki/5_settembre
http://it.wikipedia.org/wiki/5_settembre
http://en.wikipedia.org/wiki/5_September
http://en.wikipedia.org/wiki/5_September
http://en.wikipedia.org/wiki/5_September

 113

previous page.

W- B-6 PC Wikipedia

Select the link

“Freddie

Mercury” and

read the page

for a few

minutes.

W- B-7 PC Wikipedia
Migrate to

PDA

W- B-8 PDA Wikipedia

Continue to

read the page

for a few

minutes.

- - Wikipedia

Compile a

questionnaire

about the web

UI used on the

PC

Compile a

questionnaire

about the web

UI used on the

PDA

Compile a

questionnaire

about the

migration

functionalities

For usability

evaluation over this

web application,

usability

questionnaires are

compiled at the end of

the test, because they

takes less time than

the tests performed on

the Shopping

Assistant. Moreover,

in order to get a

accurate evaluation of

the OPEN migration

procedure, there is not

a clean separation

between PC and PDA

usage.

W- B-9

PDA

without

OPEN

Wikipedia

Open the page:

http://it.wikipe

dia.org/wiki/5_

settembre

(for not Italian

users:

http://en.wikip

http://it.wikipedia.org/wiki/5_settembre
http://it.wikipedia.org/wiki/5_settembre
http://it.wikipedia.org/wiki/5_settembre
http://en.wikipedia.org/wiki/5_September

 114

edia.org/wiki/5

_September)

W- B-10

PDA

without

OPEN

Wikipedia

Select “Edit”

for the section

“Holidays and

observances”,

write some text

and then select

“Cancel”

W- B-11

PDA

without

OPEN

Wikipedia

Select the link

“Freddie

Mercury” and

read the page

for a few

minutes.

- - Wikipedia

Compile a

questionnaire

about the

Wikipedia UI

used on the

PDA without

OPEN.

 115

IV. Social Game Task Lists

Group A Task List

Task ID Device /

Conditions

Task Description Comments

SG-A-01 PC Login to the Social Game

web application.

These functionalities

of the Social Game

are tested only on the

PC because in the

current prototype

implementation it is

not possible to migrate

them on the mobile

phone.

SG-A-02 PC Send a message to the

chat

SG-A-03 PC Bet 25 € on Felipe Massa

SG-A-04 PC Answer the question: who

completed the fastest lap?

SG-A-05 PC Start the full screen view

of IPTV simulator

SG-A-06 PC Change IPTV channel

SG-A-07 PC Close the full screen view

of IPTV simulator

SG-A-08 PC Start playing on the

Racing Game

In the group A, users

start using the Racing

Game from the PC

SG-A-09 PC Migrate the controls of

the Racing Game to the

mobile phone

SG-A-10 Mobile

Phone

Continue the race by

controlling the car from

the mobile phone

- - Compile a questionnaire

 116

Group B Task List

Task ID Device /

Conditions

Task Description Comments

SG-B-01 PC Login to the Social Game

web application.

These functionalities

of the Social Game

are tested only on the

PC because in the

current prototype

implementation it is

not possible to migrate

them on the mobile

phone.

SG-B-02 PC Send a message to the

chat

SG-B-03 PC Bet 25 € on Felipe Massa

SG-B-04 PC Answer the question: who

completed the fastest lap?

SG-B-05 PC Start the full screen view

of IPTV simulator

SG-B-06 PC Change IPTV channel

SG-B-07 PC Close the full screen view

of IPTV simulator

SG-B-08 PC Migrate the controls of

the Racing Game to the

mobile phone

In the group B, users

start using the Racing

Game from the mobile

phone (the game

control via mobile

phone, however, is

enabled using the PC

interface of the Social

Game).

SG-B-09 Mobile

Phone

Start playing on the

racing game controlling

the car from the mobile

phone

SG-B-10 PC Continue playing on the

racing game controlling

the car from the PC

keyboard

- - Compile a questionnaire

 117

V. Emergency Prototype

Task ID
Device /

Conditions
Task Description

Comments

BS-01 PC1
Start the flooding

simulation

The fist available dataset

regards a flooding simulation

[D5.2]

BS-02 PC1

Migrate the flooding

simulation to the

second PC

BS-03 PC1
Start the traffic

simulation

The second available dataset

regards a traffic simulation

[D5.2]

BS-04 PC1

Migrate the traffic

simulation to the

second PC

BS-05 PC2
Start the merged

simulation

- -
Compile a

questionnaire

 118

Appendix B

In this appendix the test cases for the Programmability Assessment are collected.

I. Context Management Framework

ID Programmability_CMF_1

Module CMF

Description

The objective of the test is verifying that the CMF

properly collect and make available the context

information.

Input

 Siafu will generate a new context variable

(e.g.: BatteryVoltage)

 The CMF is configured using a proper XML

in order to acquire this new variable (e.g.: the

XML provided in the example)

Expected

output

A CALA query to the CMF should return the value

provided to the CMF by the Siafu

Actual output Output obtained by the Query

General

considerations

If the result of the query is the value provided by the

Siafu, the variable collection and distribution is correct

 119

II. Web UI Adaptation

ID Programmability_WebUIAdaptation_1

Module Web UI Adaptation

Description

The objective of the test case is verifying the effect of

modifying a mapping rule in the Web UI Adaptation

module when passing from a desktop platform to a

mobile one. This example rule can e.g. transform a

(desktop) radiobutton into a different UI object (e.g. a

pulldownmenu, which occupies less screen space)

depending on the cardinality of the possible choices of

the considered radiobutton element.

 The concerned rule takes in input the maximum

number of options that radiobuttons can have (let‟s

call it MaxCard). If the cardinality of the selection

items of the considered radiobutton (let‟s call it

Card(radioButton)) is higher, the radioButton is

transformed into a pull-down menu onto the mobile

platform; otherwise the radiobutton is maintained in

the mobile platform.

Input

MaxCard

An integer value representing the maximum

cardinality of options in radiobutton elements

Expected

output

For each radioButton existing in the desktop UI:

If Card(radioButton)>MaxCard the radiobutton is

transformed into a pull down menu. Then, a

pulldownmenu should appear on the target mobile

device UI instead of the original radioButton.

If Card(radioButton)<=MaxCard the radiobutton is

maintained in the mobile platform (no transformation

of the UI object takes place)

Actual output Output obtained

 120

General

considerations

Comments derived by the test result

ID Programmability_WebUIAdaptation_2

Module Web UI Adaptation

Description

The objective of the test case is verifying the effect of

modifying a mapping rule in the Web UI Adaptation

module (when passing from desktop to mobile). In

particular, the concerned example rule allows for

specifying the maximum dimension that images can

have when doing the adaptation from a desktop UI to a

mobile one. In particular, the concerned rule takes in

input Image_MaxDim, which is supposed to

represent the maximum dimension that images can

have on the mobile UI=(MaxWidth, MaxHeight).

This rule can transform the various images existing in

the desktop UI by resizing them according to the

specified size value Image_MaxDim, defined in

terms of width and height). This resizing process

should be carried out in such a way that the original

image aspect ratio will be preserved, and the size of

the adapted image should be equal (or less) of the

specified parameter Image_MaxDim.

Input

Image_MaxDim

Maximum image dimension that images can have on

the mobile device. It is specified through a couple of

integers (Image_MaxWidth, Image_MaxHeight)

representing the maximum width and the maximum

height (in pixels) that an image can assume on the

mobile target platform.

Expected

output

For each image belonging to the desktop UI: if the

dimension of the considered image is bigger than

Image_MaxDim, the considered image is resized

 121

according to the specified dimension Image_MaxDim.

Otherwise, the considered image maintains its own

dimension on the mobile target platform (then, no

resizing transformation is performed).

Actual output Output obtained

General

considerations

Comments derived by the test result

ID Programmability_WebUIAdaptation_3

Module Web UI Adaptation

Description

The objective of the test case is to understand the

effect of modifying a splitting rule in the Web UI

Adaptation module (when passing from desktop to

mobile). Supposing that Height_Resolution is the

resolution of the actual height of the mobile screen

expressed in pixels. This example rule allows for

modifying the height associated with the mobile target

device, by multiplying the device screen‟s actual

height of a factor (namely, the Tolerance parameter).

In this way, the height associated with the device

screen is considered as “extended” through this

tolerance factor to the screen height, so as to be able to

include more UI objects in the same presentation, and

also enabling a number of (vertical) scrolling actions

on a presentation. If the total cost of the presentation

(namely, the sum of the costs of the various objects

contained in the same presentation, let‟s call it

Total_Cost) exceeds the “extended” capability of the

mobile device, then a splitting transformation is

carried out. This means that multiple pages are created

on the mobile platform (starting from the original

desktop single presentation), together with additional

links for navigating between the newly created pages;

 122

otherwise the presentation is not split.

Input

Tolerance

This integer value represents the factor according to

which the height resolution of the mobile device

screen is multiplied. The goal is to enable an

increased tolerance towards the device screen‟s height,

in order to allow that more UI objects are contained in

the same presentation, which can be accessed through

a number of scrolling actions (on the vertical axis).

Then, if Tolerance>1, a vertical scrolling is enabled in

the target mobile UI.

Expected

output

If ((Tolerance * Height_Resolution)> Total_Cost)

then the presentation is split in multiple presentations,

otherwise a single presentation is maintained on the

target device.

Actual output Output obtained

General

considerations

Comments derived by the test result

ID Programmability_WebUIAdaptation_4

Module Web UI Adaptation

Description

The objective of the test case is to understand the

effect of modifying a splitting rule in the Web UI

Adaptation module (when passing from desktop to

mobile). In particular, the concerned example rule

focuses on the adaptation of a presentation containing

a textual interactor, and how it can vary in a

programmable way. More specifically, in this example

rule it is shown to what extent the cost of a certain

textual element can vary depending on the values of

 123

the specified programmable input parameters

manipulated by the concerned splitting rule (namely,

such parameters are ExpectedScreenWidth and

LineCost, see below). Such a variation of the cost

associated with the textual interactor might lead to a

possible splitting (since such a splitting also depends

on the costs of the other UI elements included in the

presentation) of the presentation containing such

interactor.

Input

ExpectedScreenWidth

The number of characters that are expected to be

contained in a single line of the screen. This property

might be found within the list of device capabilities,

but the user can also specify a value for it.

LineCost

The cost assigned to a single line. Generally it

corresponds to the height resolution of the text

expressed in pixels, but the user can also specify a

value for it.

Expected

output

If we consider a textual interactor (for instance, a quite

long text) we can calculate the cost of the textual

interactor in the following way:

TextualInteractorCost = (NumLines * Line Cost)

where NumLines is the number of characters

contained in the textual interactor, divided by

ExpectedScreenWidth.

Since the total cost of the presentation containing the

textual interactor can also contain other UI elements,

the total cost of the presentation can be calculated in

the following way:

TotalCost = TextualInteractorCost + (Cost of the

remaining part of the presentation)

If TotalCost > (HeightResolution of the mobile device

screen) then a splitting is carried out, and the original

single presentation is transformed into multiple

presentations on the mobile device. Otherwise no

splitting action is performed.

 124

Actual output Output obtained

General

considerations

Comments derived by the test result

 125

Appendix C

I. Web Migration test cases

ID OPEN Technological test plan Web migration TC1

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

86 - Migration should be triggered by the user

Input

Expected

output

Actual output

General

considerations

ID OPEN Technological test plan Web migration TC2

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

6 - System should be able to trigger a migration

Input

 126

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC3

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

82 - Migration should be automatic / system

triggered. Based on previous settings by the user

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC4

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

 127

functionalities are correctly performed. This test

case aims to verify this requirement:

62 - Users want to use the migration process for

triggering application actions, e.g. for joining a

game

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC5

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

157 - The OPEN platform should be installed and

listening for any device requesting migration

Input

Expected

output

Actual output

General

consideration

 128

ID OPEN Technological test plan Web migration TC6

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

54 - It must be possible to continue my current

service seamlessly across multiple devices

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC7

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

34 - Service content should be provided in a context

aware manner

Input

Expected

output

Actual output

 129

General

consideration

ID OPEN Technological test plan Web migration TC8

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

162 - The OPEN platform should be able to

maintain the data inserted by the user in the source

device and show them in a consistent way after

migration on the target device

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC9

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

163 - The OPEN platform should present the last

 130

data inserted by the user on the source device in the

first presentation provided to the user in the target

device

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC10

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

106 - OPEN should let me know where my data is.

After it has migrated several times

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC11

 131

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

61 - The user does not want to care about

networking aspects when trying to migrate

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC12

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

115 - OPEN enables the user to get, what s/he

individually can handle, i.e. the information remains

not only complete, but in terms of perceived

complexity understandable after a migration

Input

Expected

output

Actual output

 132

General

consideration

ID OPEN Technological test plan Web migration TC13

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

156 - The input devices must be able support the

same actions

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC14

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

80 - Users must be able to accept or deny a

migration from a to b

 133

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC15

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

20 - Users need to discover devices in the vicinity.

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC16

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

 134

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

A1 - Image size must fit the screen of every kind of

device allowed

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC17

Item Specific requirements

Description Web migration testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

A2 - Page has to be entirely loaded for a good user

experience

Input

Expected

output

Actual output

General

consideration

 135

ID OPEN Technological test plan Web migration TC18

Item Availability

Description Availability is monitored recording possible failures

and their lasting while executing the prototype.

Input Prototype is actively used during the whole working

day and left in background during the following

night, with an internal tool recording every kind of

issue: migration failures, application failure, wrong

device discovery, and so on

Expected

output

There is no target value; the result will be evaluated

after the closure of the testing timeframe.

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC19

Item Reliability

Description Reliability is monitored recording possible failures

during a complete E2E execution of the prototype.

Input A complete execution of the prototype (e.g. the

access to a product and a following migration) is

performed as many times as possible during the

whole working day, with an internal tool recording

every kind of issue. The percentage of complete

executions without issues is the final result.

Expected

output

There is no target value; the result will be evaluated

after the closure of the testing timeframe.

Actual output

 136

General

consideration

ID OPEN Technological test plan Web migration TC20

Item Performance

Description Timings and possible failures will be monitored and

recorded for: Triggering, Migration, Application

Input Execution of the prototype is performed while

recording the internal logs during the whole working

day. Values to measure: triggering time, migration

time, application delay and jitter. Events to record:

trigger failures, migration failures.

Expected

output

There is no target value; the result will be evaluated

after the closure of the testing timeframe.

Actual output

General

consideration

ID OPEN Technological test plan Web migration TC21

Item Accessibility

Description This test case aims to underline possible lacks of

Web content accessibility.

Input Web contents of the application are submitted to the

accessibility analysis of Magenta tool; if no lacks of

accessibility raise, further tools from D6.3 can be

applied (W3C Validator, WAVE Web Access

Evaluation Tool, Web Access Checker at ATRC).

Expected These tools should not discover any accessibility

 137

output issues.

Actual output Outcome from Magenta tool:

General

consideration

ID OPEN Technological test plan Web migration TC22

Item Adherence to the Standard

Description This test case verifies the respect of W3C standards

concerning (X)HTML tags.

Input Web content is checked through the W3C website,

verifying possible errors towards its specs.

Expected

output

No incompatibilities with W3C specs should arise.

Actual output Outcome from W3C website:

General

consideration

II. Mobility support test cases

ID OPEN Technological test plan Mobility support

TC0

Item Prototype Initial Test

Description This test case aims to validate the basic prototype

operation. It consists of a set of YES/NO questions

that verify if the prototype is carrying out or not the

task which was designed for: video migration. The

result of the test case will be PASSED if the

response to all the questions are yes or NOT

 138

PASSED if any of them is no.

Input Connect the source and destination prototype

devices to the test scenario network by following

carefully the prototype setting up instructions.

Answer the following set of questions with YES or

NOT:

i) Is it possible to visualize the streaming video

at the source device?

ii) Is the streaming audio synchronized with the

video at the source device?

iii) Does the video/audio stream skips, cuts out

or buffers?

Trigger the migration application as indicated in the

instructions and answer the following questions with

YES or NOT:

iv) Does the migration take longer than 4

seconds [1]?

v) Is it possible to visualize the streaming video

at the target device?

vi) Is the streaming audio synchronized with the

video at the target device?

vii) Does the video/audio stream (at the target

device) skips, cuts out or buffers?

Expected

output

The expected output is PASSED.

Actual output

General

consideration

Any unexpected change in the setting up should be

reported to the owner of the project before starting

with the test plan.

Any kind of unexpected error or delay during the

test case should be included in the prototype test

cases results.

 139

ID OPEN Technological test plan Mobility support

TC1

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

7 - The user must be enabled to watch a program

using his set top box and multiple screens

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC2

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

86 - Migration should be triggered by the user

Input

Expected

output

 140

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC3

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

82 - Migration should be automatic / system

triggered. Based on previous settings by the user

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC4

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

 141

case aims to verify this requirement:

54 - It must be possible to continue my current

service seamlessly across multiple devices

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC5

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

74 - Users must be able to migrate identified parts of

the application to other devices e.g. high score list

Input

Expected

output

Actual output

General

consideration

 142

ID OPEN Technological test plan Mobility support

TC6

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

61 - The user does not want to care about

networking aspects when trying to migrate

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC7

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

131 - The offline-online migration must be triggered

by network QoS parameters too

Input

Expected

output

 143

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC8

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

80 - Users must be able to accept or deny a

migration from a to b

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC9

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

 144

case aims to verify this requirement:

66 - The user must be able to specify migration

policies, e.g. automatic migration when switched off

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC10

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

91 - OPEN should predict the data and applications

needed when going mobile. Possible migration also

for non-OPEN service providers

Input

Expected

output

Actual output

General

consideration

 145

ID OPEN Technological test plan Mobility support

TC11

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

A1 - Image size must fit the screen of every kind of

device allowed

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC12

Item Specific requirements

Description Mobility support testing will start by verifying the

specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed. This test

case aims to verify this requirement:

A2 - The offline-online migration must be triggered

by battery too

Input

Expected

output

 146

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC13

Item Technical Measurements: Availability

Description The goal in this test case is to measure the

performance of the system in terms of:

- Availability  % of time in which the

service is available.

This performance will be measured under 3 different

network conditions: dedicated network (no traffic),

shared network and overloaded network.

Input General input for indicators testing: Execution of the

prototype is performed while recording the internal

logs during the whole working day. Values to

measure: triggering time, discovery time, migration

time and application delay, jitter and

synchronization. Events to record: jitter, number of

fails, trigger failures, discovery failures, and

migration failures.

Repeat the previous step but adding the following

network conditions:

- Network utilization by other applications:

50%

- Network utilization by other applications:

90%

Traffic can be generated using LAN Tornado,

Paessler Net Flow generator or other traffic

generation software.

Expected

output

Measurements of the commented parameters. (No

expected target values in this phase).

 147

Actual output

General

consideration

ID OPEN Technological test plan Mobility support

TC14

Item Technical Measurements: Reliability

Description The goal in this test case is to measure the

performance of the system in terms of:

- Reliability  % of successful migrations

This performance will be measured under 3 different

network conditions: dedicated network (no traffic),

shared network and overloaded network.

Input General input for indicators testing: Execution of the

prototype is performed while recording the internal

logs during the whole working day. Values to

measure: triggering time, discovery time, migration

time and application delay, jitter and

synchronization. Events to record: jitter, number of

fails, trigger failures, discovery failures, and

migration failures.

Repeat the previous step but adding the following

network conditions:

- Network utilization by other applications:

50%

- Network utilization by other applications:

90%

Traffic can be generated using LAN Tornado,

Paessler Net Flow generator or other traffic

generation software.

Expected

output

Measurements of the commented parameters. (No

expected target values in this phase).

Actual output

 148

General

consideration

ID OPEN Technological test plan Mobility support

TC15

Item Technical Measurements: Performances

Description The goal in this test case is to measure the

performance of the system in terms of:

- Delay  Timings and possible failures will

be monitored and recorded for: trigger,

discovery, migration and application.

- Jitter

This performance will be measured under 3 different

network conditions: dedicated network (no traffic),

shared network and overloaded network.

Input General input for indicators testing: Execution of the

prototype is performed while recording the internal

logs during the whole working day. Values to

measure: triggering time, discovery time, migration

time and application delay, jitter and

synchronization. Events to record: jitter, number of

fails, trigger failures, discovery failures, and

migration failures.

Repeat the previous step but adding the following

network conditions:

- Network utilization by other applications:

50%

- Network utilization by other applications:

90%

Traffic can be generated using LAN Tornado,

Paessler Net Flow generator or other traffic

generation software.

Expected

output

Measurements of the commented parameters. (No

expected target values in this phase).

 149

Actual output

General

consideration

III. Device selection Map Test cases

ID OPEN Technological test plan Device selection map

TC1

Item Specific requirements

Description Device selection map testing will start by verifying

the specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed.

This test aims to verify this requirement:

86 - Migration should be triggered by the user

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Device selection map

TC2

Item Specific requirements

Description Device selection map testing will start by verifying

the specific requirements, since they are primary to

check what the prototype does, and if its

 150

functionalities are correctly performed.

This test aims to verify this requirement:

157 - The OPEN platform should be installed and

listening for any device requesting migration

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Device selection map

TC3

Item Specific requirements

Description Device selection map testing will start by verifying

the specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed.

This test aims to verify this requirement:

61 - The user does not want to care about

networking aspects when trying to migrate

Input

Expected

output

Actual output

General

consideration

 151

ID OPEN Technological test plan Device selection map

TC4

Item Specific requirements

Description Device selection map testing will start by verifying

the specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed.

This test aims to verify this requirement:

63 - OPEN should work with and without internet

connection

Input

Expected

output

Actual output

General

consideration

ID OPEN Technological test plan Device selection map

TC5

Item Specific requirements

Description Device selection map testing will start by verifying

the specific requirements, since they are primary to

check what the prototype does, and if its

functionalities are correctly performed.

This test aims to verify this requirement:

20 - Users need to discover devices in the vicinity.

Input

Expected

output

 152

Actual output

General

consideration

ID OPEN Technological test plan Device selection map

TC6

Item Availability

Description Availability is monitored recording possible failures

and their lasting while executing the prototype.

Input Prototype is actively used during the whole working

day and left in background during the following

night, with an internal tool recording every kind of

issue.

Expected

output

There is no target value; the result will be evaluated

after the closure of the testing timeframe.

Actual output

General

consideration

ID OPEN Technological test plan Device selection map

TC7

Item Reliability

Description Reliability is monitored recording possible failures

during a complete E2E execution of the prototype.

Input A complete execution of the prototype (e.g. the

access to a product and a following migration) is

performed as many times as possible during the

whole working day, with an internal tool recording

 153

every kind of issue. The percentage of complete

executions without issues is the final result.

Expected

output

There is no target value; the result will be evaluated

after the closure of the testing timeframe.

Actual output

General

consideration

ID OPEN Technological test plan Device selection map

TC8

Item Performance

Description Timings and possible failures will be monitored and

recorded for: Device discovery.

Input Execution of the prototype is performed while

recording the internal logs during the whole working

day. Values to measure: discovery time. Events to

record: discovery failures.

Expected

output

There is no target value; the result will be evaluated

after the closure of the testing timeframe.

Actual output

General

consideration

 154

Appendix D

This appendix summarizes from D6.3 the indicators considered as necessary for

the technological evaluation and the specific OPEN requirements to be verified.

Indicators:

 Availability

 Reliability

 Performance

 Accessibility

 Scalability

 Security

 Adherence to the standards

Note that possible exceptions are not considered here, because additional

indicators could be specified in the specific test plan, depending on the precise

prototype to evaluate. How can the indicators be adapted to a prototype? The

translation for testing purposes (cfr. D6.3 section2) shall be applied to its specific

context.

I. Availability

The percentage of time during which the prototype is correctly working should be

measured and monitored for a predefined lasting of time; of course this means that

the expected result from the execution of the prototype should be agreed from the

test team with the developers.

The most basic solution to define how to measure the availability is to continually

execute the prototype for a predefined time; of course this is a baseline, which can

be improved in two ways:

 With a proper tool, either internal to the prototype itself or from other free

software; this would be probably the best way to perform an availability

measurement

 Starting the prototype and leave it executing (both managing context info

and performing migrations) without a continuous interaction (if possible)

The feasibility of these two options should be checked between the developers

and the testers: lot of tools are available (also used in other European projects),

 155

and the opportunity to use some of them can be evaluated. About the second

option, the feasibility especially depends on the features of the prototype itself and

of the application running on it.

About the comparison with the environment usual parameters (e.g. 3G network),

it would give a real added value only in case of a very low difference between the

network/environment availability and the one desired by the prototype; it is

possible to omit this point when the desired availability is much lower than it; of

course this is another topic to be first discussed for each prototype.

II. Reliability

Reliability concerns the persistence of the availability, for a predefined lasting

time, related to the execution of the necessary functionalities of a product; for

example, if the prototype was a racing application, this timeframe could be

dimensioned on a complete race, otherwise it can be related to a complete

migration process; this can be decided for each prototype.

A preliminary discussion about the expected results is needed, in the same way as

the availability; about the testing procedures, the basic option is also in this case

to launch the execution of the prototype as many times as possible during the

testing timeframe, with the alternatives of using: 1) Some tools 2) Automatic

executions (not simulations that are more proper in a development phase).

III. Performance

Evaluation of performance will be based on the measurement of some Key

Performance Indicators; D6.3 listed 1-2 KPI for each functional element of the

OPEN platform, while the other element to verify (if feasible) is possible

performance degradation after the migration (additional KPI could be inserted in

the single prototype test plan):

Figure 31: Two paths of performance evaluation: migration and application

 156

About the first class of records, for each prototype the functional elements

involved (within the complete set) will take part to the performance evaluation:

Figure 32: KPI to collect during the performance test, depending on the functional element

The collection of KPI would be more reliable if an internal log/tracer would be

provided in the prototype itself, in order to avoid that external measurements can

impact the precision or misunderstand the events considered as a reference. So

prototypes with such a facility will be evaluated (from a performance point of

view) by using values internally measured.

After the measurement, the results should be analyzed to summarize an overall

evaluation of the parameters.

IV. Accessibility

The D6.3 listed some tools to apply to web pages and items to verify the eventual

lacks of accessibility: for this indicator, developers and testers will agree the

content on which to execute the analysis and the most suitable tools.

V. Scalability

The necessity to measure the increment of traffic, CPU usage and so on when new

users join the system leads to the same conclusions than performance: it is worth

to use internal measurements from the prototype if possible, and the results should

be evaluated with the developers. Further kinds of measure could be added in the

test plans depending on the specific prototype.

VI. Security

Security can be very basically tested with checks about the AAA for users

allowed/not allowed, about the use of secure protocols (IPSec/IKE). More specific

tests can involve the use of tools related to this topic, while further ones can be

added by the developers for each prototype.

 157

VII. Adherence to the standards

For this indicator the first evaluation is very simple: the prototype should not

impact the environment, breaking the reference specifications. Other kinds of tests

can be added for each prototype after an agreement between developers and

testers, depending on the standards involved both in the product and in the

environment.

VIII. Specific requirements

As said before, D6.3 identified a set of specific requirements for the OPEN

project, depending on:

 Their critical importance and necessity for a correct functioning of a

migration ”ecosystem”, made of the interaction of its components with

device, applications and so on

 The feasibility of an easy way of testing these requirements, from the

observation of the applications execution and of the migration

 Their relevance for testing purposes

 Their contribute to a general platform evaluation, in order to avoid

requirements too context –specific

The requirements are now listed, classifying them basing on the functional

element involved for their satisfaction; the classification has been revised in order

to map them to the modules defined in the D4.2 (some requirements are mapped

to more than one OPEN module):

Application

Reference

from D1.1

Requirement Typology

7 The user must be enabled to watch a program

using her/his set top box and multiple screens

Migration

Service

Platform

78 Gaming anywhere, anytime, anyhow User Interface

/MSP

163 The OPEN platform should present the last data

inserted by the user on the source device in the

first presentation provided to the user in the target

device

UI/MSP

 158

117 OPEN enables the viewing and browsing of

information for different users with different

devices at the same time

UI

144 The OPEN platform should be able to handle, e.g.

co-ordinate and synchronize, inputs from

multiple-users, not only in gaming scenarios, but

for others application too

MSP

152 When several users share the same screen in a

multiplayer game, there must be a perfect

synchronism in the input elaboration

UI/MSP

74 Users must be able to migrate identified parts of

the application to other devices e.g. high score list

MSP/UI

Additional Periodic actions of the applications maintain their

phasing

MSP/Network

Additional User status for Presence service maintained after

migration

MSP/Network

Migration orchestration

Reference

from D1.1

Requirement Typology

6 System should be able to trigger a migration MSP

86 Migration should be triggered by the user MSP/UI

62 Users want to use the migration process for

triggering application actions, e.g. for joining a

game

MSP/UI

157 The OPEN platform should be installed and

listening for any device requesting migration

MSP

54 It must be possible to continue my current service

seamlessly across multiple devices

MSP

74 Users must be able to migrate identified parts of

the application to other devices e.g. high score list

MSP/UI

Additional User status for Presence service maintained after

migration

MSP/Network

 159

CMF

Reference

from D1.1

Requirement Typology

34 Service content should be provided in a context

aware manner

UI/Application

Logic

106 OPEN should let me know where my data is.

After it has migrated several times

MSP/UI/AL

Web UI adaptation

Reference

from D1.1

Requirement Typology

115 OPEN enables the user to get, what s/he

individually can handle, i.e. the information

remains not only complete, but in terms of

perceived complexity understandable after a

migration

UI

156 The input devices must be able support the same

actions

UI

75 Users must be able to push and pull user

interfaces

MSP

117 OPEN enables the viewing and browsing of

information for different users with different

devices at the same time

UI

Additional Image size must fit the screen of every kind of

device allowed

MSP/Network

Additional Page has to be entirely loaded for a good user

experience

MSP/Network

Generic UI Adaptation

Reference

from D1.1

Requirement Typology

115 OPEN enables the user to get, what s/he

individually can handle, i.e. the information

remains not only complete, but in terms of

UI

 160

perceived complexity understandable after a

migration

156 The input devices must be able support the same

actions

UI

75 Users must be able to push and pull user

interfaces

MSP

Trigger management

Reference

from D1.1

Requirement Typology

131 The offline-online migration must be triggered by

network QoS parameters too

Network

82 Migration should be automatic / system triggered.

Based on previous settings by the user

MSP/UI

6 System should be able to trigger a migration MSP

Additional The offline-online migration must be triggered by

battery too

Network

Application logic reconfiguration

Reference

from D1.1

Requirement Typology

87 I should be able to migrate more than the user

interface, i.e. codec, computation tasks…

MSP/AL

81 Binary implementations of the services must be

downloadable into the target device – A downlink

is required

Network

Open Client Daemon with UI

Reference

from D1.1

Requirement Typology

86 Migration should be triggered by the user MSP/UI

80 Users must be able to accept or deny a migration MSP/AL

 161

from a to b

90 The user must be able to select which content he

wants to migrate to the low-end device

MSP

Policy enforcement

Reference

from D1.1

Requirement Typology

79 The user must be able to instruct the system, not

to be interrupted, e.g. by somebody waiting to

join. The user wants to control who can join the

game, e.g. at play time by a list

MSP/AL

66 The user must be able to specify migration

policies, e.g. automatic migration when switched

off

MSP/AL

Generic/Web State handler

Reference

from D1.1

Requirement Typology

43 Recording of sessions MSP/Network

123 OPEN enables the users to have a complete ex-

post emergency analysis

UI

162 The OPEN platform should be able to maintain

the data inserted by the user in the source device

and show them in a consistent way after migration

on the target device

UI/MSP

Mobility support

Reference

from D1.1

Requirement Typology

61 The user does not want to care about networking

aspects when trying to migrate

Network

91 OPEN should predict the data and applications Network/MSP

 162

needed when going mobile. Possible migration

also for non-OPEN service providers

Device discovery

Reference

from D1.1

Requirement Typology

20 Users need to discover devices in the vicinity. Network

33 Devices in geographical range (but not network

range) should be usable to migrate to

Network

Platform (requirements that involve the whole platform)

Reference

from D1.1

Requirement Typology

63 OPEN should work with and without internet

connection

Network

38 My private information should be kept safe MSP/UI

Additional Use of secure protocol (e.g. IPSEC/IKE) Network

 163

References

[1]
Martin, J., Principles of Data Communication. Englewood Cliffs,

NJ: Prentice Hall, 1988

[Aalst04] W. Aalst, K. Hee. Workflow Management, Models, Methods, and

Systems. First MIT Press paperback edition, 2004.

[BBDef] Black box test definition:

http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf

http://en.wikipedia.org/wiki/Black_box

[D1.1]
Requirements for OPEN Service Platform

[D1.3]
Final Requirements for OPEN Service Platform

[D2.1]
Early infrastructure for migratory interfaces

[D3.2] System support for application migration

[D4.1] Solution for Application Logic reconfiguration

[D4.2] Migration service platform design

[D4.3] Prototype for Application Logic Reconfiguration

[D5.1]
Initial application requirements and design

[D5.2]
Initial prototype applications

[D6.1] Usability criteria for project phases: use cases selection, design,

development, test and deployment

[D6.2] Evaluation parameters for enabling the environment

programmability

[D6.3]
Indicators for technical evaluation

[DoW]
Description of Work – open – VERY LAST

[HUT] Wiley Publishing, Inc. 2008: Jeffrey Rubin and Dana Chisnell:

http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf
http://en.wikipedia.org/wiki/Black_box

 164

Handbook of Usability Testing.

[IDef] Integration test definition:

http://www.bsi-global.com/

http://www.testingstandards.co.uk/bs_7925-2.htm

http://en.wikipedia.org/wiki/Integration_testing

http://en.wikipedia.org/wiki/Unit_testing

http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter7.htm

[WBDef] White box test definition:

http://agile.csc.ncsu.edu/SEMaterials/WhiteBox.pdf

http://en.wikipedia.org/wiki/White_box_(software_engineering)

[WP] Workflow Patterns initiative.

http://www.workflowpatterns.com/patterns/index.php

http://www.bsi-global.com/
http://www.testingstandards.co.uk/bs_7925-2.htm
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Unit_testing
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chapter7.htm
http://agile.csc.ncsu.edu/SEMaterials/WhiteBox.pdf
http://en.wikipedia.org/wiki/White_box_(software_engineering)
http://www.workflowpatterns.com/patterns/index.php

