
OPEN Partners:

CNR-ISTI (Italy)
Aalborg University (Denmark)

Arcadia Design (Italy)
NEC (United Kingdom)
SAP AG (Germany)

Vodafone Omnitel NV (Italy)
Clausthal University (Germany)

OPEN Project
STREP Project FP7-ICT-2007-1 N.216552

"The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any

particular purpose. The above referenced consortium members shall have no liability for damages of any kind including without

limitation direct,special, indirect, or consequential damages that may result from the use of these materials subject to any

liability which is mandatory due to applicable law. Copyright 200.. by …[Annotation: please list all partners who contributed to

the respective project deliverable]."

Title of Document: Prototype for Application Logic Reconfiguration

Editor(s): H. Klus, B. Schindler, C. Deiters

Affiliation(s): Clausthal University of Technology

Contributor(s):

Affiliation(s):

Date of Document: 31.03.2009

OPEN Document: WP 4, D4.3

Distribution: Public

Keyword List: Adaptive Systems, System Reconfiguration,

Migration, OSGi

Version: Final

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

Abstract

This document describes a prototype which illustrates techniques of application

logic reconfiguration. This prototype has already presented at the last review

meeting in March 2009.

The prototype is related to deliverable D4.1 (Solutions for Application Logic

Reconfiguration) as it shows how solutions for application logic reconfiguration

can be applied. As example application we will use the well-known PacMan

game, a simple arcade game. The application will show how the PacMan game is

adapted during its migration from a PC to a so called mini-PC.

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

1

Table of Contents

1 APPLICATION LOGIC RECONFIGURATION SCENARIOS WITHIN THE

PROTOTYPE.. 2

1.1 THE ORIGINAL PACMAN GAME ... 2
1.2 INITIAL SITUATION... 2
1.3 SERVICE USAGE ADAPTATION ... 3
1.4 SERVICE BEHAVIOUR ADAPTATION ... 4

2 RUNTIME ENVIRONMENT AND INSTALLATION ... 7

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

2

1 Application Logic Reconfiguration Scenarios

within the Prototype

In this section we will introduce the prototype in more detail. To do this, we will

first introduce the PacMan game itself, and afterwards the several migration and

adaptation steps.

1.1 The Original PacMan Game

PacMan is a game where a character called PacMan, which is steered by the user,

has to collect dots in a maze, like shown in Figure 1.

Ghosts

PacMan
Special dots for

initiating scared

mode

PacMan has to

collect these dots

to get points

Scared

Ghosts

Prison for

ghosts

Figure 1: The two modes of a single PacMan game. On the left hand side the game is in normal

mode where the ghosts try to catch the PacMan. On the right side the game is in scared mode

where the PacMan can catch the ghosts.

Ghosts, who are controlled by the computer, are running around with the goal to

catch the PacMan. If the PacMan collects special dots, ghosts and PacMan change

roles for some seconds like depicted in Figure 1 on the right hand side. That

means that the PacMan now can catch ghosts and that the ghosts try to run away.

Caught ghosts will be imprisoned in the middle of the maze for some seconds.

After some seconds the roles change back again. The goal for the player is to get

as much scores as possible by collecting dots and catching ghosts.

1.2 Initial Situation

After starting the game on the PC, it will look like depicted in Figure 2. Five

ghosts try to catch the PacMan while the PacMan tries to collect all dots in the

maze. The PacMan will get one point for collecting one dot. At the bottom of

Figure 2, the component is depicted which implements the game functionality. It

has two configurations like introduced in deliverable D4.1. As no

AccelerationSensorIf is available, the component runs in configuration as

indicated by the green check.

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

3

Personal Computer

<<component>>

:PacManGame

1

2

����

Acceleration

SensorIf

Figure 2: The initial situation after starting the PacMan game on a personal computer. On the

bottom you see the component which realizes the game.

The PacManGame component itself consists of several subcomponents

distinguished among others into user interface subcomponents and application

logic subcomponents.

1.3 Service Usage Adaptation

We will now mainly show how service usage adaptation, introduced in deliverable

D4.1, takes place in this prototype.

The user switches on an accelerometer and connects it to the personal computer.

To do this, we use in the prototype a so called Sun Spot. It is programmable with

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

4

Java and enables easy access to sensor data like acceleration. If the user now tilts

the Sun Spot, the PacMan will move into the according direction. Figure 3 shows

the new application configuration.

Figure 3: Situation after integrating an accelerometer into the game during runtime.

The PacManGame component now retrieves the moving directions of the PacMan

via the AccelerationSensorIf. Therefore, the configuration of the PacManGame

component is switched to configuration 2, indicated by the green check. In the

same time, the application logic is adapted. As steering is now more difficult as

before, the speed of the ghosts is slowed down. To summarize: Configuration 1

takes input from the keyboard and sets speed of ghosts to average, Configuration 2

takes input from the acceleration sensor and sets speed of ghosts to slow.

1.4 Service Behaviour Adaptation

If the user now wants to continue playing the game on a mobile device like a mini-

PC for example, a middleware user interface can be used to select the target and

what to migrate like shown in Figure 4.

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

5

Figure 4: The migration controller enabling the user to chose the target device, the application to

migrate, and to execute migration.

Here the user can first define the target device by entering the IP address and the

according port number. Using a drop-down menu, the user can then choose what

to migrate. In this case it is the PacMan game. By clicking on Migrate Bundle the

middleware will transfer the code of the PacMan game to the target device. The

target device runs also a Migration Controller which receives the code, and

restarts it and adapts its behaviour to the device like introduced in the following.

Figure 5 shows the game after the migration from the PC to a mini-PC. The main

differences between the mini-PC and a PC are its display size and its options to

steer the PacMan. Using the small keys of the mini-PC keyboard makes it more

difficult to steer the PacMan than using a standard keyboard. And the small

display size makes it difficult to see the dots in the maze if using the PC version of

the PacMan game. Thus, the game has to be adapted in two ways: Considering the

small screen and the more difficult steering of the PacMan.

The overcome the disadvantages of the small screen, first the size of the dots is

increased and at the same time the number of dots is decreased. This is mainly

user interface adaptation. But the application logic has also to be adapted. As now

fewer dots are available, collecting one dot must now result in giving a higher

score. In this prototype the number of dots is halved, and therefore collecting one

dot will result in getting two points for collecting one dot instead of one point.

To cope with the more difficult steering, the speed of the ghosts is adapted, as

already shown before. At the bottom of Figure 5, the current configuration of the

PacManGame component is shown.

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

6

Figure 5: Situation after migration of the game from the PC to a mini-PC.

As the AccelerationSensorIf is not available, the component runs in configuration

1. But the internal realization of that configuration is adapted according to context

information like display size for example. In deliverable D4.1, this kind of

adaptation has been introduced as Service Behaviour Adaptation.

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

7

2 Runtime Environment and Installation

We will now outline the programming and runtime environment and give some

installation instructions.

The whole application has been realized using OSGi. OSGi is a middleware

enabling the development of component-based Java applications. Thus, the game

as well as the middleware is implemented in Java. In OSGi components are called

bundles. In this application there are on the one hand the bundles realizing the

PacMan game. On the other hand, the Migration Controller is also implemented

as an OSGi bundle. We chose OSGi for several reasons:

• The OSGi runtime environment needs only a few kilobytes of memory

which makes it possible to run applications even on embedded devices.

• The development of bundles is easy and not burdened with too much

middleware aspects. In fact, standard Java code can be converted into a

bundle quit easily. Furthermore, the Eclipse IDE offers the functionality to

run bundles directly without the need to install them first in an OSGi

framework.

• There exist several open source OSGi framework implementations for

different platforms and devices like Knopflerfish, Concierge or Oscar.

• OSGi offers already some functionality for the integration of new

components during runtime, as well as the possibility to migrate code from

one device to another.

Thus, the prototype comes as a set of OSGi bundles which can be installed and

executed in arbitrary OSGi runtime environments. Such OSGi bundles come as

JAR-files. The Migration Controller for example comes as MigrationControl.jar.

To run the bundles, start first an OSGi framework implementation. We tested

among others a framework called Knopflerfish

(http://www.knopflerfish.org/index.html). To load the JAR-files into the

framework, you can use the menu of Knopflerfish as shown in Figure 6.

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

8

Figure 6: Knopflerfish menu to load a bundle into the framework.

After the bundles have been loaded into the framework, they can be executed.

Figure 7 shows the PacMan game loaded into the OSGi framework. By marking

that bundle and clicking on the play button on the top, the game will be executed

and the game window will appear. You can use the menu also to stop and restart

the game, and also to uninstall the bundle from the framework.

Title: Prototype for Application

Logic Reconfiguration

Id Number: WP 4, D4.3

9

Figure 7: The PacMan game installed as an OSGi bundle into an OSGi framework called

Knopflerfish.

On the right hand side of Figure 7 you can see additional information about the

marked bundle like the version and vendor. The Migration Controller can be

installed and executed in the same way. After starting the Migration Controller

bundle, the window depicted in Figure 4 will appear. Afterwards, the GUI of the

Migration Controller can be used for migration of arbitrary bundles from one

device to another as explained in the section before.

