
OPEN Partners:
CNR-ISTI (Italy)

Aalborg University (Denmark)
Arcadia Design (Italy)

NEC (United Kingdom)
SAP AG (Germany)

Vodafone Omnitel NV (Italy)
Clausthal University (Germany)

OPEN Project
STREP Project FP7-ICT-2007-1 N.216552

"The information in this document is provided "as is", and no
guarantee or warranty is given that the information is fit for any
particular purpose. The above referenced consortium members shall
have no liability for damages of any kind including without
limitation direct,special, indirect, or consequential damages that
may result from the use of these materials subject to any liability
which is mandatory due to applicable law. Copyright 2008 by all OPEN
Partners."

Title of Document: Evaluation parameters for enabling the
environment programmability

Author(s): Grasselli Agnese, Marzorati Stefano, Piunti Mattia

Contributor(s): Santoro Carmen

Affiliation(s): Vodafone IT, CNR

Date of Document: 10/12/2008

OPEN Document: D6.2

Distribution: Public

Keyword List: Application Logic Reconfiguration, User Interface
Adaptation

Version: 0.5

Evaluation parameters for enabling
the environment programmability

Id Number: D6.2

Abstract
The purpose of this deliverable is describing the approach that will be
implemented for testing the environment programmability and presenting the
evaluation parameters that will be used.

Title: 0 Id Number: 0

 11

Table of Contents

1 INTRODUCTION ... 2

2 THE OPEN ENVIRONMENT ... 3

2.1 MIGRATION PROCESS ... 3
2.2 ADAPTATION PROCESS .. 4
2.3 PROGRAMMABILITY OF THE OPEN ENVIRONMENT ... 5

3 PROGRAMMABILITY OF THE MIGRATION PROCESS ... 7

3.1 CONTEXT MANAGEMENT SYSTEM .. 7
3.2 COMMUNICATION SYSTEM ... 7
3.3 DEVICE DISCOVERY .. 7
3.4 TRIGGER MANAGEMENT .. 8
3.5 MIGRATION ORCHESTRATION .. 8
3.6 SESSION MANAGEMENT .. 9

4 PROGRAMMABILITY OF THE ADAPTATION PROCESS 10

4.1 INTRODUCTION .. 10
4.2 NETWORK .. 10
4.3 APPLICATION LOGIC AND USER INTERFACE .. 11
4.4 APPLICATION LOGIC .. 11
4.5 ORCHESTRATION ... 12

4.5.1 Application Logic modelling .. 13
4.5.2 Execution .. 14

4.6 CONFIGURATION ... 14
4.7 USER INTERFACE ... 15

5 EVALUATION PARAMETERS AND TESTING ... 18

6 REFERENCES .. 19

 2

1 Introduction

The aim of the document is describing the approach that will be implemented for
the programmability evaluation of the OPEN environment.

For the scope of this document, the programmability is the capability of defining
different rules that describe the migration and adaptation processes depending on
the context information. Since the OPEN platform architecture is still an High Level
design, the following analysis should be seen as a guidelines collection, to be
further evaluated when the architecture will be refined.

The document is structured as follows: in the second chapter a brief definition of
programmability applied to the OPEN migration and adaptation processes is
introduced. In the chapters number 3, 4 and 5, the migration and adaptation process
will be analysed, whereas the last chapters summarizes the evaluation approach.

 3

2 The Open environment

The migration process is composed of a set of phases, which trigger and manage
the application migration. A specific part of this process is the application
adaptation.. Even if the adaptation is part of the migration process, in this
document it is deepened in a dedicated chapter in order to better focus on its
specific tasks: the application logic reconfiguration and the content adaptation.
The adaptation is conditional on the models used for the application logic
description and logical user interface description, to be addressed in WP2 and
WP4.

In order to better understand the scope of this document, it is useful to identify
who the final users of the programmability are.

In the OPEN project, we can identify at least three categories of users:

− Middleware and application developers: for this kind of users,
programmability means the capability of adding new code or modifying
the existing-one. This capability is strictly related to the particular
technologies used for the implementation.

− Service provider: the entity hosting the middleware and the application,
which deliver the service to the end users. For this kind of users, the
programmability is the capability of setting rules that defines the
migration and adaptation processes performed by the OPEN platform
depending on the context information.

− End users: for this kind of users, programmability could be the capability
of influencing the migration and adaptation process setting personal
preferences. These personal preferences are considered as context
information managed by the platform, in the document are not
distinguished by the other context information.

In this document the programmability is the capability of setting rules that
defines the migration and adaptation processes performed by the OPEN platform
depending on the context information. This definition fits both to the Service
Provider user and the Application developers’ point of view.

2.1 Migration process

The Migration process is composed of a number of stages, which can be
implemented in different ways; these stages are deeply described in D1.2. The
migration process is performed by the Middleware layer. In the migration process
have been identified the following stages:

• Device Discovery: it identifies the devices that are available to be
involved in the migration process and their attributes that can be relevant
for migration.

• When to Migrate: the Migration Trigger indicates when to migrate.
This event can be generated by the user or the system or through a
mixed initiative process (the system proposes migration and the user can
decide whether to accept it). Users can request migration when they feel

 4

it necessary, while the system can trigger it when specific events are
detected (such as the device is getting out of power).

• Where to Migrate: once migration is triggered it is important to
identify the target device for the migration process. Such target should
be one of the devices available for this purpose and should be detected
on the basis of its features and how well it fits in the new context of use.

• What to Migrate: an interactive migratory service is composed at least
of two main parts: the user interface and the application logic. The
former is the software dedicated to the interaction with the user while
the latter is the functional core independent of how user interaction takes
place.

• How to Migrate: since the device to access the application changes
after migration some level of adaptation of the migratory service should
be performed, in particular of its interactive part, in order to better
exploit the new resources available while preserving usability.

• State persistence: one of the main reasons for migration is to continue
their session through different devices. This means that the changes
made by the user in the source device should not be lost when moving to
the new one. Thus, it is important to carry out source state extraction and
associate it to the target version.

• Activation in the target device. In order to obtain continuity it is
important that the application on the target device is activated not at its
usual starting point but at the point in which it was left off on the source
device.

• Optional termination of the source version

Each migration process stage:

• Uses the information provided by the context management system

• Is supported by the communication infrastructure

2.2 Adaptation process

The different parts of a migratory service are adapted at the Presentation and
Application Logic layer. An interactive migratory service is composed of the
following main parts:

• The User Interface, which is composed of the presentation (the choice
of the modality, layout, graphical attributes …), the dynamic behaviour
(the choice of the navigation model, the dynamic activation and
deactivation of interaction techniques), and content (what information is
actually presented). Each of them can adapt according to a change of
context.

• The Application Logic can be adapted by reconfiguring the access to
the functionalities in order to access different implementations of some
of them or increase/decrease such functionalities because of the change

 5

of device or the change of the connectivity. For example an access to a
data base to retrieve a large amount of data can be performed if the
application is using a good connectivity, while the same access should
be avoided if the connectivity is to poor to provide results in a
reasonable amount of time. In this case it could be necessary to perform
the data base access in a separate phase or in separate application hence
affecting not only business logic of the migrating application but also
the overall procedure the migrating application belongs.

• The Network support, since the connectivity can change then the
network protocol and their quality of service may have to change.

2.3 Programmability of the Open environment

The definition of “Programmability” is: the capability within hardware and software
to change; to accept a new set of variables and instructions that alter its behaviour
[http://encyclopedia2.thefreedictionary.com/programmability]. Programmability
generally refers to program logic (business rules), but it also refers to designing the
user interface which includes the choices of menus, buttons and dialogs.

Applied to the OPEN platform, the term Programmability acquires a wider
meaning. Programmability of the OPEN environment means:

• Programmability of the migration process: the capability to impose a
new set of variables and instructions or rules that alter the migration
behaviour. The programmability of the migration process must be
evaluated taking into account all the different middleware components
which perform the different migration stages. This part should be
application independent.

• Programmability of the adaptation process: the capability to impose a
new set of variables and instructions or rules that alter the application
adaptation behaviour.

Since in the OPEN project the migration and adaptation processes are driven by
context information, the variables that will be taken into account are the context
information variables. For the scope of this document, the programmability is the
capability of defining different rules that describe the migration and adaptation
processes behaviour depending on the context information.

The modules implementing the migration and adaptation processes are those
defined in the D1.2 and depicted in Figure 1. Since the OPEN platform architecture
and the interaction protocols between different modules have not yet been designed
in detail, the following analysis should be seen as a guidelines collection, to be
further evaluated when the architecture will be refined.

 6

Figure 1: OPEN platform.

 7

3 Programmability of the migration process

The programmability of the migration process is analysed taking into account the
different stages previously listed and their mapping into the modules of the
architecture described in D1.2.

3.1 Context management system

The different stages of the migration process interact with the context
management system because the migration process is driven by the context
information. The programmability of the context management system can be
evaluated using the following parameters:

• Capability of storing and managing new context variable. E.g.:
context information is provided by the mobile phone, which
communicates to the context manager the battery threshold and the
signal strength. This information is mapped in two variables in the
context management system. Supposing that the mobile phone has also
the location information based on GPS, the context management system
should be able to allocate a variable for this information. Allocating a
new variable is not enough, because in order to use this variable for
applying a specific logic, it is necessary to be able to trace the variable
meaning.

• Capability of setting different logic for the interaction with other
modules: the context management system should interact for example
with the migration trigger. The logic implemented for managing the
information exchange between context management system and other
modules should be expandable/changeable.

3.2 Communication system

The communication system is the Communication interface depicted in Figure 1. It
is an enabler for the communication between the OPEN modules; no
programmability evaluations are required for it.

3.3 Device Discovery

This module is able to manage:

• Device discovery (device presence network)

• Service discovery (which services are provided by a specific device)

• Resource discovery (battery lifetime, processing power...)

The Device Discovery module is a provider of context information, because
available devices and their characteristics are a particular kind of context
information.

The programmability of the device discovery module can be evaluated using the
following parameters:

 8

• Capability of storing and managing new variable. E.g.: a PDA
provides to the device discovery module the battery threshold and the
screen dimension. In the device discovery module there are the relative
two variables. Supposing that the PDA has also the location information
based on GPS, the device discovery module should be able to allocate a
variable for this information. Allocating a new variable is not enough,
because in order to use this variable for applying a specific logic, it is
necessary to be able to trace the variable meaning.

• Capability of setting different logic for the interaction with the context
management system. The logic implemented for managing the
information exchange between the modules should be
expandable/changeable.

3.4 Trigger management

The “When to migrate” stage of the migration process involves the Trigger
management module. This module analyses contextual information changes and
decides whether or not a migration should be activated through issuing triggers.

The programmability of the trigger management module can be evaluated using
the following parameters:

• Capability of storing and managing new variable. As soon as the
context management system is able to mange new context variables, the
trigger management module should be able to use these new variables in
order to implement new triggers.

• Capability of setting different logic. The logic implemented for issuing
triggers should be expandable/changeable. Simple thresholds on context
information values can be used or even function of different pieces of
context information may apply.

3.5 Migration orchestration

The module indicated as “Migration orchestration” controls the migration process
from received trigger to successful use of the migrated service. This modules
implements different stage:

− Where to migrate

− What to migrate

− How to migrate

This module, even if associated to the migration process, could be affected by the
approach used for the application modelling. The decision of “Where” to migrate
and “What” should be taken accordingly with the different functions and
requirements of the different application components which are going to migrate.
“How” to migrate is a decision that put in to effects the results of the previous
decision, depending on the particular scenario capabilities (involved devices,
networks capabilities, and requirements to be satisfied…).

 9

Again for this module, the programmability can be evaluated using the following
parameters:

• Capability of storing and managing new variable.

• Capability of setting different logic. The logic implemented for
selecting “Where”, “What”, “How” should be expandable/changeable.

3.6 Session Management

The session management function helps ensure that sessions can continue during
migration, no programmability evaluations are required for it.

 10

4 Programmability of the adaptation process

4.1 Introduction

The adaptation process should support the adaptation of both Application Logic
and User Interface, and the capability of switching between different available
networks.

4.2 Network

There are different use cases in which the network support can change:

• Migration between devices using different network supports (game
migrating from the STB using xDSL access network to the mobile using
3G access network): in this case, the network switching is a
consequence of device change and is part of the migration process. The
supported network is a particular device information collected in the
device discovery.

• Switching between different access networks but still using the same
device: in this case, the handover between two different access network
can be performed:

− By the device: the mobile phone autonomously performs the
handover between 2G (GSM) and 3G (UMTS/HSPA) coverage.
No platform support is required.

− By the platform: in an hybrid STB, which has both xDSL and
DTT (Digital Terrestrial Television) or Satellite interface, live
TV could migrate from IP to broadcast. It is the need for
network handover which triggers the migration process, since
different network elements can be involved in the service
delivery changing the network support. In this case the trigger
can use network related context information. This kind of
context information can be provided to the Context management
system by the Performance monitoring.

The modules involved in the use case described are:

• Device discovery

• Context management system

• Performance monitoring

The first two modules have been analysed in the previous chapter.

For the Performance monitoring module, the programmability can be evaluated
using the following parameters:

• Capability of storing and managing new variable.

• Capability of setting different logic.

 11

4.3 Application Logic and User Interface

The programmability of the Application Logic is the capability of imposing rules
depending on context information that define the application logic reconfiguration
behaviour.

The programmability of the User Interface is the capability of imposing rules
depending on context information that define the user interface adaptation
behaviour.

The programmability should be enabled by specific tools/languages that the Service
Provider can use in order to impose desired behaviours. The analysis of these
tools/languages is out of the scope of this document, but should be addressed in
proper deliverables, as for example the D4.1 for the application logic
reconfiguration.

For the programmability evaluation it is necessary to specify some parameters
which can be used to verify that the selected tools are proper.

In the evaluation of the application logic reconfiguration programmability, the
parameter that will be used is the consistency: if the application logic
reconfiguration behaviour is compliant with the rules set using the tool/language
selected, the reconfiguration is programmable.

In the evaluation of the user interface adaptation programmability, one of the
parameters that will be used is again the consistency: if the user interface adaptation
behaviour is compliant with the rules set using the tool/language selected, the
adaptation is programmable. Another parameter that will be used for the UI
programmability is the provided control of the UI: namely, to what extent the
adaptation rules are able to cover all the different aspects of a user interface (e.g.:
navigation, presentation, ..).

4.4 Application Logic

The Application Logic reconfiguration/adaptation module is in charge of adapting
the application logic during the adaptation process. In this section, an introduction
to the available approaches enabling the application logic reconfiguration is done.
For different approaches, different tools/languages for defining the rules
describing the module behaviour can be used. Two different approaches can be
implemented:

• Orchestration: specification of an executable process that involves
message exchanges with other systems, such that the message exchange
sequences are controlled by the orchestration designer. The
orchestration approach is mainly used for business processes: a business
process can be modeled as a sequence of services, e.g. web services,
with a specific language, as BPEL (Business Process Execution
Language) [BPEL]. This model is used by an orchestration engine, as
ActiveBPEL [Abpel], which create an instance of the process. The
engine calls the different web services involved in the process,
maintaining the control of the process during all the time in which it is
running.

 12

• Configuration: arrangement of functional units. A reconfiguration
module run a specific reconfiguration algorithm and produces a
particular arrangement of the available functional units. In this case the
configuration module is not involved in the application execution.

Choosing between the two approaches should use implementation and architectural
evaluation. In the current stage of the OPEN project, the approach has not already
been defined, therefore in this chapter both the approaches will be considered.

4.5 Orchestration

In Figure 2 a general approach to orchestration is described. The main functional
elements are:

• Web services: a software system designed to support machine-to-
machine interaction over a network. Web services are frequently just
Web APIs that can be accessed over a network and executed on a
remote system hosting the requested services. In the picture below, some
examples of Web services are: SMSC/MMSC for the SMS and MMS
delivery, streaming server, chatting and betting server, Gaming
application server.

• Service orchestration: a dedicated module performs the service
orchestration.

• Content adaptation: the orchestrated service can be accessed through
different devices. A Content adaptation module can be used in order to
adapt the UI depending on the user’s device(s).

• Devices: the user can access to the service using a browser.

 13

Figure 2: orchestration scenario.

4.5.1 Application Logic modelling

In order to select the proper tool for the application logic modeling, an analysis of
the state of art for workflow languages and business process modeling language
should be performed. The workflow language is a language that specifies the rules
for connecting tasks to produce workflows. The Business Process Modeling
Language (BPML) [BPEL] is language for the modeling of business processes.

Afterwards, the evaluation of the following approach could be done:

• Top-down: the aim is, given the existing workflow language and
business process modelling language, to select one of these, which better
fit to the OPEN project needs.

• Bottom-up: given the OPEN platform and applications, design a
dedicated modelling language.

If the orchestration approach will be selected, the approach selection should be
brought to completion during the WP4 work.

In order to compare different modelling language, we refer to Workflow Patterns
[WP, Aalst04], which provide a thorough examination of the various perspectives
(control flow, data, resource, and exception handling) that need to be supported by
a workflow language or a business process modelling language. Workflow
Patterns are widely used for examining the suitability of a particular process
language or workflow system for a particular project, assessing relative strengths
and weaknesses of various approaches to process specification, implementing
certain business requirements in a particular process-aware information system,

PC

Chatting/betting Gaming AS

STB

SMSC/MMSC
Streaming server

mobile

Orchestration

Content adaptation

Web services
Web services are used for implementing different
parts of the application (e.g.: game engine,
streaming server…)

Service Orchestration
The orchestration module uses:
•Application logic rules
•Context information
In order to deliver the correct service to the user

Content adaptation
The content adaptation modules uses:
•The information regarding the services to be
presented to the user
•User Interface rules
•The context information
in order to create the proper GUI

Browsers on the devices
The users access to the orchestrated service using
the browser in the devices

PCPC

Chatting/betting Gaming AS

STB

SMSC/MMSC
Streaming server

mobile

Orchestration

Content adaptation

Web services
Web services are used for implementing different
parts of the application (e.g.: game engine,
streaming server…)

Service Orchestration
The orchestration module uses:
•Application logic rules
•Context information
In order to deliver the correct service to the user

Content adaptation
The content adaptation modules uses:
•The information regarding the services to be
presented to the user
•User Interface rules
•The context information
in order to create the proper GUI

Browsers on the devices
The users access to the orchestrated service using
the browser in the devices

Chatting/bettingChatting/betting Gaming ASGaming AS

STBSTB

SMSC/MMSC
Streaming server

mobilemobile

OrchestrationOrchestration

Content adaptationContent adaptation

Web services
Web services are used for implementing different
parts of the application (e.g.: game engine,
streaming server…)

Service Orchestration
The orchestration module uses:
•Application logic rules
•Context information
In order to deliver the correct service to the user

Content adaptation
The content adaptation modules uses:
•The information regarding the services to be
presented to the user
•User Interface rules
•The context information
in order to create the proper GUI

Browsers on the devices
The users access to the orchestrated service using
the browser in the devices

 14

and as a basis for language and tool development. Analysing the OPEN scenarios
from this point of view, it is possible to extract the expressivity needed by the
OPEN middleware.

In process-aware information systems various perspectives can be distinguished.

• The control-flow perspective captures aspects related to control-flow
dependencies between various tasks (e.g. parallelism, choice,
synchronization etc). Originally the Workflow Pattern initiative
proposes twenty patterns for this perspective, but in the latest iteration
this has grown to over forty patterns.

• The data perspective deals with the passing of information , scoping of
variables, etc.

• The resource perspective deals with resource to task allocation,
delegation, etc.

• The exception handling perspective deals with the various causes of
exceptions and the various actions that needs to be taken as a result of
exceptions occurring.

The workflow pattern can be used also for evaluating the programmability of the
Application Logic reconfiguration/orchestration module: more workflow patterns
a language is able to represent, higher is its capability of representing new
applications. The selection of the proper modelling tool is key for the module
programmability. In fact, this tool should be able to correctly model the
application which will be implemented, but it should be in general a good
modelling tool, in order to not restrict the application which could use the OPEN
platform. This evaluation remains theoretical.

4.5.2 Execution

The orchestration approach required an orchestration engine, as ActiveBPEL
[Abpel], which creates an instance of the modeled process. The engine uses the
context information in order to perform decision and call the different web
services involved in the process, maintaining the control of the process during all
the time in which it is running. The programmability evaluation will not consider
an engine evaluation, but the testing of the consistency of the OPEN application
models running.

4.6 Configuration

The (re)configuration is the arrangement of functional units. A reconfiguration
module runs a specific reconfiguration algorithm and produces a particular
arrangement of the available functional units. In this case the configuration
module is not involved in the application execution.

The dynamic-adaptive systems approach defined in [D1.2] is a reconfiguration
approach. It considers dynamic-adaptive systems: systems built from a set of
components that work together to perform some kind of tasks that are useful for
application users. To established component-based applications, the behaviour of

 15

dynamic-adaptive applications adapts during runtime to the needs of the current
user and his environment.

Components are software entities that realize specific services that are described
by and accessed through interfaces. Other components can define dependencies to
provided services by defining them as required. Provided and required services
have to be linked together in order to enable for example method calls from one
component to another. The Figure 3 shows a set of component instances running
on a PC that offer and require different services, described by interfaces. Required
services are depicted as semi-circles, while provided services are depicted as
circles. That notion follows the UML 2 standard [UML]. In order to run the
application, according provided and required services have to be connected. The
decision of which services to connect will be made in the middleware.

Figure 3: Component instances running on a PC ready for wiring and interacting together. If a
component instance holds all required references to service implementations, it becomes runnable
and will provide the given services to other components.

Therefore, the task of the middleware is to ensure that the wiring of component
instances always fits to the user’s needs on the one hand, and to the usage context
on the other hand. The wiring can be changed during runtime based on context
information, user preferences, or currently available component instances.

The rewiring aim is to use the information collected in the model to ensure that
the wiring of component instances always fits to the application logic. The wiring
can be changed during runtime based on context information, user preferences, or
currently available component instances.

The programmability evaluation will test the consistency of the OPEN application
running.

4.7 User Interface

As far as the user interface is concerned, the programmability of the migration
platform mainly regards the capability to enable the user of the platform to
customise/modify the aspects that have an impact on the user interface behaviour
of the migrating application, according to various aspects (e.g. changed
requirements/goals, different context, etc.). One of the modules that affects the

:PC

IfD

:B

:C
IfC

:A

IfC
:C

IfC

IfB
:D

IfDIfB

IfA1

IfA2

 16

user interface part in the migration platform is the user interface adaptation
module, which is in charge of adapting the user interface depending on changing
contextual conditions. The programmability of this module implies that the user of
the migration platform should be able to customise the platform behaviour by
specifying different rules (or adding further rules) according to which the user
interface adaptation will be carried out. Such rules might affect both the
presentation part and the dialogue part of the user interface. Examples of such
rules might be for instance the possibility for the user of the migration platform to
decide the maximum number of presentations that should be generated by the
migration platform as a consequence of a splitting, e.g. when passing from a
desktop graphical device to a mobile graphical one, or the maximum number of
elements to be included in a single adapted presentation. Another aspect can
regard the possibility to use (or not) some specific types of media in the
presentations generated after migration (for instance: using (or not) audio, using
(or not) video ...), an additional one could cover the possibility of using or not
some presentation techniques or the possibility to use some specific interaction
techniques during adaptation.

The programmability of the user interface part of the Migration platform will be
better supported if such rules are described using specific languages through
which such rules will be modelled. Although for this adaptation module a decision
about which tools/languages will be used, some preliminary ideas can be already
mentioned to this regard. Indeed, since the user interface can be described at
various levels using some XML-based languages, a possibility for describing the
adaptation rules is using for instance XML-based techniques like XSLT [XSLT]
transformations allowing specifying such adaptation rules.

Regarding some specific evaluation parameters of the programmability of the
platform as far as the user interface part is concerned, we can mention the
following ones:

− Assessing how effectively and consistently the migration platform will
render the specified rules within the resulting adapted user interface
(consistency = yes/no).

− Assessing how much control the service provider of the migration
platform will have on the different aspects of the user interface (UI control
= complete, partial…).

One additional aspect to verify is how easy it will be for the service provider of
the migration platform to specify and edit adaptation rules. This topic will be
addressed as a usability evaluation in the deliverable D6.4.

In the following table the tools and parameters related to the application logic
reconfiguration and user interface adaptation modules are summarized.

 17

Table 1: Tools and parameters for AL and UI.

Tools for enabling the
programmability

Parameters for testing the
programmability

Orchestration
workflow language or

BPML, to be better
addressed in D4.1

workflow patterns
consistency=yes/no

Reconfiguration
reconfiguration

algorithm, to be better
addressed in D4.1

consistency

specific definition tool to
be better addressed in

WP2

consistency
UI control=complete,

partial…
UI

AL

 18

5 Evaluation parameters and testing

In the Table below, the different evaluation approaches are summarised.

Table 2: Evaluation approaches.

The parameter useful for programmability evaluation is the consistency. This
assumption is explained by the following example.

Assuming that the orchestration approach is used, a gaming application is
modelled using a defined language. Depending on the value of the variable “CPU
power”, the orchestration module decides to use a specific web service, e.g.: if
“CPU power”=high the orchestration module creates the service using the
“chatting/betting” web service and the “game server” web service, which sends
the players position to the user, if “CPU power”=low, the orchestration modules
creates the service using the “chatting/betting” web service and the “streaming
game application” web service, which streams to the user the game images.

In this example, programmability means that, if the application is described as
function of the variable “CPU power”, when the context variable change the
application behaviour will change accordingly. The application consistency with
the application description is the parameter useful to test this feature.

Orchestration Reconfiguration

Programmability

 - capability of storing and
managing new variables,

e.g.: x=battery level
 - capability of setting
different logics, e.g.:

f(x)=battery level < 12%

capability of defining
different rules that

describe the application
logic depending on

context variable

capability of rewiring the
components depending

on context variable

capability of defining
different rules that
describe the user

interface adaptation
depending on context

variable

Parameters consistency=yes/no
- workflow patterns (only

for theoretical evaluation)
 - consistency=yes/no

consistency=yes/no
UI control= complete,

partial…
consistency=yes/no

Test

Verify the system
capability of managing the

addition of a variable
evaluating the application

running consistency

evaluate the consistency
of the application running

with the defined rules

evaluate the consistency
of the application running
with the defined algorithm

evaluate the consistency
of the user interface

running with the defined
rules

Process Migration
Application Logic Adaptation User Interface

Adaptation

 19

6 References

[Aalst04] W. Aalst, K. Hee. Workflow Management, Models, Methods,
and Systems. First MIT Press paperback edition, 2004.

[Abpel] http://www.activevos.com/community-open-source.php

[BPEL] http://www.oasis-open.org/specs/

[D1.2] Initial OPEN Service Platform architectural framework

[UML] Object Management Group. UML 2.1 Superstructure and
Infrastructure Specifications. November 2007.

[WCFP] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N.
Mulyar. Workflow Control-Flow Patterns: A Revised View.
BPM Center Report BPM-06-22, BPMcenter.org, 2006.

[WP] Workflow Patterns initiative.
http://www.workflowpatterns.com/patterns/index.php

[XSLT] http://www.w3.org/TR/xslt

