

OPEN Project

STREP Project FP7-ICT-2007-1 N.216552

OPEN Partners:

CNR-ISTI (Italy)

Aalborg University (Denmark)

Arcadia Design (Italy)

NEC (United Kingdom)

SAP AG (Germany)

Vodafone Omnitel NV (Italy)

Clausthal University (Germany)

"The information in this document is provided "as is", and no guarantee or warranty is given that the

information is fit for any particular purpose. The above referenced consortium members shall have no

liability for damages of any kind including without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials subject to any liability which is mandatory

due to applicable law. Copyright 2010 by Arcadia Design, Aalborg University, Clausthal University,

CNR, NEC, SAP, Vodafone."

Title of Document: Migration Service Platform Implementation

Editor(s): Miquel Martin

Affiliation(s): NEC

Contributor(s): All Open Partners

Affiliation(s): All Open Partners

Date of Document: March 2010

OPEN Document: D4.4

Distribution: EU

Keyword List: Prototypes, Migration, Platform

Version: 1.0

OPEN Project

STREP Project FP7-ICT-2007-1 N.216552

ABSTRACT

This deliverable presents the Base Implementation of the Open Migration Service Platform,

providing descriptions, requirements, interfaces and interactions for the main implemented

components. This document builds on and updates D4.2, and is meant both as documentation of

the Base Implementation and as guideline for future developers.

OPEN Project

STREP Project FP7-ICT-2007-1 N.216552

TABLE OF CONTENTS

ABSTRACT... 2

1. INTRODUCTION .. 5

2. CONTEXT MANAGEMENT FRAMEWORK ... 6

2.1. DESCRIPTION .. 6

2.2. INTERFACES OVERVIEW.. 6

2.3. INTERACTIONS ... 7

2.4. HARDWARE AND SOFTWARE REQUIREMENTS ... 8

2.5. SETUP AND RUN ... 8

2.6. USAGE EXAMPLE IN THE PROTOTYPES ... 9

3. MIGRATION ORCHESTRATION .. 11

3.1. DESCRIPTION .. 11

3.2. INTERFACES OVERVIEW.. 11

3.3. INTERACTIONS ... 14

3.4. HARDWARE AND SOFTWARE REQUIREMENTS ... 16

3.5. SETUP AND RUN ... 17

3.6. USAGE EXAMPLE IN THE PROTOTYPES ... 18

4. APPLICATION LOGIC RECONFIGURATION .. 20

4.1. DESCRIPTION .. 20

4.2. INTERFACES OVERVIEW.. 20

4.3. INTERACTIONS ... 21

4.4. HARDWARE AND SOFTWARE REQUIREMENTS ... 22

4.5. SETUP AND RUN ... 22

4.6. USAGE EXAMPLE IN THE PROTOTYPES ... 23

5. UI ADAPTATION .. 24

5.1. DESCRIPTION .. 24

5.2. INTERFACES OVERVIEW.. 24

5.3. INTERACTIONS ... 25

OPEN Project

STREP Project FP7-ICT-2007-1 N.216552

5.4. HARDWARE AND SOFTWARE REQUIREMENTS ... 26

5.5. SETUP AND RUN ... 27

5.6. USAGE EXAMPLE IN THE PROTOTYPES ... 27

6. TRIGGER AND POLICY MANAGEMENT .. 28

6.1. DESCRIPTION .. 28

6.2. INTERFACES OVERVIEW.. 28

6.3. INTERACTIONS ... 29

6.4. HARDWARE AND SOFTWARE REQUIREMENTS ... 30

6.5. SETUP AND RUN ... 30

6.6. USAGE EXAMPLE IN THE PROTOTYPES ... 30

7. MOBILITY SUPPORT .. 31

7.1. DESCRIPTION .. 31

7.2. INTERFACES OVERVIEW.. 33

7.3. INTERACTIONS ... 34

7.4. HARDWARE AND SOFTWARE REQUIREMENTS ... 36

7.5. SETUP AND RUN ... 37

7.6. USAGE EXAMPLE IN THE PROTOTYPES ... 37

8. DEVICE DISCOVERY ... 38

8.1. DESCRIPTION .. 38

8.2. INTERFACES OVERVIEW.. 38

8.3. INTERACTIONS ... 38

8.4. HARDWARE AND SOFTWARE REQUIREMENTS ... 38

8.5. SETUP AND RUN ... 39

8.6. USAGE EXAMPLE IN THE PROTOTYPES ... 39

9. MIGRATION EXAMPLES ... 40

10. CONCLUSIONS ... 45

11. REFERENCES .. 46

A. APPENDIX: OBJECT TYPE DEFINITIONS .. 47

ICT-Open Final prototype applications

 Introduction 5

1. INTRODUCTION

Over the course of the project, OPEN has defined the architecture for the Migration Service Platform and

developed its first implementation. This deliverable aims not only at documenting such implementation,

but also at providing the general guidelines for future developers to create their own versions.

For this purpose, the document covers the main platform components by providing details on each

module’s interfaces, inner workings and hardware requirements. Furthermore, the explanation is

contextualized by explaining the usage that the OPEN integrated prototypes make of these components.

Please note that this is not a self-contained document, but rather an update from D4.2 [1]. In order to

fully understand the inner details of the Migration Service Platform, the reader might want to consult the

architecture presented on D1.4 [1] and the platform design proposed in D4.2 [1]. Furthermore, for an

exemplified explanation of how application migration is handled across multiple application types, D5.3

[5] provides details on the application design, and D5.4 [6] presents the prototypes developed in the

project.

The following sections present the base implementation of the main components of the Migration Service

Platform.

ICT-Open Final prototype applications

 Context Management Framework 6

2. CONTEXT MANAGEMENT FRAMEWORK

2.1. DESCRIPTION

The Context Management Framework (CMF) component has been described in detail in D4.2 [1]. It fulfills

a double role as provider of sensor information and as storage hub for platform information.

In its sensor capacity, CMF modules (dubbed Context Agents) are deployed on the platform and client

side. By adding retriever plug-ins, each agent is able to understand certain hardware sensors or software

APIs, and report context events both on a pull (query) and push (subscribe/notify) interface.

As storage hub, the CMF deals in Entities, which could be used to store platform data, such as the

transitory application state, or even the dynamically updated data for future use, such as discovered

devices.

2.2. INTERFACES OVERVIEW

Because of its double role, the CMF presents two separate sets of interfaces. The first handles the

extraction of information from the CMF (queries and subscriptions) and the second deals with storing and

maintaining in the CMF Storage components.

On the extraction side, we highlight the pull and push interfaces:

QueryResponse:Query(Selector, Scope)

Selector An xml element detailing at least the type and attributes to be queried

Scope Whether the query is limited to this Context Agent, or also to those

attached to it

Returns: A QueryResponse object with a list of entities

Query for Context Information on a given entity or entity type

GID::Subscribe(Selector, SubscriptionCondition, Scope)

Selector An xml element detailing at least the type and attributes to be queried

SubscriptionCondition Specifies the circumstances that should trigger a notification on new

context

Scope Whether the query is limited to this Context Agent, or also to those

attached to it

Returns: A Global Subscription Identifier which can be used to track the

subscription and link to the received notifications

Subscribe to context information.

From the storage point of view, insert, update and delete are explained here:

ICT-Open Final prototype applications

 Context Management Framework 7

Void::Insert(Entity[], Scope)

Entity[] A list of entities that need to be inserted

Scope Whether the entities should be inserted in all the nodes or just on this

context agent

Returns: Void

This method is used to insert information into the Storage component of the Context Agent. The

information can later be retrieved as if it were standard context

Void::Update(Selector, Attribute[], Scope)

Selector An xml element detailing at least the type and attributes to be updated

Attribute[] The list of attributes to be updated

Scope Whether the entities to be updated are those in all the nodes or just on this

context agent

Returns: Void

This method updates the attributes of entities already present in the CMF

Void::Delete(Entity[], Scope)

Entity[] The list of entities to be deleted

Scope Whether the entities to be deleted are those in all the nodes or just on this

context agent

Returns: Void

This method updates the attributes of entities already present in the CMF

2.3. INTERACTIONS

Platform components interact with the CMF using its XML-RPC interface and the methods detailed in the

previous section. A detailed description can be found in the examples provided in D4.2 [1] but we’ll focus

here on the way information is retrieved (be it from sensors or modules like device discovery).

This uses the synchronous Query method, which returns a QueryResult with the selected information.

Additionally, a Subscription can be used, which synchronously returns a subscription ID. Upon successful

execution, the CMF will notify the client component provided callback interface of new information, until

the client unsubscribes using the subscription ID. Figure 1 shoes in detail how this occurs.

ICT-Open

Figure 1 Sequence diagram showing inf

2.4. HARDWARE AND SOFTWAR

The CMF has been implemented using Java. Furthermore, it has been restricted to the MIDP2/CDC profile,

making it suitable to run in very constrained devices, such as Windows Mobile phones.

in Android devices and any hardware above it in terms of computing and memory power. This includes TV

Set-top-boxes, Digital Signage modules, tablets and laptop PCs.

Software wise, a Java Virtual Machine is required to run the CMF. Agai

JAVA VMs like MySaifu or the Android Dalvik machine, as well as Standard Edition Java and J2EE

application servers.

Because of the architecture of the Migration Platform, the CMF does not depend on any other Open

component to run, but of course, makes only sense when used by the rest of the components.

2.5. SETUP AND RUN

While we have been referring to the CMF as a component, its deployment actually involves the

installation of Context Agents in the different devices.

Final prototype applications

 Context Management Framework

Sequence diagram showing information extraction from the CMF

HARDWARE AND SOFTWARE REQUIREMENTS

The CMF has been implemented using Java. Furthermore, it has been restricted to the MIDP2/CDC profile,

making it suitable to run in very constrained devices, such as Windows Mobile phones.

in Android devices and any hardware above it in terms of computing and memory power. This includes TV

boxes, Digital Signage modules, tablets and laptop PCs.

Software wise, a Java Virtual Machine is required to run the CMF. Again, constrained devices running CDC

JAVA VMs like MySaifu or the Android Dalvik machine, as well as Standard Edition Java and J2EE

Because of the architecture of the Migration Platform, the CMF does not depend on any other Open

t to run, but of course, makes only sense when used by the rest of the components.

While we have been referring to the CMF as a component, its deployment actually involves the

installation of Context Agents in the different devices.

totype applications

Context Management Framework 8

The CMF has been implemented using Java. Furthermore, it has been restricted to the MIDP2/CDC profile,

making it suitable to run in very constrained devices, such as Windows Mobile phones. The CMF also runs

in Android devices and any hardware above it in terms of computing and memory power. This includes TV

n, constrained devices running CDC

JAVA VMs like MySaifu or the Android Dalvik machine, as well as Standard Edition Java and J2EE

Because of the architecture of the Migration Platform, the CMF does not depend on any other Open

t to run, but of course, makes only sense when used by the rest of the components.

While we have been referring to the CMF as a component, its deployment actually involves the

ICT-Open Final prototype applications

 Context Management Framework 9

Installation requires only copying the Context Agent binaries on the hard drive and executing the provided

ContextAgent executable. On first run, configuration files will be created in the user’s home folder. It will

then be necessary to edit the configuration file in order to add or remove sensors as needed.

The CMF is a distributed platform, but is not yet capable of self-organization. For that reason, a Context

Agent has to be chosen as a “master” device (referred to as the Context Management Node or CMN), and

the rest of the Agents need to be pointed to the URL of the CMN. While any device can be elected as

CMN, it is recommended to choose the one with the best CPU performance and bandwidth, given that it

will handle a slightly larger message volume, due to synchronization operations between the rest of the

Agents.

2.6. USAGE EXAMPLE IN THE PROTOTYPES

The four prototypes described in D5.4 [6] make use of the Context Management Framework. While the

complete application usage is detailed in that document, we focus here on the application aspects that

rely on the CMF to perform their functions.

TWITTERWALL

The TwitterWall application relies in the CMF both for sensor and device discovery purposes.

A Bluetooth sensor is used to detect the proximity of mobile terminals the public display where the

Output component is running. This information is used by the Application Logic Reconfiguration to

determine towards what devices the application can be migrated.

An RFID reader is installed under the large public display, and, using the appropriate CMF plug-in, the data

is used by the Trigger Management: when the user swipes his RFID enabled mobile terminal on the

reader, this is taken as an explicit user interaction to request the migration.

SOCIAL GAME

The Social Game can indirectly use the CMF by requesting devices supporting certain capabilities at the

Orchestrator. This then provides a filtered list, of the available devices.

EMERGENCY-PROTOTYPE

The Emergency Scenario also uses the CMF for context sensing purposes. When users approach the

shared screen, it is again the swipe of an RFID card that requests the migration of the emergency situation

forecast on the display. Note that this could just as well be triggered other context sensors just as easily

(e.g. a combination of Bluetooth proximity and a pressure sensor on the floor)

ICT-Open Final prototype applications

 Context Management Framework 10

PAC-MAN

The PAC-MAN application uses the CMF for device capability discovery, such as screen resolution. Upon

registration, the Open Clients report on their specifications, and these are then used by PAC-MAN to

adapt to the migration target.

ICT-Open Final prototype applications

 Migration Orchestration 11

3. MIGRATION ORCHESTRATION

3.1. DESCRIPTION

The Migration Orchestration module coordinates all of the components required to perform a migration

in the OPEN platform. For example, when an application is migrated for a device (the source device) to

another device (the target device) the Migration Orchestration module makes sure that the application

internal state is correctly transferred from the source device to the target device and that the source

version of the application is paused at the beginning of the migration and terminated when the migration

is completed. For further details about the role of the Migration Orchestration module in the OPEN

Migration Service Platform, please read [D1.4].

The Migration Orchestration module has both a server and a client component. The server side

component is available in the OPEN server and it is the main component of the Orchestration. The client

component of the Migration Orchestration is an OPEN Adaptor (please read D4.2 for further details about

OPEN Adaptors) and there could be several implementations of the module (e.g. a PC version, a mobile

phone version, an application-embedded version, etc.). For further details about the Migration

Orchestration please read [D3.4].

3.2. INTERFACES OVERVIEW

The methods offered by the Migration Orchestration module can be split in three categories:

• Server Interface. This interface can be used by OPEN applications to take advantage of the

features offered by the Migration Orchestration. This interface is offered by the Migration

Orchestration server and by the Migration Orchestration client. It is possible to use these

methods via XML-RPC.

• Client Interface. This interface is used for the interaction between the Migration Orchestration

and OPEN applications. This interface is offered by the Migration Orchestration client and it must

be offered by OPEN applications. It is possible to use these methods via XML-RPC.

• Internal Interface. This interface is used to for the interaction between the Migration

Orchestration and the other modules of the OPEN Migration Service Platform.

Methods and objects defined in [D4.2] have been updated in order to take into account further

implementation details.

SERVER INTERFACE

This interface contains the following method defined in D4.2:

Server Interface String deviceID:: registerDevice(Device device)

String applicationID::registerApplication(Application application)

String componentID::registerComponent(Component component)

Boolean::unregsiterDevice(String deviceID)

ICT-Open Final prototype applications

 Migration Orchestration 12

Boolean::unregisterApp(String applicationID)

Boolean::unregisterComponent (String componentID)

Device[]::getDevicesSupporting(String[] componentID)

void::runningStatusSet (String componentID, String runningStatus)

boolean::triggerMigration(String targetDeviceID, String[] componentID)

void::stateRetrieved (State state)

void::stateSet(Boolean isSet, String ComponentID)

The following methods have been instead added to the interface during the development activity:

Boolean:: abortMigration(String targetDeviceID, Object[] componentID)

targetDeviceID The ID associated to the target device of the aborted migration.

componentID The IDs of the migrated components.

Returns: TRUE if the migration is correctly aborted.

This method interrupts an ongoing migration and provides the synchronization point to roll it

back.

Application::getApplication(String applicationID)

applicationID The ID of the application that will be retrieved.

Returns: The required application.

This method returns a required application.

Component[]::getApplicationComponentsOnDevice(String applicationID, String deviceID)

applicationID The application ID.

deviceID The device ID. If deviceId is null or if it is an empty String all of the

application components are returned.

Returns: An array of components.

This method returns the array of components owned by an application and running on the

selected device.

Application[]::getApplicationsOnDevice(String deviceID)

deviceID The device ID.

Returns: An array of applications.

This method returns the array of OPEN applications running on the selected device.

Component[]::getComponentsOnDevice(String deviceID)

deviceID The device ID.

ICT-Open Final prototype applications

 Migration Orchestration 13

Returns: An array of components.

This method returns the array of OPEN components running on the selected device.

Device:: getDevice(String deviceID)

deviceID The device ID.

Returns: A Device object.

This method returns the required Device object

CLIENT INTERFACE

 This interface contains the following methods (please read D4.2 for further details):

Client Interface void::setRunningStatus (String componentID, String runningStatus)

void::migrationTriggerAccepted(String sourceDeviceID, Boolean accepted)

void::retrieveState (String componentID)

void::setState (String componentID, State state)

INTERNAL INTERFACE

The internal interface offers the following methods defined in D4.2:

Internal Interface void:: UIRetrieved(String ComponentID, UI ui)

void:: setAdaptedUI(UI ui, String componentID)

void:: retrieveUI(String componentID)

void:: adaptedUISet(Boolean isUpdated, String componentID)

The following methods have been instead added to the interface during the development activity:

void:: triggerMigration(Configuration triggeredConfiguration)

triggeredConfiguration A configuration object that represents the new configuration of the

application.

Returns: void

This method is used by the TriggerManagement module to trigger a migration.

void:: setMode(Component component, String mode)

component The component that will be reconfigured.

mode A String that represents the new mode of the component.

Returns: void

This method is used by the ALR module to reconfigure an application component.

ICT-Open

3.3. INTERACTIONS

As explained in D3.4, the Migration Orchestration module interacts with

Reconfiguration, the Mobility Support and

The Application Logic Reconfiguration is used in the following way:

• When an application is registered by the Migration Orchestration, it registers the application and

its components in the ALR module.

• The TriggerManagement

interface) to trigger a migration

In the sequence diagram in Figure

application:

Figure 2: Application Logic R

The Trigger Management uses the Migration Orchestration

components of an application to a target device

In the sequence diagram in Figure

the partial migration of an application with two components (for further details please read D3

Final prototype applications

 Migration Orchestration

As explained in D3.4, the Migration Orchestration module interacts with the Application Logic

Reconfiguration, the Mobility Support and the Trigger Management.

The Application Logic Reconfiguration is used in the following way:

When an application is registered by the Migration Orchestration, it registers the application and

its components in the ALR module.

TriggerManagement interacts with the Migration Orchestration (by using the internal

migration.

Figure 2 it is possible to see the procedure for the registration of an

: Application Logic Reconfiguration and its interaction with the Migration Orchestration

uses the Migration Orchestration to trigger the migration of one or more

components of an application to a target device.

Figure 3 it is possible to see the usage of the Migration Orchestration during

the partial migration of an application with two components (for further details please read D3

totype applications

Migration Orchestration 14

the Application Logic

When an application is registered by the Migration Orchestration, it registers the application and

interacts with the Migration Orchestration (by using the internal

possible to see the procedure for the registration of an

teraction with the Migration Orchestration

of one or more

it is possible to see the usage of the Migration Orchestration during

the partial migration of an application with two components (for further details please read D3.4):

ICT-Open

Figure 3: partial migration of an application from a PDA to a Set Top Box

In Figure 4 it is instead available the sequence diagram of the migration of a generic web application

(please read D3.4 for further details):

Final prototype applications

 Migration Orchestration

: partial migration of an application from a PDA to a Set Top Box

it is instead available the sequence diagram of the migration of a generic web application

ase read D3.4 for further details):

totype applications

Migration Orchestration 15

it is instead available the sequence diagram of the migration of a generic web application

ICT-Open Final prototype applications

 Migration Orchestration 16

Figure 4: The sequence of communications between the various modules in case of a web migration

3.4. HARDWARE AND SOFTWARE REQUIREMENTS

The Migration Orchestration server has the following requirement:

- A server connected to a network and that uses an IP address accessible by OPEN clients (i.e. a

public IP address or an IP address in the same LAN of the OPEN clients).

- Java Virtual Machine (v 1.6). The module has been implemented in java language and it needs a

JVM to be run.

- The Application Logic Reconfiguration module. This is needed only if a reconfiguration of the

application logic will be performed. If this module is not available, it is not possible to register the

application in the ALR and no reconfiguration is performed.

The Migration Orchestration server can have two configurations:

• With an embedded XML-RPC server. In this case, when the module is started, an XML-RPC server

is automatically started.

• With Apache Tomcat. It is possible to use the Migration Orchestration as a servlet and to use it

with a web container. The version 6.0 of Apache Tomcat has been used.

The implemented PC version of the Migration Orchestration Client has the following requirements:

ICT-Open Final prototype applications

 Migration Orchestration 17

• A device connected to a network and that uses an IP address accessible by the OPEN server (i.e. a

public IP address or an IP address in the same LAN of the OPEN server).

• Java Virtual Machine (1.6). The module has been implemented in java language, and it needs a

JVM.

3.5. SETUP AND RUN

If the Migration Orchestration is used with Apache Tomcat, the following section has to be included in the

web.xml configuration file of Tomcat:

<servlet>
 <servlet-name>OpenServlet</servlet-name>
 <servlet-class>open.orchestrator.server.OpenServle t</servlet-class>
 <init-param>
 <param-name>enabledForExtensions</param-name>
 <param-value>true</param-value>
 <description> Sets, whether the servlet supports vendor extensions
for XML-RPC. </description>
 </init-param>
</servlet>

<servlet-mapping>
 <servlet-name>OpenServlet</servlet-name>
 <url-pattern>/xmlrpc</url-pattern>

ICT-Open Final prototype applications

 Migration Orchestration 18

</servlet-mapping>

The <url-pattern> parameter can be customized according to the URL that will be used to send XML-RPC

requests to the Migration Orchestration.

Moreover, the Migration Orchestration must be included in the libraries used by Apache Tomcat.

When the Migration Orchestration is used with its embedded server, it simply needs to be run. XML-RPC

requests can be sent to the following URL: http://xxx.xxx.xxx.xxx:8989/xmlrpc, where xxx.xxx.xxx.xxx it the

IP address of the server.

The developed Migration Orchestration Client has a java configuration file (config.properties) in the

resources folder.

The following parameters have to be set:

• OrchestratorClientPort. The TCP port used by the XML-RPC server embedded in the

Orchestration Client.

• deviceName. A name associated to the current OPEN device.

• deviceURL. The URL that can be used by the Orchestration Server to send XML-RPC requests to

the Client (usually it is: http://xxx.xxx.xxx.xxx:port/xmlrpc, where xxx.xxx.xxx.xxx it the IP address

of the client and port is the value of OrchestratorClientPort).

• OrchestratorServerURL. The URL of the Orchestration server (e.g.

http://10.22.72.66:8989/xmlrpc)

Procedure to start the Migration Orchestration:

1. Make sure that the OPEN Server and OPEN devices are connected to the network.

2. Start the Orchestration Server. Use the command “java -jar OrchestratorServer.jar” and wait for

the following message: “OPEN Orchestrator Server Ready!”. If the embedded server is not used,

it is needed only to start Apache Tomcat.

3. Start the Orchestration Client on every OPEN device. Use the command “java -jar

OrchestratorClient.jar” and wait to read the message: “OPEN Orchestrator Client Ready!”

4. Run OPEN applications.

3.6. USAGE EXAMPLE IN THE PROTOTYPES

SOCIAL GAME

The Migration Orchestration has been used for the registration of the devices in the OPEN Migration

Service Platform and for the management of a partial migration from a PC to another PC and from a PC to

a PDA using the Web UI Adaptation and the Device Selection Map. Both the Migration Orchestration

Server and the Migration Orchestration Client have been used. The embedded XML-RPC server has been

used.

EMERGENCY MANAGEMENT

ICT-Open Final prototype applications

 Migration Orchestration 19

The Migration Orchestration has been used for the management of OPEN devices during the migration of

flooding and traffic simulations. Moreover, the triggerMigration method has been used to trigger an

application migration. In this case only the Migration Orchestration Server has been used (the client-side

functionalities were included in the application) and it was used in Tomcat. A pull interface have been

developed to communicate with devices that don’t implement an XML-RPC server (please read D4.2 for

further details about the dispatching of messages in OPEN).

TWITTERWALL

The Migration Orchestration module has been used for the management of automatic migrations. In

particular, the output component of a twitter client was migrated. Moreover, the integration with the ALR

module has been used for the application reconfiguration.

PACMAN

The Migration Orchestration module has been used for the management of the migration of the Pacman

application. A reconfiguration of the application has been performed by using the integration between

the Migration Orchestration and the ALR module.

ICT-Open Final prototype applications

 Application Logic Reconfiguration 20

4. APPLICATION LOGIC RECONFIGURATION

4.1. DESCRIPTION

The server side Application logic reconfiguration module (ALR) has been described in detail in D4.2 [1]. It

supports applications by the dynamic adaptation of the application logic to their specific needs in

constantly changing situations. At this, an application is divided into two parts, namely the reconfigurable

application logic, and the rest of the application which could be among others static application logic and

the User Interface. The ALR module is responsible for the adaptation of the reconfigurable part of the

application logic.

The communication between the reconfigurable application logic part and the rest of the application can

be done using an arbitrary protocol, like Web Services (PacMan prototype).

4.2. INTERFACES OVERVIEW

The ALR computes a list of possible configurations for an application. Therefore, the application has to be

registered at the ALR as well as the available application components. The reconfiguration has to be

triggered, if the context of the application changes or a new component for an application is available.

The following methods are implemented in the ALR module:

registerApplication(Application)

Application An application description of the registered application.

Returns:

Registration of an application at the ALR.

registerComponent(Component)

Component A component description of the registered application component.

Returns:

Registration of an application component at the ALR.

unregisterApplication(Application)

Application An application description of the registered application.

Returns:

Deregistration of an application at the ALR.

unregisterComponent(Component)

Component A component description of the registered application component.

Returns:

Deregistration of an application component at the ALR.

ICT-Open

reconfigurationTrigger()

Returns:

Trigger for the reconfiguration. Calculates the result table and notifies the trigger management.

4.3. INTERACTIONS

As depicted in figure 1 the Orchestrator registers

application logic reconfiguration

The ALR computes a sorted list of configuration

information. The context information is provided by the contex

configuration of the ALR view is the first configuration of the

A reconfiguration trigger can be initiated by the CMF caused by an update of a context value.

updates the sorted list of configur

it triggers the migration at the orchestrator.

In cooperation with the trigger management the ALR works as follows.

trigger management (TM) subscribes

components are then responsible to notify whenever their output changes. The TM can assume

current output at any time.

Final prototype applications

 Application Logic Reconfiguration

er for the reconfiguration. Calculates the result table and notifies the trigger management.

Orchestrator registers the application and the application components at the

application logic reconfiguration (ALR), when they become available.

Figure 5: Application logic reconfiguration

he ALR computes a sorted list of configurations based on the registered components and context

The context information is provided by the context management framework (CMF).

configuration of the ALR view is the first configuration of the resulting list.

A reconfiguration trigger can be initiated by the CMF caused by an update of a context value.

updates the sorted list of configuration and selects the best configuration out of the ALR view. Afterwards

it triggers the migration at the orchestrator.

In cooperation with the trigger management the ALR works as follows. At the start of the open server

trigger management (TM) subscribes to scoring functions (e.g. ALR) as depicted in figure 1

components are then responsible to notify whenever their output changes. The TM can assume

totype applications

Application Logic Reconfiguration 21

er for the reconfiguration. Calculates the result table and notifies the trigger management.

application components at the

based on the registered components and context

t management framework (CMF). The best

A reconfiguration trigger can be initiated by the CMF caused by an update of a context value. The ALR

best configuration out of the ALR view. Afterwards

At the start of the open server

as depicted in figure 1. Those

components are then responsible to notify whenever their output changes. The TM can assume the

ICT-Open

The ALR computes a sorted list of configuration based on the registered components and context

information. The context information is provided by the context management framework (CMF).

configuration out of the ALR point of

the trigger management (TM) about change

and selects the best configuration based on its scoring functions.

4.4. HARDWARE AND SOFTWAR

The ALR module is part of the Open Server and has the following requirements to the hardware and

software:

The device for the application logic / OPEN Client / Open Server has to provide a network card for the web

service, the connection from the orchestrator client to th

management framework (CMF) to the clients.

The OPEN platform is implemented in Java. To execute the software at least Java Runtime Environment

1.5 has to be installed.

The ALR works at the operating systems Windo

supported.

4.5. SETUP AND RUN

The ALR is included in the OPEN

“OpenServer.jar” and a configuration file called “OpenServer.ini”. To setup the

to be stored in one folder. In the configuration file the following entries have to be updated:

• LocalIp= [the ip of the target platform (server) out of the clients view e.g. 135.34.6.2]

Final prototype applications

 Application Logic Reconfiguration

Figure 6: ALR TM interaction

es a sorted list of configuration based on the registered components and context

The context information is provided by the context management framework (CMF).

point of view is the first configuration of the resulting list. The ALR notifies

about changes of the configuration list. The TM accepts

and selects the best configuration based on its scoring functions.

HARDWARE AND SOFTWARE REQUIREMENTS

s part of the Open Server and has the following requirements to the hardware and

The device for the application logic / OPEN Client / Open Server has to provide a network card for the web

service, the connection from the orchestrator client to the orchestrator server and from the context

management framework (CMF) to the clients.

The OPEN platform is implemented in Java. To execute the software at least Java Runtime Environment

works at the operating systems Windows and Linux. Other operating systems are not yet

OPEN server, which is delivered by an executable java archive called

“OpenServer.jar” and a configuration file called “OpenServer.ini”. To setup the OPEN

to be stored in one folder. In the configuration file the following entries have to be updated:

LocalIp= [the ip of the target platform (server) out of the clients view e.g. 135.34.6.2]

totype applications

Application Logic Reconfiguration 22

es a sorted list of configuration based on the registered components and context

The context information is provided by the context management framework (CMF). The best

list. The ALR notifies

of the configuration list. The TM accepts the updated list

s part of the Open Server and has the following requirements to the hardware and

The device for the application logic / OPEN Client / Open Server has to provide a network card for the web

e orchestrator server and from the context

The OPEN platform is implemented in Java. To execute the software at least Java Runtime Environment

ws and Linux. Other operating systems are not yet

server, which is delivered by an executable java archive called

N server this files have

to be stored in one folder. In the configuration file the following entries have to be updated:

LocalIp= [the ip of the target platform (server) out of the clients view e.g. 135.34.6.2]

ICT-Open Final prototype applications

 Application Logic Reconfiguration 23

• Port= [the port of the target platform view e.g. 8765]

• OpenServerAddress= [the address of the open server e.g. http://139.0.65.1:8989]

• CmfServerAddress= [the address of the CMF server e.g. http://139.0.65.1:8989]

• WebServiceAddress= [the address of the target platform (server) out of the clients view e.g.

http:// 135.34.6.2:8989]

The OPEN Server can be started by the following command:

java –jar OpenServer.jar

If the operating system supports a direct execute of jar files, the Open server can be started by a double

click.

The context management framework (CMF) consists of the file ContextAgent.exe and can be started at

the server.

4.6. USAGE EXAMPLE IN THE PROTOTYPES

TWITTERWALL

The TwitterWall application uses the ALR to get the best configuration out of the application view. The

ALR considers the distance of the TwitterWall clients to the TwitterWall to compute the order of the

configuration table. If a client is near, the TwitterWall is used as output device for this client. The result

table with the possible configurations out of the ALR view is forwarded to the trigger management. The

trigger management selects the best possible configuration out of the ALR view considering further

constraints.

PAC-MAN

The PAC-MAN application uses the ALR to get the best configuration of the application logic. The ALR

computes the best fitting ghost logic by considering the current screen size of the PAC-MAN game. If the

game is running on a device with big screen size intelligent ghost logic is selected. On a device with small

screen size the easy ghost logic is selected.

ICT-Open Final prototype applications

 UI Adaptation 24

5. UI ADAPTATION

5.1. DESCRIPTION

This module, implemented in Java, generates a logical description of the UI rendered on the source device

and transforms this description into a new UI adapted for the target device. This module exposes the

following functionalities: one is aimed at building a Concrete User Interface (CUI); the other one gets the

CUI for the source device and generates an adapted CUI for the target device. Another

functionality/interface that is provided by this component is that of generating the final UI for the

concerned platform.

5.2. INTERFACES OVERVIEW

The UI Adaptation module has to support the task of retrieving the UI of a certain application component

considered, and also to capture the state that has been produced as a result of the interactions that have

carried out up to the point when the migration is activated. In addition, it has also to set the captured

state of a certain component, and to manage the adaptation of the UI components once a migration has

been requested.

OPEN INTERFACES

This component provides Web specific solutions for the retrieval of User Interface and state information

from web pages. This functionality, however, is exposed by the Orchestrator, and therefore no Open

interface methods are directly implemented.

INTERNAL INTERFACES

As it has been explained in Deliverable 4.2 [2], the following methods are provided internally by the Web

UI Adaptation module.

Open Server methods

offered internally at the

Web UI Adaptation

component

void:: retrieveUI(String componentID)

void:: adaptedUISet(Boolean isUpdated, String componentID)

void::retrieveState (String componentID)

void::setState (String componentID, State state)

void:: retrieveUI(String componentID)

componentID The component whose UI has to be retrieved

Returns: none

This method is offered by the OS Orchestrator and it is called by the OC Orchestrator in order to

request to get the UI for the specified component.

ICT-Open Final prototype applications

 UI Adaptation 25

void:: adaptedUISet(Boolean isUpdated, String componentID)

isUpdated A Boolean value saying whether the user interface has been adapted

componentID The ID of the component which the UI is associated to

Returns: none

This method is offered by the OS Orchestrator and it is called by the OC Orchestrator. It

represents the callback for the setAdaptedUI() method.

void::retrieveState (String componentID)

String

componentID

A String identifying the component intended as target for retrieving the

state.

Returns: void

Get the state of the specified components.

Execution: asynchronously

Callback at the Open Server Orchestrator Interface: stateRetrieved()

void::setState (String componentID, State state)

String

componentID

A String identifying the component intended as target for setting the state.

State state A State object carrying the target state.

Returns: Void

Set the state of the specified component.

Execution: asynchronously

Callback at the Open Server Orchestrator Interface: stateSet()

5.3. INTERACTIONS

Figure 7 shows the migration of a Web Application (see [2]), in which the communications occurring

between the various components (also including the Web UI Adaptation module) for supporting such

migration are described. In this figure, the application (source device) asks the OS Orchestrator for

retrieving the user interface (retrieveUI()) of the specified component(s). Then, the OS Orchestrator asks

the OS Web State Handler to get the user interface for the specified components, also specifying an

optional callback, which will be only used in case of asynchronous request. Afterwards, there is the

callback method UIRetrieved() from the OS Orchestrator to the application (source device). Then, the

migration could be triggered either manually from the OC Orchestrator (source device) to the OS

Orchestrator (manualMigrationRequest() function), or automatically, coming from the OS Trigger

Manager (startMigration() method). After receiving one of such requests, the OS Orchestrator asks the

OS Policy for the concerned authorization and, if the OS Policy module permits such migration, then the

OS Orchestrator asks the OC Orchestrator (source device) to retrieve the state of the specified

component. After the state has been retrieved, the OS Orchestrator pauses the application on the source

ICT-Open Final prototype applications

 UI Adaptation 26

device and then asks the Adaptation module to adapt the UI. This means to perform the reverse

engineering of the retrieved web page, getting a logical UI description of it, and then semantically

redesign it for the target platform. Then, the OS Orchestrator asks the OS Web State Handler to set the

state of the user interface, then generates the new final UI for the target device. Then, the OS

Orchestrator has to asks the OC Orchestrator on the target device the permission to activate a migration

on such a device. If the received answer is positive, the application on the source device is closed, and

then the adapted UI is uploaded on the target device (setAdaptedUI()). After receiving the callback

(adaptedUISet()), the OS Orchestrator can then start the application onto the target device.

Figure 7: The sequence diagram describing the sequence of activities carried out to migrate a web application

5.4. HARDWARE AND SOFTWARE REQUIREMENTS

Any device running Web browsers can be involved in the user interface migration exploiting this technical

solution. There can be some problems with browsers for mobile devices that do not support Ajax scripts.

Regarding the migration server, since the UI Adaptation module has been implemented in Java, a Java

virtual machine should be available and properly running . Any device satisfying this requirement can act

as migration server. However, in order not to add delays connected with the various transformations that

are handled by this module, it is recommended to choose a device with an adequate CPU performance.

The device has also to run a servlet container (such as Apache Tomcat) in order to expose the embedded

proxy server that allows to access and annotate web applications. The migration server automatically

ICT-Open Final prototype applications

 UI Adaptation 27

enhances the Web application with migratory capabilities (included the partial migration functionality) by

validating, annotating and engineering reversing it.

5.5. SETUP AND RUN

The Web UI Adaptation support runs on a server which acts as a servlet container, in our case we used

Apache Tomcat. In order to be properly set up, in the “webapps” folder of the root folder of Apache

Tomcat, a folder containing the files necessary to support the module has to be included (in our case this

folder is called “OpenDemo”). Afterwards, the Apache Tomcat server has to be activated and the page for

starting the UI Adaptation server administration has to be opened (within the OpenDemo package this

page is a JSP page called “MigrationServer.jsp”). Then, within such a JSP page, the server has to be

explicitly started by clicking on the “Start server” button. After having verified that the migration clients

on the devices involved in the migration are properly running, in the JSP administration page the

information on such devices will appear when such devices have discovered each other through their

respective migration clients. From this point it is possible to access a web page and after navigating

through it for a while from one device, possibly activate a migration to one of the devices available for

migration.

5.6. USAGE EXAMPLE IN THE PROTOTYPES

The Social Game and the Pacman prototypes described in D5.4 [4] make use of the UI Adaptation module.

For the detailed application usage you should refer to that document, here we focus on the application-

related aspects that rely on the UI Adaptation module support.

The Social Game uses the UI Adaptation module for adapting the UI during a partial migration of the

different components of the prototype in a desktop-to-mobile device migration.

Within the Pacman prototype, which has been implemented in a single web page for a desktop platform,

the UI Adaptation module has been used for providing an adapted UI of the game, during a desktop to

mobile total migration. In particular, the UI Adaptation Module, through a semantic redesign phase is able

to calculate the cost associated with the single web page of the game (desktop version) and splitting it

taking into account the more limited device capabilities of the mobile device.

ICT-Open Final prototype applications

 Trigger and Policy Management 28

6. TRIGGER AND POLICY MANAGEMENT

6.1. DESCRIPTION

The trigger management (TM) prototype is implemented as a periodic loop which evaluates a set

application configurations with a set of score functions represented by individual Java methods. Each

score method represents either a requirement or a preference which should be taken into account in the

decision making e.g. whether the user prefers automatic migration or not. Each method applies a score to

each possible application configuration, after which the application configurations with the highest score

can be chosen. If the chosen configuration changes a trigger with the new configuration is sent to the

orchestrator. If other metrics should be taken into account they would just become another evaluation

method.

Three different score levels are evaluated in the prototype.

1. The TwitterWall application defines a blacklist of words which can not be displayed on public

displays. This is an application specific requirement. The prototype applies a negative score of

100 if a blacklisted keyword is entered since this has the highest decision priority.

2. The TwitterWall user profiles specify whether they are interested in automatically migrating or

not. If a user prefers automatic migration a score of 10 is added to configurations with another

device than the current. If the user does not prefer auto-migration a score of 20 is added to

configurations with the current device (see below).

3. The application preferences in terms of what configuration is the best seen from the application

developer’s point of view. In the TwitterWall application output on a large display is considered

better then on a small one. The possible configurations are appointed a score from 0 to 9 with

the highest score to the best configuration seen from an application point of view. For a more

detailed description on how different scoring methods are applied in the concept of TM, refer to

D3.4 [3].

The TM prototype also handles a very simple form of policy management. For the TwitterWall application,

the TM handles filtering of banned words based on lists set by the user. However, in the prototype, the

lists are predefined and cannot be changed dynamically. Whenever the user enters a word this is checked

against the list by the TM, and the TM adjusts the migration scores accordingly. One example is if certain

words should not appear on displays of public type, the TM would trigger a migration away from such a

device, if the application was currently on it and having banned words entered.

6.2. INTERFACES OVERVIEW

The TM prototype only exposes one interface, namely toward the Application Logic Reconfiguration

component (ALR). In order to obtain the set of configurations to choose from, a method called

“pushConfigurations(Vector<Configuration> validConfigurations)” is exposed which accepts a list/vector

of configuration objects. Each configuration is a set of components, networks and devices and which can

ICT-Open Final prototype applications

 Trigger and Policy Management 29

be interpreted by the ALR as defined in D4.2, appendix C [4]. The configurations have been validated by

the ALR so that the TM can choose freely between any of them.

void::pushConfigurations (Vector<Configuration> validConfigurations)

Vector

validConfigurations

A vector of Configuration objects that have been validate as possible to run

by the ALR.

Returns: void

Have a set of valid configurations pushed from the ALR to RM.

Execution: asynchronously

6.3. INTERACTIONS

Interacting with the TM prototype is simple, as the TM operates almost autonomously.

Figure 8: Illustration of component interacting with trigger management

The components interacting with TM are depicted in Figure 8 and the process is described below.

1. Retrieve application requirements (when applications are registered, as a part of the

configuration list) from the ALR/Orchestrator

2. Retrieve contextual information from CMF. This can be any relevant piece of environmental

information. Information is relevant if it is required by the application.

3. TM makes a decision about which configuration will give the best user experience

4. TM sends the selected configuration to the orchestrator to be effectuated.

ICT-Open Final prototype applications

 Trigger and Policy Management 30

6.4. HARDWARE AND SOFTWARE REQUIREMENTS

The TM prototype is fully implemented in Java and can run on any standard Java Virtual Machine. The

component is only intended for server-side use, so experiments have not been carried out in order to

make it run on resource-constrained devices.

According to the specified interactions, the TM prototype requires the CMF, the ALR and the orchestrator

to be installed, and that the offered APIs from the components are known to the TM.

6.5. SETUP AND RUN

The TM is a stand-alone class that is reached through direct method invocation in Java. To start the TM,

an object of the class is instantiated. The object then exposes “pushConfigurations()” for receiving

configurations.

6.6. USAGE EXAMPLE IN THE PROTOTYPES

The TM prototype was developed for the integrated prototype called “TwitterWall”. The functionality

reflected in the prototype includes:

• Ability to take application requirements/preferences and user preferences into account.

• A design allowing adding other evaluation parameters without a complete redesign.

• Periodic evaluation of requirements, preferences and changes.

• Trigger use of different application configurations.

The TM prototype revealed different aspects which need to be addressed in a more general TM module

for the OPEN platform.

• The score values used in the prototype are not dynamic enough to be used for all purposes e.g.

there can not be more than 10 possible configurations to choose from.

• Application configurations are not separated for individual users, meaning both users can

“vote”/score for the same configurations. Instead this is solved by using different user scores for

automatic migration and non-automatic migration.

• Manual migration triggers are not supported, meaning the user can not force a migration.

Applications that require manual triggering can interface directly with the orchestrator.

ICT-Open Final prototype applications

 Mobility Support 31

7. MOBILITY SUPPORT

7.1. DESCRIPTION

The task of the Mobility Support Module is to make migrations of network connections happen

transparently to network entities outside of the OPEN network. This is achieved by placing a Mobility

Anchor Point (MAP) in the network path between the OPEN client devices and the network entities

outside the OPEN network e.g. a streaming server on the Internet. The MAP interacts with the Mobility

Support Module on the OPEN server in order to decide how to handle client network connections. The

network entities involved in a network migration are shown in Figure 9.

OPEN

Migration Server

Application

Server

OPEN-aware

Mobility Anchor Point

Source

Device

Target

Device

OPEN

control

interface

Figure 9 The network entities involved in network migration.

Without the introduction of the MAP the network entities outside the OPEN network would be

communicating directly with the OPEN client devices meaning that when a migration occurs e.g. a

streaming server should change the network path from the source device to the target device. This is not

always possible and instead it has been chosen to let the communication go through the MAP. Doing this

the change in network path can happen behind the MAP and e.g. a streaming server will not notice the

change. A migration of network connections is achieved by having the target device connect by SOCKS to

the MAP and then switch the ongoing network connection from the source device to the target device

connection. The mobility support module is discussed in detail in D3.4 [3] and a prototype demonstrating

the functionality of the mobility support is described in D3.3 [2].

A migration with mobility support is shown in Figure 10.

ICT-Open Final prototype applications

 Mobility Support 32

Figure 10 Migration with mobility support

The OPEN migration server and MAP have to be started first after which clients can start to use the OPEN

migration services. When the OPEN client has registered the device with the migration server, the client

application can be started and registered. The component(s) of the application also have to be registered.

If the application needs to make a network connection, this will happen though the MAP. The MAP will

then query the mobility module on the migration server for what to do with this connection. Since no

migration is occurring for this application, the MAP server is told to forward this connection to the

application server.

ICT-Open Final prototype applications

 Mobility Support 33

When the application is running, Trigger Management will start evaluating the context information and

other factors deciding whether a migration should occur. At some point another better device might

become available (it has already registered with the migration server and is in range of the user) and

Trigger Management decides to trigger a migration. The Orchestrator will make sure the application is

initialized at the target device which makes it register the application and the components. The

orchestrator then pauses the application at the source device, extracts the application state and inserts it

into the application at the target device. When the application is resumed it will try to use the network

connection. This will create a new connection to the MAP and the MAP queries for what to do with the

new connection. This time a migration has occurred for the application and the MAP switches the

connection from the source device to the target device. The application is now completely migrated an

can continue on the target device.

7.2. INTERFACES OVERVIEW

The interface to the mobility support module from the application is defined by the SOCKSv5 protocol

since this is the interface to the MAP. It is flexible in the sense that it can either be fulfilled by OPEN

middleware on the OPEN client effectively replacing the normal network library used by the application,

where the application interface does not change, or the SOCKSv5 protocol can be implemented by the

application itself e.g. in Java using the SOCKS library http://jsocks.sourceforge.net/SOCKSLib.html. The

prototype of Mobility Support is implemented in Java but because of the SOCKSv5 interface, any language

can be used.

Using the first method, the only change in the application, if implemented in Java, will be changing the

“import” line to import the OPEN middleware library instead of the usual networking library.

Using the second method the application itself implements the SOCKSv5 interface. Many applications like

browsers already implement this. In Java it can be implemented using the SOCKS library. After importing

the SOCKS library, information about the SOCKS Proxy (MAP) needs to be inserted into the SOCKS library.

For mobility this is the IP address and port of the MAP server:

Static Void::Socks5Proxy.setDefaultProxy(Hostname, Port)

Hostname A String specifying the hostname of the SOCKS proxy

Port An integer specifying the port number to connect to the proxy

Returns: Void

Set a default SOCKS proxy

The MAP needs to pass information about the application, along with the connection information, to the

migration server when doing the migration query (See Figure 11). To get this information to the MAP the

normal SOCKSv5 authentication is extended. The client should use the following class:

ICT-Open Final prototype applications

 Mobility Support 34

OPENClientAuthentication::OPENClientAuthentication(Username, Password, DeviceID,

ApplicationID, ComponentID)

Username A String specifying the username used to authenticate to the MAP

Password A String specifying the password used to authenticate to the MAP

DeviceID A String specifying the unique device ID for the client device

ApplicationID A String specifying the unique application ID for the client application

ComponentID A String specifying the unique component ID for the component

Returns: OPENClientAuthenticator object

Create an authentication object to use with the MAP

The authentication is then inserted into the SOCKS library using the following static method:

Static Void::Socks5Proxy.setAuthenticationMethod(MethodID, Method)

MethodID An integer specifying authentication method ID

Method An Authentication object which is the authentication implementation

Returns: Void

Set the authentication mechanism for the default proxy

For the OPENClientAuthentication the MethodID should be 10 and the Method should be the

OPENClientAuthentication object.

After setting the SOCKS proxy a SOCKS socket can be created if the communication is TCP based:

Socket::SocksSocket(Hostname, Port)

Hostname A String specifying the host (application server) to connect the socket to

Port An integer specifying the port to connect the socket to

Returns: Socket object

Create a SOCKS socket object

After the SOCKS socket is created it can be used for network communication like a normal TCP socket.

If the communication is UDP based the following method should be used instead:

Socks5DatagramSocket::Socks5DatagramSocket(Port, IP)

Port An integer specifying the port to connect the socket to

IP A java.net.InetAddress specifying the IP of the host to send data to

Returns: Socks5DatagramSocket object

Create a UDP SOCKS5 socket object

7.3. INTERACTIONS

The relationship between the entities involved in mobility is shown in Figure 11.

ICT-Open Final prototype applications

 Mobility Support 35

Figure 11 Overview of mobility interfaces. (1 (optional)) The application interface to the OPEN middleware. (2) A SOCKS interface

from the OPEN client to the MAP. (3) The application should provide information about the network configuration to the

migration orchestration. (4) The mobility support module receives information about migrations involving network changes from

the orchestrator. (5) The MAP queries the mobility module about what to do with an incoming SOCKS connection. (6) The

interface between the Application Server and the MAP is a normal network interface.

As can be seen in Figure 11, the only other OPEN module which interacts with the mobility support

module is the orchestrator. The orchestrator needs to inform the mobility support module that a

migration is taking place such that it can answer the connection query from the MAP when the target

device makes a network connection.

The interaction between the Orchestrator and the Mobility Support module is detailed in Figure 12. When

a migration is triggered the Orchestrator informs the Mobility Support module of the new

ApplicationConfiguration. The mobility support module saves the old configuration until a migration query

is made from the MAP. The migration query contains information to indentify a connection, including the

unique application ID which can be used to look up whether there was a previous configuration for this

application. If there was a previous configuration, the connection is from an ongoing migration and the

MAP is informed that it should switch from the connection already established.

ICT-Open Final prototype applications

 Mobility Support 36

Figure 12 Orchestrator interaction with Mobility Support

The interaction between mobility support, with the mobility support adapter installed at the client, and

an application is detailed in Figure 13. When an application creates a socket, the mobility support adapter

will create a SOCKS connection to the MAP. The MAP will query the MS about the connection, and since it

is a new connection it should just be forwarded. When the socket is returned to the application it can

start to send and receive data like for a normal socket.

Figure 13 - Application interaction with Mobility Support

7.4. HARDWARE AND SOFTWARE REQUIREMENTS

The prototype of the mobility support functionality has been implemented using Java but could be

implemented in any language.

ICT-Open Final prototype applications

 Mobility Support 37

One server is needed for both the OPEN migration server and the MAP, unless scalability requires them to

be run on two separate servers. There a no special requirements to the hardware.

Software wise, a Java Virtual Machine on the MAP and the OPEN migration server is required to run the

mobility support functionality. Since the interface to the MAP is standardized in the SOCKSv5 protocol the

client applications and middleware can be implemented in any language.

The mobility support functionality needs to interact with the orchestrator module in the OPEN migration

server.

7.5. SETUP AND RUN

The OPEN migration server and the MAP are normal Java applications that can be started using a Java JRE.

The MAP server needs the IP address of the OPEN migration server which can be configured in a

properties file. The OPEN clients need the IP address and port of the MAP in order to make the SOCKS

connections.

7.6. USAGE EXAMPLE IN THE PROTOTYPES

The only prototype using the mobility support functionality is the Mobility Prototype described in D3.3

[2]. In the Mobility Prototype a streaming application called JOrbisPlayer
1
 is the OPEN client application

which needs mobility support in order to have a successful migration.

The JOrbisPlayer can play an Ogg Vorbis stream from a http server. If a migration was performed without

mobility support, the stream would have to be restarted from the beginning since even with the state

transferred it is not possible to start receiving the stream from the server from the point it was left before

the migration. Using mobility support the stream can continue on the target device.

1
 Available at http://www.jcraft.com/jorbis/

ICT-Open Final prototype applications

 Device Discovery 38

8. DEVICE DISCOVERY

8.1. DESCRIPTION

The Device Discovery capability is a distributed protocol belonging to the Open Client Daemon, which is a

tiny application that runs in background on every Open enabled client. The aim of the Open Client

Daemon is to support the user in selecting the target device for migration and in choosing which

component(s) migrate. The Client Daemon is available both for desktop PC and for mobile device. The

mobile version has an additional feature, the Device Selection Map, that provides the user with a

graphical situation of the currently visited environment according, eventually, to user direction and

location (see [4]).

The Device Discovery protocol, implemented in C# and executed by any Client Daemon, is able to locally

compile and keep a list of currently visible devices (i.e.: potential migration targets) that are shown on the

Client Daemon. This is done by multicasting “hello” messages to the peers and by collecting the incoming

messages from the peers. The “hello” message contains the identification and a brief description of the

sender.

The list of visible devices is kept updated on every Client Daemon by adding newly detected devices and

deleting those devices that explicitly leave (that multicast a “bye” message). The local instance of the

protocol also assigns a time-to-live to any detected device: every time a “hello” is received, the related

time counter is reset. Devices that have not been detected for a long time are removed from the visibility

list. This is needed in order to ignore the devices that might have implicitly left (e.g., those that have been

abruptly switched off or that are out of connection).

8.2. INTERFACES OVERVIEW

The Device Discovery is not interfaced to any other module of the Open platform.

8.3. INTERACTIONS

Interactions between the Device Discovery and other modules occur only indirectly: information gathered

by the Device Discovery is forwarded to the UI Adaptation support, such as the target IP address of the

target device during a web migration.

8.4. HARDWARE AND SOFTWARE REQUIREMENTS

The Device Discovery is executed within the Open Client environment. Different versions of the Open

Client have been implemented, both for Desktop PCs (Windows XP, Vista, …) and for PDAs (Windows

Mobile). The main software need is one of the latest versions of the .NET Framework (such as the 3.5).

ICT-Open Final prototype applications

 Device Discovery 39

Since the Device Discovery protocol is based on message exchange among devices, network connectivity

(wireless or wired) is needed.

The devices involved must lie within the same subnet in order to allow multicasting.

8.5. SETUP AND RUN

The Device Discovery setup is contextual to the installation of the Client Daemon: a single executable (i.e.:

desktopClient.exe or mobileClient.exe) must be deployed on the device. A XML configuration file must

also be deployed. The XML file represents the description that is forwarded to the peers, and thus must

be properly compiled with the specifications of the device (name, type, main capabilities).

8.6. USAGE EXAMPLE IN THE PROTOTYPES

Device Discovery is exploited in any prototype that includes the Open Client Daemon, such as the

migratory Pacman. In this case, the Device Discovery is run by the Client Daemon and provides the list of

target devices for migration.

ICT-Open Final prototype applications

 Migration Examples 40

9. MIGRATION EXAMPLES

This section features sequence diagrams that explain how the migration platform can be used by

applications. To achieve this, we show how the OPEN prototypes, which will be demonstrated in the Y2

review, interact at each step.

Figure 14 shows the migration of a component using the OPEN Platform. This migration, for instance,

occurs in the Social Game, and shows the message exchanges in full detail. In particular, components

register to the platform and, upon triggering a migration from the application, the migration sequence

occurs:

1. Pause involved components in the source devices

2. Retrieve the application state

3. Launch the binaries which represent the components in the target devices, and register them

4. Restore the state onto the target devices

5. Terminate the components on the source devices, and run the ones in the target devices.

The case of the Emergency Scenario uses the exact same procedure but also employs the Context

Management Framework to generate manual triggers. Using this, both the audio channel and the

emergency information are migrated to the big display, as detailed in D5.4 [6]. We do not show a detailed

diagram for this, for it would be the same as Figure 14. Instead, we present a sequence diagram for the

TwitterWall, which not shows usage of the CMF, but also the Application Logic Reconfiguration and

automatic Triggers with the trigger Management.

ICT-Open

Final prototype applications

 Migration Exampl

Figure 14 Migrations in the Social Game

totype applications

Migration Examples 41

ICT-Open

Figure 15 shows the migration as it occurs in the TwitterWall demonstrator. The steps are consistent with

those of the Emergency Scenario and the Social Game, so we skip some of the obvious reply messages

and all component registrations.

The diagram, however, shows how the TwitterWall Input+Output is terminated, and in its place, two

components (one on the source and one on the target device) are started. This is therefore a partial

migration, where only the output functionality is migrated away from the so

display.

Additionally, the CMF is used to detect Bluetooth devices, which are considered as new devices, and

therefore result in the Application Logic Reconfiguration preparing a new configuration proposal to the

Trigger Management. Note how the first proposal is rejected (on the grounds of privacy), while the RFID

swipe convinces the Trigger Management to trigger the migration (i.e. the user input scoring function tips

the scales and the new ALR proposed configuration is executed

While Figure 14 showed the basic migration sequence for non

for web based ones (excluding Rich Internet Applications, like the Emergency Scenario). In this approach,

the browser obtains a copy of the web application that has been adapted by the Web Migration module.

Through the injection of JavaScript scripts, the

migrate (including re-adaptation) to another browser in a different device.

Final prototype applications

 Migration Examples

shows the migration as it occurs in the TwitterWall demonstrator. The steps are consistent with

those of the Emergency Scenario and the Social Game, so we skip some of the obvious reply messages

and all component registrations.

er, shows how the TwitterWall Input+Output is terminated, and in its place, two

components (one on the source and one on the target device) are started. This is therefore a partial

migration, where only the output functionality is migrated away from the source device and into a big

Additionally, the CMF is used to detect Bluetooth devices, which are considered as new devices, and

therefore result in the Application Logic Reconfiguration preparing a new configuration proposal to the

nt. Note how the first proposal is rejected (on the grounds of privacy), while the RFID

swipe convinces the Trigger Management to trigger the migration (i.e. the user input scoring function tips

the scales and the new ALR proposed configuration is executed)

Figure 15 Partial migration in the TwitterWall

showed the basic migration sequence for non-web applications, Figure

ding Rich Internet Applications, like the Emergency Scenario). In this approach,

the browser obtains a copy of the web application that has been adapted by the Web Migration module.

Through the injection of JavaScript scripts, the OPEN Server can retrieve the state of the

adaptation) to another browser in a different device.

totype applications

Migration Examples 42

shows the migration as it occurs in the TwitterWall demonstrator. The steps are consistent with

those of the Emergency Scenario and the Social Game, so we skip some of the obvious reply messages

er, shows how the TwitterWall Input+Output is terminated, and in its place, two

components (one on the source and one on the target device) are started. This is therefore a partial

urce device and into a big

Additionally, the CMF is used to detect Bluetooth devices, which are considered as new devices, and

therefore result in the Application Logic Reconfiguration preparing a new configuration proposal to the

nt. Note how the first proposal is rejected (on the grounds of privacy), while the RFID

swipe convinces the Trigger Management to trigger the migration (i.e. the user input scoring function tips

Figure 16 shows the case

ding Rich Internet Applications, like the Emergency Scenario). In this approach,

the browser obtains a copy of the web application that has been adapted by the Web Migration module.

the state of the Web page, and

ICT-Open Final prototype applications

 Migration Examples 43

Figure 16 Migration of Web based applications

While Figure 16 shows the standard migration steps for Web applications, Figure 17 expands the

explanation by covering a migration that relies on Application Logic Reconfiguration and the Context

Management Framework. In this case, the CMF is used to retrieve device information (e.g. screen size)

and the ALR is used to adjust the game parameters.

ICT-Open Final prototype applications

 Migration Examples 44

Figure 17 Migration for Web Applications: the Pacman application

ICT-Open Final prototype applications

 Conclusions 45

10. CONCLUSIONS

This deliverable has detailed the OPEN Base Implementation of the Migration Service Platform. The

contents here presented aim to improve the understanding of the development done throughout the

project.

More importantly, however, the overview provided here, combined with the details in D4.2, will remain

as a guideline for future developers working on their own versions of the Migration Service Platform.

Together with deliverable D5.4, future implementers will have both the examples and the platform they

rely on, thus helping to further the use of the work developed in the OPEN Project.

ICT-Open Final prototype applications

 References 46

11. REFERENCES

[1] " Final OPEN Service Platform architectural framework”, EU FP7 ICT project OPEN, Deliverable

D1.4

[2] “System Support for application migration (revised)”, EU FP7 ICT project OPEN, Deliverable D3.3

[3] “Final communication and context management solution for migratory services”, EU FP7 ICT

project OPEN, Deliverable D3.4

[4] “Migration Service Platform design”, EU FP7 ICT project OPEN, Deliverable D4.2

[5] “Final application requirements and design”, EU FP7 ICT project OPEN, Deliverable D5.3

[6] “Final prototype applications”, EU FP7 ICT project Open, Deliverable D5.4

ICT-Open Final prototype applications

 References 47

A. APPENDIX: OBJECT TYPE DEFINITIONS

The following objects have been defined or changed during the development of the Migration Platform,

after the definitions in D4.2 [4] have been frozen

ApplicationConfiguration

ID applicationConfigurationID

Type ApplicationConfiguration

The object contains information about devices and components forming one possible application

configuration. An application configuration is a realization of an application.

Attributes

Name Type Multi

plicity

Description

configurationNum Integer (1…1) Used for TriggerManagement ordering

belongsToApplication String (1…1) ApplicationID of the application this

configuration is for.

neededComponents Vector<String> (1…1) List of ComponentIDs needed to run this

application

deviceComponentMap Map<String,String> (1…1) What component(s) is/are on what device(s)

tmScore Integer (1…1) TriggerManagement assigned score

Connection ConnectionIdentifier (1…1) A network connection

ConnectionIdentifier

ID N/A

Type ConnectionIdentifier

It contains information about one unique connection made to the Mobility Anchor Point

Attributes

Name Type Multiplicity Description

client_addr InetAddress (1…1) IP address of the client

server_addr InetAddress (1…1) IP address of the application server

client_port Integer (1…1) Port number of client

server_port Integer (1…1) Port number of application server

deviceID String (1…1) ID of the device this connection belongs to

applicationID String (1…1) ID of the application this connection belongs to

componentID String (1…1) ID of the component this connection belongs to

