

OPEN Project

STREP Project FP7-ICT-2007-1 N.216552

OPEN Partners:

CNR-ISTI (Italy)

Aalborg University (Denmark)

Arcadia Design (Italy)

NEC (United Kingdom)

SAP AG (Germany)

Vodafone Omnitel NV (Italy)

Clausthal University (Germany)

"The information in this document is provided "as is", and no guarantee or warranty is given that the

information is fit for any particular purpose. The above referenced consortium members shall have no

liability for damages of any kind including without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials subject to any liability which is mandatory

due to applicable law. Copyright 2008 by Arcadia Design, Clausthal, CNR, Vodafone."

Title of Document: Migration Service Platform Design

Editor(s): Miquel Martin

Affiliation(s): NEC Europe

Contributor(s): All Open Partners

Affiliation(s): All Open Partners

Date of Document: April, 2009

OPEN Document: D4.2

Distribution: EU

Keyword List: integration, architecture, design, migration platform,

reference

Version: 1.0

ABSTRACT

This document provides a self-contained reference of the Migration

Service Platform. In the first sections, we deal with the integrated

platform design and functionality, the possibilities offered to application

developers, and the available operations and interfaces.

This is followed by detailed descriptions of the components and their

interactions, and completed with detailed examples of migrations of the

project’s chosen applications.

The document is intended both as an introduction and a reference guide

to the integrated migration platform, and will be further updated as the

project progresses.

TABLE OF CONTENTS

1. INTRODUCTION .. 4

2. OPEN PLATFORM OVERVIEW .. 5

3. MAKING APPLICATIONS OPEN-AWARE ... 7

3.1. THE OPEN ADAPTORS ... 7

3.2. CLIENT AND SERVER SIDE APPLICATIONS ... 8

3.3. PARTIAL MIGRATION .. 9

3.4. APPLICATION-CLIENT SPECIFIC ADAPTORS ... 10

4. PLATFORM COMMUNICATION: THE OPEN DISPATCHERS ... 11

4.1. COMMUNICATION MODELS ... 12

5. OPEN PLATFORM ARCHITECTURE ... 14

6. OPEN INTERFACES... 16

6.1.1. Interface Design Philosphy .. 17

6.1.2. Ensuring Data Consistency .. 17

6.1.3. Interface Overview .. 17

7. OPEN PLATFORM COMPONENTS .. 20

7.1. OPEN SERVER COMPONENTS ... 20

7.1.1. CMF (Context Management Node) ... 20

7.1.2. Migration Orchestration ... 24

7.1.3. State Handler .. 26

7.1.4. Trigger Management .. 28

7.1.5. Policy Enforcement .. 30

7.1.6. Mobility support (Server side) ... 31

7.1.7. UI Adaptation (Web) ... 35

7.1.8. Application logic reconfiguration (ALR) .. 36

7.2. OPEN ADAPTORS IN THE OPEN CLIENT ... 38

7.2.1. CMF (Context Agent) ... 38

7.2.2. Mobility Support (Client side) .. 38

7.2.3. UI Adaptation for Desktop Applications .. 40

7.2.4. Open Client Daemon with UI ... 41

7.2.5. Migration Orchestrator Client ... 44

7.2.6. Web State Handler (Client Side) .. 44

7.3. DISPATCHERS .. 45

7.4. COMPONENT DEPENDENCY .. 47

8. OPEN PLATFORM OPERATION EXAMPLES ... 49

8.1. MIGRATION OF A WEB APPLICATION ... 49

8.2. COMPONENT MIGRATION IN THE SOCIAL GAME .. 50

9. CONCLUSIONS ... 52

10. BIBLIOGRAPHY .. 53

A. APPENDIX: OPEN CLIENT INTERFACE ... 54

B. APPENDIX: OPEN SERVER INTERFACE ... 56

C. APPENDIX: OBJECT TYPE DEFINITIONS .. 60

ICT-Open Migration Service Platform Design

 Introduction 4

1. INTRODUCTION

This deliverable presents the Migration Service Platform design. It is meant as a living document

that evolves as development progresses, and new opportunities and requirements are

uncovered.

The version in your hands will be continuously modified until Month 24, where D4.4 will present

the final prototypes: at that point, part of the accompanying documentation will be this

document, updated to the latest changes and agreements, and frozen as the final result of the

Integration task.

This document is meant to be used as both an introduction to application developers, and a

detailed reference manual. It is structured as follows:

Section 2 provides an overview of the Open Platform, what a typical deployment looks like, and

the functionalities an application may expect. Section 3 is directly targeted at application

developers, and provides an introduction to making an application Open-aware. In particular, it

contemplates different application models and how they may interact. Section 4 discusses the

platform communication mechanisms. Finally, Section 5 puts it all together to give an

architectural view of the platform, and finally, Section 6 gives a quick introduction to the Open

interfaces.

Starting on Section 7, the material becomes more detailed as the individual components of the

platform are presented. Of special interest here are the sequence diagrams that exemplify the

interaction among them. Section 8 provides an explanation of a complete migration in the case of

a web application and a social game. This provides a good overview of the general operation of

the platform.

Finally, Section 9 draws our conclusions, and Appendixes A, B, and C respectively provide the

parameter level descriptions of the Open Client and Open Server Interfaces, followed by the

Object type definitions.

ICT-Open

2. OPEN PLATFORM OVER

The Open platform provides a framework that enables applications to migrate between devices,

be it by completely migrating, or by sending some of its parts over to

Furthermore, the platform provides the application with the necessary mechanisms to adapt to

the new device, including adaptation of network connections, user interfaces, and restoration of

the previous state.

From a high-level view, as illustrated in

Clients. By using the Open interface, applications can request migrations and adapt to new

devices. The Open server, in turn, can request other Clients to execute applications and restore

their state.

Figure 1 Overall architecture, where applications are seen as clients of the migration platform

The Open server may reside on any device, so long as it is reachable by the Open Clients and

fulfills the necessary hardware specifications. Within the scope of the project, a single Open

Server is considered where all Clients are registered. It is, howeve

distributed deployments, such as the one shown in

an office building (domain 1) runs an Open

at her home (domain 2). Open Clients (marked OC) are registered to a particular Open Server, but

might handover as the user moves from one domain to the other. The finer points of these

mechanisms are not covered by this project, but numerous solutions exist, such as providing

Open Server addresses as a field in the DHCP messages when entering the network.

Migration Service Platform Design

 Open Platform Overview

OPEN PLATFORM OVERVIEW

The Open platform provides a framework that enables applications to migrate between devices,

be it by completely migrating, or by sending some of its parts over to another device.

Furthermore, the platform provides the application with the necessary mechanisms to adapt to

the new device, including adaptation of network connections, user interfaces, and restoration of

lustrated in Figure 1, the Open server sees only any number of Open

Clients. By using the Open interface, applications can request migrations and adapt to new

The Open server, in turn, can request other Clients to execute applications and restore

Overall architecture, where applications are seen as clients of the migration platform

The Open server may reside on any device, so long as it is reachable by the Open Clients and

fulfills the necessary hardware specifications. Within the scope of the project, a single Open

Server is considered where all Clients are registered. It is, however, a small step towards more

distributed deployments, such as the one shown in Figure 2. In this example, an organization in

an office building (domain 1) runs an Open Server, while a home user has set up an Open Server

at her home (domain 2). Open Clients (marked OC) are registered to a particular Open Server, but

might handover as the user moves from one domain to the other. The finer points of these

t covered by this project, but numerous solutions exist, such as providing

Open Server addresses as a field in the DHCP messages when entering the network.

Migration Service Platform Design

Open Platform Overview 5

The Open platform provides a framework that enables applications to migrate between devices,

another device.

Furthermore, the platform provides the application with the necessary mechanisms to adapt to

the new device, including adaptation of network connections, user interfaces, and restoration of

, the Open server sees only any number of Open

Clients. By using the Open interface, applications can request migrations and adapt to new

The Open server, in turn, can request other Clients to execute applications and restore

Overall architecture, where applications are seen as clients of the migration platform

The Open server may reside on any device, so long as it is reachable by the Open Clients and

fulfills the necessary hardware specifications. Within the scope of the project, a single Open

r, a small step towards more

. In this example, an organization in

Server, while a home user has set up an Open Server

at her home (domain 2). Open Clients (marked OC) are registered to a particular Open Server, but

might handover as the user moves from one domain to the other. The finer points of these

t covered by this project, but numerous solutions exist, such as providing

Open Server addresses as a field in the DHCP messages when entering the network.

ICT-Open Migration Service Platform Design

 Open Platform Overview 6

Figure 2 Open Servers may be localized, and clients might handover between them

Likewise, a P2P approach would be possible in an environment where a node is elected among its

peers to play the role of the Open Server provided it has the necessary hardware requirements.

Once the overlay network is established, the Open mechanisms would continue to work in the

fashion described in this document.

Domain 2Domain 1

Open Server

OC

Open Server

OC
OC

OC

ICT-Open

3. MAKING APPLICATIONS

One of the objectives of the Open project is to abstract as much migration functionality as

possible from the application, thus making it easy for developer

An Open Client, which behaves as a Black Box as far as the platform is concerned, is actually

composed of a device which runs the applications and calls on the Open functionality.

3.1. THE OPEN ADAPTORS

Figure 3 illustrates the internals of an example Open Client. The Client is made in this case of a

Terminal (e.g. a mobile phone) which runs a native application and a set of Open Adaptors

adaptors implement the part of the migration functionalities that are common across

applications. They are meant to be reused across applications, so long as the platform permits it.

In doing so, an application needs only to make use of the adaptors

Naturally, there is still complexity involved in modifying the application logic to support the new

migration lifecycle, but all other common tasks are extracted onto the adaptors.

Figure 3 Applications implement or use the Open Adaptors, and in doing so, present an Open Client interface to the

That said, Open Client needs only to present an Open Client interface to the Open Server, so the

use of the adaptors is actually optional. As long

override the default adaptors and re

necessary to support the certain types of application available nowadays, and especially those

found in the web. Consider for instance:

• Web based applications are split between their execution environment (a browser) and

their actual content (HTML, JavaScript and embedded objects like Silverlight or Flash)

• One might want to support certain migrations, such as web

the existing web servers. This requires pulling more functionality towards the client

Because of the richness of the application ecosystem, and to provide more flexibility to

developers, applications can integrate with Open by usi

reimplementing them and offering the Open Interface directly from the applications. Any

combination in between is just as well possible, where applications reuse some adaptors, and

override others.

Migration Service Platform Design

 Making Applications Open-Aware

MAKING APPLICATIONS OPEN-AWARE

One of the objectives of the Open project is to abstract as much migration functionality as

possible from the application, thus making it easy for developers to integrate with our solutions.

An Open Client, which behaves as a Black Box as far as the platform is concerned, is actually

composed of a device which runs the applications and calls on the Open functionality.

ADAPTORS

illustrates the internals of an example Open Client. The Client is made in this case of a

Terminal (e.g. a mobile phone) which runs a native application and a set of Open Adaptors

adaptors implement the part of the migration functionalities that are common across

applications. They are meant to be reused across applications, so long as the platform permits it.

In doing so, an application needs only to make use of the adaptors to become migration capable.

Naturally, there is still complexity involved in modifying the application logic to support the new

migration lifecycle, but all other common tasks are extracted onto the adaptors.

ns implement or use the Open Adaptors, and in doing so, present an Open Client interface to the

Open platform

That said, Open Client needs only to present an Open Client interface to the Open Server, so the

use of the adaptors is actually optional. As long as applications respect the interface, they may

override the default adaptors and re-implement their functionality internally. This is some times

necessary to support the certain types of application available nowadays, and especially those

eb. Consider for instance:

Web based applications are split between their execution environment (a browser) and

their actual content (HTML, JavaScript and embedded objects like Silverlight or Flash)

One might want to support certain migrations, such as web pages, without modifying

the existing web servers. This requires pulling more functionality towards the client

Because of the richness of the application ecosystem, and to provide more flexibility to

developers, applications can integrate with Open by using the Open Adaptors exclusively, or by

reimplementing them and offering the Open Interface directly from the applications. Any

combination in between is just as well possible, where applications reuse some adaptors, and

Migration Service Platform Design

Aware 7

One of the objectives of the Open project is to abstract as much migration functionality as

s to integrate with our solutions.

An Open Client, which behaves as a Black Box as far as the platform is concerned, is actually

composed of a device which runs the applications and calls on the Open functionality.

illustrates the internals of an example Open Client. The Client is made in this case of a

Terminal (e.g. a mobile phone) which runs a native application and a set of Open Adaptors. The

adaptors implement the part of the migration functionalities that are common across

applications. They are meant to be reused across applications, so long as the platform permits it.

to become migration capable.

Naturally, there is still complexity involved in modifying the application logic to support the new

ns implement or use the Open Adaptors, and in doing so, present an Open Client interface to the

That said, Open Client needs only to present an Open Client interface to the Open Server, so the

as applications respect the interface, they may

implement their functionality internally. This is some times

necessary to support the certain types of application available nowadays, and especially those

Web based applications are split between their execution environment (a browser) and

their actual content (HTML, JavaScript and embedded objects like Silverlight or Flash)

pages, without modifying

the existing web servers. This requires pulling more functionality towards the client

Because of the richness of the application ecosystem, and to provide more flexibility to

ng the Open Adaptors exclusively, or by

reimplementing them and offering the Open Interface directly from the applications. Any

combination in between is just as well possible, where applications reuse some adaptors, and

ICT-Open

3.2. CLIENT AND SERVER

Another crucial difference between application types is how many of them run on a server, and

how many are actually client

necessary to harvest state information from both th

mobility support might require adaptation at the client side.

The Open approach here is again that of flexibility. Assuming that the

side of an application can behave, as a whole, as a

behave as expected.

This simply means that the sum of the methods of the interfaces of the Open Adaptors should

add up to implement all the methods of the Open Client interface. If this is the case, the platform

will not concern itself with where each of the adaptors is actually running.

scenario.

Figure 4 Applications look like a single Open Client to the platform, even when they have a server and a client part

We have now described two of the choices that application developers have at their disposal

when integrating with the Open Platform. The applications that have been dev

which are currently being integrated, fall in different categories.

applications map to the two parameters proposed.

Migration Service Platform Design

 Making Applications Open-Aware

CLIENT AND SERVER SIDE APPLICATIONS

Another crucial difference between application types is how many of them run on a server, and

how many are actually client-based. Whenever state has to be kept, for instance, it might be

necessary to harvest state information from both the client and the server. In another example,

mobility support might require adaptation at the client side.

The Open approach here is again that of flexibility. Assuming that the combined client and server

side of an application can behave, as a whole, as an Open Client would, the Open Server will

This simply means that the sum of the methods of the interfaces of the Open Adaptors should

add up to implement all the methods of the Open Client interface. If this is the case, the platform

ll not concern itself with where each of the adaptors is actually running. Figure 4

ke a single Open Client to the platform, even when they have a server and a client part

We have now described two of the choices that application developers have at their disposal

when integrating with the Open Platform. The applications that have been developed so far, and

which are currently being integrated, fall in different categories. Figure 5 shows how these

applications map to the two parameters proposed.

Migration Service Platform Design

Aware 8

Another crucial difference between application types is how many of them run on a server, and

based. Whenever state has to be kept, for instance, it might be

e client and the server. In another example,

client and server

n Open Client would, the Open Server will

This simply means that the sum of the methods of the interfaces of the Open Adaptors should

add up to implement all the methods of the Open Client interface. If this is the case, the platform

4 illustrates this

ke a single Open Client to the platform, even when they have a server and a client part

We have now described two of the choices that application developers have at their disposal

eloped so far, and

shows how these

ICT-Open

Figure 5 Different applications can choose to adapt differently to the Open platform to achieve migration support

The Emergency Scenario, for instance, is a mostly server based, .NET and Silverlight application.

As such, it is difficult for it to integrate with all of the available Open Adaptors, and therefore

implements most of that functionality itself, from the server side.

The Web Migration applications

server, and so, orchestrates migrations using the terminal and the Open Server (where a Web UI

adaptation proxy is running). Also, it makes full use of the available Open Adaptors.

The Pac-Man game makes full use of the Open Adaptors, especially those for Application

Reconfiguration, and has some components on the server side.

The Social Game, finally, makes use of most Open Adaptors, and uses a homogeneous mix of

client and server side components.

3.3. PARTIAL MIGRATION

The Social Game, additionally, illustrates the

distributes itself across multiple devices. Technically, this can be achieved by running the

different application components in different devices, and then either

• Presenting themselves to the platform as

• Running the components, logically, as a single Open Client

The Open Platform will consider each Open Client as an application, so the choice in deployment

will influence the way applications are handled. In the first case, the app

have to manage their own relationship, while in the latter, the Open Server is aware of the

connection between the components that run in the same Open Client.

Migration Service Platform Design

 Making Applications Open-Aware

Different applications can choose to adapt differently to the Open platform to achieve migration support

, for instance, is a mostly server based, .NET and Silverlight application.

difficult for it to integrate with all of the available Open Adaptors, and therefore

implements most of that functionality itself, from the server side.

applications, however, makes a point of requiring no changes from the web

so, orchestrates migrations using the terminal and the Open Server (where a Web UI

adaptation proxy is running). Also, it makes full use of the available Open Adaptors.

game makes full use of the Open Adaptors, especially those for Application

Reconfiguration, and has some components on the server side.

makes use of most Open Adaptors, and uses a homogeneous mix of

client and server side components.

PARTIAL MIGRATION

The Social Game, additionally, illustrates the concept of partial migration, where an application

distributes itself across multiple devices. Technically, this can be achieved by running the

different application components in different devices, and then either

Presenting themselves to the platform as individual Open Clients

Running the components, logically, as a single Open Client

The Open Platform will consider each Open Client as an application, so the choice in deployment

will influence the way applications are handled. In the first case, the application components will

have to manage their own relationship, while in the latter, the Open Server is aware of the

connection between the components that run in the same Open Client.

Migration Service Platform Design

Aware 9

Different applications can choose to adapt differently to the Open platform to achieve migration support

, for instance, is a mostly server based, .NET and Silverlight application.

difficult for it to integrate with all of the available Open Adaptors, and therefore

, however, makes a point of requiring no changes from the web

so, orchestrates migrations using the terminal and the Open Server (where a Web UI

adaptation proxy is running). Also, it makes full use of the available Open Adaptors.

game makes full use of the Open Adaptors, especially those for Application Logic

makes use of most Open Adaptors, and uses a homogeneous mix of

concept of partial migration, where an application

distributes itself across multiple devices. Technically, this can be achieved by running the

The Open Platform will consider each Open Client as an application, so the choice in deployment

lication components will

have to manage their own relationship, while in the latter, the Open Server is aware of the

ICT-Open

3.4. APPLICATION-CLIENT SPECIFIC ADAP

Certain specific adaptors are, by

the case of the GUI Adaptation for java programs. The Namuco toolkit (see section

multicore support for GUIs, and these are obviously bound to the terminals, and make sense only

on the client side.

Additionally, because of its low level nature, the link to these Open Adaptors is made available to

Java applications or runtime modules by

including the corresponding package.

Figure 6 An application that has partially migrated, and presents itself as two Open Clients

Migration Service Platform Design

 Making Applications Open-Aware

CLIENT SPECIFIC ADAPTORS

Certain specific adaptors are, by nature, not suited for the server side of an application. This is

the case of the GUI Adaptation for java programs. The Namuco toolkit (see section

ulticore support for GUIs, and these are obviously bound to the terminals, and make sense only

Additionally, because of its low level nature, the link to these Open Adaptors is made available to

Java applications or runtime modules by linking to the Java part of the Namuco library, i.e., by

ding the corresponding package.

An application that has partially migrated, and presents itself as two Open Clients

Migration Service Platform Design

Aware 10

nature, not suited for the server side of an application. This is

the case of the GUI Adaptation for java programs. The Namuco toolkit (see section 7.2.3) offers

ulticore support for GUIs, and these are obviously bound to the terminals, and make sense only

Additionally, because of its low level nature, the link to these Open Adaptors is made available to

inking to the Java part of the Namuco library, i.e., by

An application that has partially migrated, and presents itself as two Open Clients

ICT-Open

4. PLATFORM COMMUNICATI

The Open Platform is built on the principle of modularity. The Open Server provides its

functionality through multiple Server Components. The Open Client is made up of a number of

Adaptors, and an application, which can be further split between a server

then again into components.

While this makes the Open Platform easier to customize to the specific needs of both the

deployment devices and the integrating applications, it comes at a price. Consider, for instance,

the Open Server Interface, which is made up by the sum of the interfaces of the Open Server

components. How would an Open Client know which component to address, when a certain part

of the interface was to be invoked?

It is clear that communication hubs are required that f

sort of directory service.

The proposed solution in Open follows the dispatcher pattern, where a Dispatcher module acts

as a single endpoint for a number of components and, at the same time, those components use

the dispatcher to route their messages.

Platform:

Figure 7 Dispatchers in the Open Ser

Notice how the highlighted dispatchers funnel the communication of the multiple components.

We can identify three types of Dispatchers:

• The Open Server Dispatcher:

for the whole Open Server. Any Open Client that needs to make a request to the server

will do so through this Dispatcher, and all Open Server components will send their

messages to the Open Clients through it.

Migration Service Platform Design

 Platform communication: The Open Dispatchers

PLATFORM COMMUNICATION: THE OPEN DISPATCHERS

The Open Platform is built on the principle of modularity. The Open Server provides its

functionality through multiple Server Components. The Open Client is made up of a number of

Adaptors, and an application, which can be further split between a server and a client side, and

then again into components.

While this makes the Open Platform easier to customize to the specific needs of both the

deployment devices and the integrating applications, it comes at a price. Consider, for instance,

nterface, which is made up by the sum of the interfaces of the Open Server

components. How would an Open Client know which component to address, when a certain part

of the interface was to be invoked?

It is clear that communication hubs are required that factor out this complexity and provide some

The proposed solution in Open follows the dispatcher pattern, where a Dispatcher module acts

as a single endpoint for a number of components and, at the same time, those components use

he dispatcher to route their messages. Figure 7 shows how this concept is applied to the Open

Dispatchers in the Open Server and Client act as a communication hub

Notice how the highlighted dispatchers funnel the communication of the multiple components.

We can identify three types of Dispatchers:

The Open Server Dispatcher: is unique for each Open deployment, and it is the

for the whole Open Server. Any Open Client that needs to make a request to the server

will do so through this Dispatcher, and all Open Server components will send their

messages to the Open Clients through it.

Migration Service Platform Design

Platform communication: The Open Dispatchers 11

The Open Platform is built on the principle of modularity. The Open Server provides its

functionality through multiple Server Components. The Open Client is made up of a number of

and a client side, and

While this makes the Open Platform easier to customize to the specific needs of both the

deployment devices and the integrating applications, it comes at a price. Consider, for instance,

nterface, which is made up by the sum of the interfaces of the Open Server

components. How would an Open Client know which component to address, when a certain part

actor out this complexity and provide some

The proposed solution in Open follows the dispatcher pattern, where a Dispatcher module acts

as a single endpoint for a number of components and, at the same time, those components use

shows how this concept is applied to the Open

Notice how the highlighted dispatchers funnel the communication of the multiple components.

is unique for each Open deployment, and it is the endpoint

for the whole Open Server. Any Open Client that needs to make a request to the server

will do so through this Dispatcher, and all Open Server components will send their

ICT-Open Migration Service Platform Design

 Platform communication: The Open Dispatchers 12

• The Open Client Dispatcher: is present once per Open Client, and it represents the

unique contact point through which the Open Server can send messages to the

Applications and Adaptors it contains. Likewise, when an Open Client component needs

to send a request to the Open Server, it does so through the Dispatcher. Note how,

should an application be split between its server and client sides, the Open Client

Dispatcher takes cares of sending the message where it is needed.

• The Open Adaptor Dispatchers: are bound to a specific application/device pair. They are

meant to provide the whole functionality of the platform to the applications in a

compact and easy way.

As in the case of the Adaptors, applications can choose to use the existing dispatchers, or

implement their own. Whichever the case, the Dispatcher must fulfill its functions, including the

aggregation of the interfaces of the individual components, so that:

• Applications see an Open Server Interface provided by the Adaptor Dispatcher

• Adaptors see an Open Client Interface provided by the Adaptor Dispatcher

• Open Servers see an Open Client Interface provided by the Open Client Dispatcher

• Open Clients see an Open Server Interface provided by the Open Client Dispatcher.

These interfaces are consistent with the directional view presented in Figure 10 (page 16).

In using the dispatcher infrastructure, applications need to communicate only with a statically

configured Dispatcher, and need not worry about the underlying network conditions. This is true

to the point that components can now deal with ComponentIDs alone, while the specific service

endpoints, which might change at runtime in mobility scenarios, remain hidden.

4.1. COMMUNICATION MODELS

The communication protocol for the Open Platform is XML-RPC. This assumes that components

can listen for requests, and even receive asynchronous responses. This, however, can be

problematic in at least the following cases:

• Firewalls and Network Address Translators (NATs): can block incoming traffic, either

through the enforcement of firewall policies, or because NATed components run on a

private IP which is not routable from the other communication endpoint.

• Application platforms which don’t support listening modes: the most clear case is that

of web applications, which can make HTTP requests (even asynchronous ones using

AJAX) but can not listen to messages initiated by an external peer (with AJAX

frameworks like Direct Web Remoting (DWR) or Comet being a notable exception).

To solve this problem, the Open Dispatchers support a polling mode on their server side.

Messages that would usually be directly called on the Client Interface are instead buffered at the

dispatcher. The client end can then poll periodically to retrieve pending messages. Further details

and sequence diagrams can be found in Section 7.3.

ICT-Open

NOT TO FORGET:

� Only the Open Server interface offers a polling mode for asynchronous execution

of the Client side interface

� Because of that, all Open Client methods are asynchronous

� Dispatchers interact with Mobility Support to route Platf

mobility scenarios

Migration Service Platform Design

 Platform communication: The Open Dispatchers

Only the Open Server interface offers a polling mode for asynchronous execution

of the Client side interface

Because of that, all Open Client methods are asynchronous

Dispatchers interact with Mobility Support to route Platform communications in

mobility scenarios

Migration Service Platform Design

Platform communication: The Open Dispatchers 13

Only the Open Server interface offers a polling mode for asynchronous execution

orm communications in

ICT-Open

5. OPEN PLATFORM ARCHIT

The aim of this section is to put together all the pieces presented in the previous sections,

providing an overview of the Open Platform architecture.

Architectural work in Open is lead by WP1: initial platform architectures were developed in D1.2

(1) and its final version will be presented in D1.4. In parallel, WP4 is coordinating the actual

implementation of said architecture, starting in this delivera

this line, the architectural views of WP4 can be seen as development snapshots of the WP1 work.

Figure 8 illustrates the timeline

With this in mind, we now present the overall architectural picture for D4.2 in

deployment will include one Open Server and any number of Open Clients. All communication

between the different segments occurs through a Dispatcher, and the application can override

any or all of the client side components.

Migration Service Platform Design

 Open Platform Architecture

OPEN PLATFORM ARCHITECTURE

The aim of this section is to put together all the pieces presented in the previous sections,

providing an overview of the Open Platform architecture.

Architectural work in Open is lead by WP1: initial platform architectures were developed in D1.2

and its final version will be presented in D1.4. In parallel, WP4 is coordinating the actual

implementation of said architecture, starting in this deliverable D4.2, and once again in D4.4. In

this line, the architectural views of WP4 can be seen as development snapshots of the WP1 work.

illustrates the timeline for this cooperation.

Figure 8 Cooperation between WP1 and WP4

With this in mind, we now present the overall architectural picture for D4.2 in Figure

deployment will include one Open Server and any number of Open Clients. All communication

between the different segments occurs through a Dispatcher, and the application can override

any or all of the client side components.

Migration Service Platform Design

Open Platform Architecture 14

The aim of this section is to put together all the pieces presented in the previous sections,

Architectural work in Open is lead by WP1: initial platform architectures were developed in D1.2

and its final version will be presented in D1.4. In parallel, WP4 is coordinating the actual

ble D4.2, and once again in D4.4. In

this line, the architectural views of WP4 can be seen as development snapshots of the WP1 work.

Figure 9. A normal

deployment will include one Open Server and any number of Open Clients. All communication

between the different segments occurs through a Dispatcher, and the application can override

ICT-Open

The Application Logic Reconfiguration (ALR), the Policy Enforcement and the Trigger

management, do not require an adaptor counterpart, since they do not possess any client side

functionality. While they do not exist as a software instance, they do have a logical significance,

in that the Application seems to talk to the adaptor component on its way to the server. Because

their functionality is limited to relaying messages between the application a

components, we have chosen to implement this in the dispatcher instead.

Trigger management is a special case in that manual migration triggers can be generated

internally in the application, or using the Open Client Daemon; In this sense tri

represented as a link to both the Trigger Management Adaptor and the Open Client Daemon.

The details of each component, the interfaces it offers, and the interactions with the rest of the

platform are explained in detail in section

Finally, we would like to highlight the role of the Orchestrator component. As its nam

it is responsible for interacting with the rest of the platform components, and to coordinate the

lifecycle of applications as they migrate. Further details can be found in section

NOT TO FORGET:

� All Open Platform communication on the wire travels from and to a Dispatcher

� Applications can choo

� In what regards platform communication, an Open Client will never talk directly to

another Open Client: it will go through the Open Server

Migration Service Platform Design

 Open Platform Architecture

Figure 9 Open Platform Architecture

The Application Logic Reconfiguration (ALR), the Policy Enforcement and the Trigger

management, do not require an adaptor counterpart, since they do not possess any client side

le they do not exist as a software instance, they do have a logical significance,

in that the Application seems to talk to the adaptor component on its way to the server. Because

their functionality is limited to relaying messages between the application and the server

components, we have chosen to implement this in the dispatcher instead.

Trigger management is a special case in that manual migration triggers can be generated

internally in the application, or using the Open Client Daemon; In this sense trigger generation is

represented as a link to both the Trigger Management Adaptor and the Open Client Daemon.

The details of each component, the interfaces it offers, and the interactions with the rest of the

platform are explained in detail in section 7.1 on page 20 and section 7.2 on page

Finally, we would like to highlight the role of the Orchestrator component. As its nam

it is responsible for interacting with the rest of the platform components, and to coordinate the

lifecycle of applications as they migrate. Further details can be found in section 7.1.2

All Open Platform communication on the wire travels from and to a Dispatcher

Applications can choose to implement any of the Open Client functionality

In what regards platform communication, an Open Client will never talk directly to

another Open Client: it will go through the Open Server

Migration Service Platform Design

Open Platform Architecture 15

The Application Logic Reconfiguration (ALR), the Policy Enforcement and the Trigger

management, do not require an adaptor counterpart, since they do not possess any client side

le they do not exist as a software instance, they do have a logical significance,

in that the Application seems to talk to the adaptor component on its way to the server. Because

nd the server

Trigger management is a special case in that manual migration triggers can be generated

gger generation is

represented as a link to both the Trigger Management Adaptor and the Open Client Daemon.

The details of each component, the interfaces it offers, and the interactions with the rest of the

on page 38.

Finally, we would like to highlight the role of the Orchestrator component. As its name suggests,

it is responsible for interacting with the rest of the platform components, and to coordinate the

7.1.2 on page 24.

All Open Platform communication on the wire travels from and to a Dispatcher

se to implement any of the Open Client functionality

In what regards platform communication, an Open Client will never talk directly to

ICT-Open

6. OPEN INTERFACES

After several phases, the project has chosen

Client and Server interfaces, both of which are implemented where necessary using XML

These interfaces, however, are not limited to the Open Server and Open Client blocks, but

throughout the platform:

• The Open Server presents an Open Server interface

• The Open Adaptors

• Likewise, the Open Client

• The Application also

In other words, the platform uses only two interfaces: which one of them a component

implements for its neighbor, and which one it can expect from that neighbor, depends exclusively

on the direction we’re looking at: towards the server, all components implement the Open Server

Interface; towards the client, the Open Client one.

Figure 10 The interfaces offered to a

Migration Service Platform Design

 Open Interfaces

After several phases, the project has chosen to summarize all its functionality into the Open

Client and Server interfaces, both of which are implemented where necessary using XML

These interfaces, however, are not limited to the Open Server and Open Client blocks, but

Open Server presents an Open Server interface to the Open Client but,

Open Adaptors also present an Open Server interface to the Applications

Open Client presents an Open Client interface to the Open Server, and

also presents an Open Client interface to the Adaptors

In other words, the platform uses only two interfaces: which one of them a component

implements for its neighbor, and which one it can expect from that neighbor, depends exclusively

king at: towards the server, all components implement the Open Server

Interface; towards the client, the Open Client one. Figure 10 illustrates this concept.

The interfaces offered to a component depend only on the direction the component is "facing"

Migration Service Platform Design

Open Interfaces 16

to summarize all its functionality into the Open

Client and Server interfaces, both of which are implemented where necessary using XML-RPC.

These interfaces, however, are not limited to the Open Server and Open Client blocks, but

to the Open Client but,

to the Applications

to the Open Server, and

In other words, the platform uses only two interfaces: which one of them a component

implements for its neighbor, and which one it can expect from that neighbor, depends exclusively

king at: towards the server, all components implement the Open Server

illustrates this concept.

depend only on the direction the component is "facing"

ICT-Open Migration Service Platform Design

 Open Interfaces 17

Note that it is up to the application developer whether to override the Open Adaptors, or

implement their functionality within the application. Whichever the choice, the aggregated

interfaces provided by the Adaptors, and the Application, must always amount to a complete

interface. The routing of external calls to the adequate implementing component will be handled

by the dispatchers, described in Section 4 and in further detail in Section 7.3.

6.1.1. INTERFACE DESIGN PHILOSPHY

The Open Interfaces are implemented using XML-RPC, an application independent Remote

Procedure Call mechanism based on XML, which takes a method name and any number of

name/value pairs as parameters.

In order to simplify the implementation of the interfaces, we have strived for a minimalistic

approach, with no method overloading and a minimal set of parameters. The complete listing of

methods can be found in appendixes A and B for the Open Client and Open Server interfaces

respectively.

The complexity needed for the platform, therefore, has been transferred to the Data Types that

form the parameters. Appendix C has a complete listing of object types.

Because certain clients can not listen for Client interface methods, the Open Dispatchers support

a polling mode. This, however, means that the Server components will not get a reply until the

next polling cycle: to avoid unnecessary blocks, all Open Client interface methods must be

asynchronous. This results in a number of Open Server methods which are in fact the Callback of

their Open Client counterparts.

6.1.2. ENSURING DATA CONSISTENCY

All running components, applications and a number of other information, is kept at the Open

Server. For example each application has an associated Application object, which contains

information such as the components that form the application. On occasion, said objects might

be sent over to the Open Client, where they might be changed. It is therefore important to keep

track of the changes and ensure synchronization of the instances of the object.

To achieve this, we have determined that objects may, in general, be modified only at the Open

Server Orchestrator component. When client side processing is required, a method is used to

send the object to the Client. Likewise a corresponding callback method receives the modified

object. The Open Server must therefore relinquish its lock on the object from the moment it’s

sent out, until it is returned. In doing so, we can guarantee that the Object will only exist at one

place at any given time.

6.1.3. INTERFACE OVERVIEW

The following listing provides the complete list of Open Interfaces; Instead of going into details

here, we would like to suggest that the reader learns about them in the context of the

ICT-Open Migration Service Platform Design

 Open Interfaces 18

component that implements them (see Section 7) or refers to the Appendixes in this document

for their parameter level descriptions.

Open Server Interface methods

Methods at the

Orchestrator

component and

ALR

String deviceID:: registerDevice(Device device)

String applicationID::registerApplication(Application application)

String componentID::registerComponent(Component compenent)

Boolean::unregsiterDevice(String deviceID)

Boolean::unregisterApp(String applicationID)

Boolean::unregisterComponent (String componentID)

Device[]::getDevicesSupporting(String[] componentID)

void::runningStatusSet (String componentID, String runningStatus)

void::ApplicationReconfigured(Boolean isReconfigured, String applicationID)

void::componentReconfigured(Component component)

boolean::triggerMigration(String targetDeviceID, String[] componentID)

void:: retrieveUI(String componentID)

void:: adaptedUISet(Boolean isUpdated, String componentID)

void::stateRetrieved (State state)

void::stateSet(Boolean isSet, String ComponentID)

Methods at the

Mobility Support

component

void::networkReconfigured(String deviceID, boolean isReconfigured)

boolean::registerNetworkConfiguration(String deviceID

Open Client Interface methods

Orchestrator

component and

Client Daemon

void::setRunningStatus (String componentID, String runningStatus)

void::reconfigureApplication (String applicationID, Configuration

configuration)

void::migrationTriggerAccepted(String sourceDeviceID, Boolean accepted)

boolean::reconfigureNetwork(String deviceID, NetworkConfiguration

networkConfiguration)

void::reconfigureComponent(Component component,

ConfigurationInstruction configurationInstruction)

void:: UIRetrieved(String ComponentID, UI ui)

void:: setAdaptedUI(UI ui, String componentID)

void::retrieveState (String componentID)

void::setState (String componentID, State state)

Mobility Support

component

boolean::reconfigureNetwork(String deviceID, NetworkConfiguration

networkConfiguration)

The following sections will detail the different components of the Open Server and Client.

ICT-Open

NOT TO FORGET:

� Open Client interfaces look the same regardless of the place where they are being

implemented. The functionality of an Open Server component,

be different (and probably complementary) to that of, for instance, the Adaptor

� All Open Client methods are asynchronous so they can support the polling mode at

the dispatchers.

� Object IDs are unique for an Open deployment

� Objects can only be modified by the Open Server Orchestrator, unless they have

been sent out (temporarily) to the client side, in which case the client owns the

modification lock.

Migration Service Platform Design

 Open Interfaces

Open Client interfaces look the same regardless of the place where they are being

implemented. The functionality of an Open Server component, however, is likely to

be different (and probably complementary) to that of, for instance, the Adaptor

All Open Client methods are asynchronous so they can support the polling mode at

the dispatchers.

Object IDs are unique for an Open deployment

only be modified by the Open Server Orchestrator, unless they have

been sent out (temporarily) to the client side, in which case the client owns the

modification lock.

Migration Service Platform Design

Open Interfaces 19

Open Client interfaces look the same regardless of the place where they are being

however, is likely to

be different (and probably complementary) to that of, for instance, the Adaptor

All Open Client methods are asynchronous so they can support the polling mode at

only be modified by the Open Server Orchestrator, unless they have

been sent out (temporarily) to the client side, in which case the client owns the

ICT-Open Migration Service Platform Design

 Open Platform components 20

7. OPEN PLATFORM COMPONENTS

7.1. OPEN SERVER COMPONENTS

7.1.1. CMF (CONTEXT MANAGEMENT NODE)

The Context Management Framework (CMF), described in (2) will provide the components and

applications with easy access to context information. The framework, originally developed in the

MAGNET Beyond project (3), and extended in OPEN, relies on a set of distributed Context Agents

to ensure that context information can be efficiently searched and distributed. Each Context

Agent has the capability of collecting local available context information through retrievers (small

specific software components that allow the context agent to interface to any arbitrary

information source). Furthermore, it also has local storage capability, additional processing of

information and the necessary communication means including scoping and other search

parameters to locate relevant information for the application. The framework supports both

synchronous and asynchronous access models, which are specified via the specific context access

query language.

At the server side, a Context Agent with a special role or configuration is located, namely as

Context Management Node. This role is special in a sense; it is acting as a central registry

repository for all available context information within a specific network domain. Therefore this

node has knowledge of all available context information, whereas clients (other Context Agents)

may need to ask this node for the location of other information. This role of the Context Agent is

setup through a configuration file as a part of the Migration Server configuration.

OPEN INTERFACES

The Context Management Framework does not directly implement Open interfaces. It is a

support component providing context information, which is accessed using platform internal

methods, specially by the Trigger Management and Application Logic Reconfiguration (ALR)

components.

INTERNAL INTERFACES

The CMF interacts with applications via XML-RPC calls, whereas the XML is describing the used

query language CALA (Context Access Language). This language has several basic types of queries:

• Query for information

• Subscribe to information / unsubscribe

o Periodic update of information with specified update intervals

o Event driven updates, i.e. whenever the information changes value larger than

some specified level

ICT-Open Migration Service Platform Design

 Open Platform components 21

• Insert / Update / Delete information in the CMF storage

Besides these core parts of a query, additional parameters can be needed, namely to 1) scope the

query, i.e. how local is the query supposed to be (node local, network local, global, etc..) and 2) if

there are any options to the query, this can be specified, e.g. security parameters. An example for

a simple request query could be

<cala xmlns="http://nle.nec.de/CMF" >

<query>

 <entityIdentifierSelector>

 <hasIdentifier>Display1</hasIdentifier>

 <entityType>PublicDisplay</entityType>

 <attributeName>nearbyPerson</attributeName>

 </entityIdentifierSelector>

 <scope>

 <networkScope>NODE</networkScope>

 </scope>

 </query>

</cala>

At the transport level, XML-RPC is a well known protocol that transports method signatures

(including parameters) and their responses using XML over HTTP.

The specific content of the messages is detailed in the CMF Tutorial (4) presented to the

consortium in March 2009. For illustration purposes, we provide here a possible response to the

prior query:

 <cala xmlns="http://nle.nec.de/CMF" >

 <queryResponse>

 <entities>

 <entity>

 <hasIdentifier>Display1</hasIdentifier>

 <entityType>PublicDisplay</entityType>

 <attribute>

 <name>nearbyPerson</name>

 <type>string</type>

 <value><string>Laura</string></value>

 <metadata>

 <name>timestamp</name>

 <type>MetaData</type>

 <value><string>1216739890695</string></value>

 </metadata>

 </attribute>

 </entity>

 </entities>

 </queryResponse>

</cala>

Abstracting the XML-RPC into method signatures, one can see the CMF interface as follows:

ICT-Open Migration Service Platform Design

 Open Platform components 22

QueryResponse:Query(Selector, Scope)

Selector An xml element detailing at least the type and attributes to be queried

Scope Whether the query is limited to this Context Agent, or also to those

attached to it

Returns: A QueryResponse object with a list of entities

Query for Context Information on a given entity or entity type

GID::Subscribe(Selector, SubscriptionCondition, Scope)

Selector An xml element detailing at least the type and attributes to be queried

SubscriptionCondition Specifies the circumstances that should trigger a notification on new

context

Scope Whether the query is limited to this Context Agent, or also to those

attached to it

Returns: A Global Subscription Identifier which can be used to track the

subscription and link to the received notifications

Subscribe to context information.

Void::Insert(Entity[], Scope)

Entity[] A list of entities that need to be inserted

Scope Whether the entities should be inserted in all the nodes or just on this

context agent

Returns: Void

This method is used to insert information into the Storage component of the Context Agent. The

information can later be retrieved as if it were standard context

Void::Update(Selector, Attribute[], Scope)

Selector An xml element detailing at least the type and attributes to be updated

Attribute[] The list of attributes to be updated

Scope Whether the entities to be updated are those in all the nodes or just on this

context agent

Returns: Void

This method updates the attributes of entities already present in the CMF

Void::Delete(Entity[], Scope)

Entity[] The list of entities to be deleted

Scope Whether the entities to be deleted are those in all the nodes or just on this

context agent

Returns: Void

This method updates the attributes of entities already present in the CMF

ICT-Open

We would like to refer the reader to

can be arranged.

INTERACTIONS

The CMF interacts with many different

information as needed. The interesting part for the CMF, however, is how this information gets

into the system. Here, this is done mainly through retriever components which are small

software components responsible for interacting with the data source itself.

Since the CMF also has the capability of providing inferred (non

which may need externally obtained information, the CMF may need to set subscriptions or

query to other Context Agents in the network. This will appear as if any other application

triggered a CALA query, and hence the configuration of the processing part of the CMF for this

purpose is similar to specifying any CALA query.

Figure 11 Different interaction patterns between a Context

The different approaches of interaction are as shown in

an XML-formatted CALA query as parameter as input is shown from ClientComponentA. A

response in terms of an <Entity> list is returned.

Migration Service Platform Design

 Open Platform components

We would like to refer the reader to (4) for further details; If needed, a dedicated CMF tutorial

The CMF interacts with many different components in the OPEN system, as it provides general

information as needed. The interesting part for the CMF, however, is how this information gets

into the system. Here, this is done mainly through retriever components which are small

responsible for interacting with the data source itself.

Since the CMF also has the capability of providing inferred (non-measurable) context information

which may need externally obtained information, the CMF may need to set subscriptions or

er Context Agents in the network. This will appear as if any other application

triggered a CALA query, and hence the configuration of the processing part of the CMF for this

purpose is similar to specifying any CALA query.

Different interaction patterns between a Context Agent and different components

The different approaches of interaction are as shown in Figure 11, with at the top a Query using

formatted CALA query as parameter as input is shown from ClientComponentA. A

response in terms of an <Entity> list is returned.

Migration Service Platform Design

Open Platform components 23

for further details; If needed, a dedicated CMF tutorial

components in the OPEN system, as it provides general

information as needed. The interesting part for the CMF, however, is how this information gets

into the system. Here, this is done mainly through retriever components which are small

measurable) context information

which may need externally obtained information, the CMF may need to set subscriptions or

er Context Agents in the network. This will appear as if any other application

triggered a CALA query, and hence the configuration of the processing part of the CMF for this

Agent and different components.

top a Query using

formatted CALA query as parameter as input is shown from ClientComponentA. A

ICT-Open Migration Service Platform Design

 Open Platform components 24

Following this, an example of subscription interaction from ClientComponentB is shown, which

initially consists of a subscription request with the CALA subscription query and callback

information as input. A global subscription ID is returned if successful. Then on events (either a

timeout for periodic update, or a change in context information for event driven updates) a

notification with the latest value is sent to the subscribing component via the callback

information provided. Finally, the client component can cancel the subscription by using an

unsubscribe call with the global ID provided earlier, and an acknowledge is returned if

successfully unsubscribed.

7.1.2. MIGRATION ORCHESTRATION

The Migration Orchestration is the module that coordinates the various phases of the migration.

It manages two kinds of migration: local applications migration and web applications migrations.

Moreover, a support for partial migration is offered.

OPEN INTERFACES

The Orchestrator makes up the majority of the Open Server and Client interface methods, since

it’s the communication hub for all migration operations. Open Components, especially Trigger

Management, may use the following Open Server methods to trigger a migration. The following

table covers the whole set of methods:

Open Server

methods at the

Orchestrator

component

String deviceID:: registerDevice(Device device)

String applicationID::registerApplication(Application application)

String componentID::registerComponent(Component compenent)

Boolean::unregsiterDevice(String deviceID)

Boolean::unregisterApp(String applicationID)

Boolean::unregisterComponent (String componentID)

Device[]::getDevicesSupporting(String[] componentID)

void::runningStatusSet (String componentID, String runningStatus)

void::ApplicationReconfigured(Boolean isReconfigured, String applicationID)

void::componentReconfigured(Component component)

boolean::triggerMigration(String targetDeviceID, String[] componentID)

void:: retrieveUI(String componentID)

void:: adaptedUISet(Boolean isUpdated, String componentID)

void::stateRetrieved (State state)

void::stateSet(Boolean isSet, String ComponentID)

Similarly, applications and Open Client orchestrators may expect the following methods to be

called on them:

Open Client

methods at the

Orchestrator

component

void::setRunningStatus (String componentID, String runningStatus)

void::reconfigureApplication (String applicationID, Configuration

configuration)

void::migrationTriggerAccepted(String sourceDeviceID, Boolean accepted)

ICT-Open Migration Service Platform Design

 Open Platform components 25

boolean::reconfigureNetwork(String deviceID, NetworkConfiguration

networkConfiguration)

void::reconfigureComponent(Component component,

ConfigurationInstruction configurationInstruction)

void:: UIRetrieved(String ComponentID, UI ui)

void:: setAdaptedUI(UI ui, String componentID)

void::retrieveState (String componentID)

void::setState (String componentID, State state)

Further details on these methods can be found in appendixes A and B.

INTERACTIONS

Figure 12 illustrates the migration of a component from one device to another. While the specific

methods are detailed in the appendixes, the value of this sequence diagram lies in the order of

the events that occur in it.

After an initial registration phase, the source Open Client (OC) requests the available devices

where it could migrate its components, based on the required capabilities.

Be it through a manual selection or a trigger from the Trigger Management, the OC decides to

migrate one of its components, and does so by calling triggerMigration on the Open Server.

At this point, the component is launched in the target device, and paused in the source. The state

from the source components is then extracted, and injected into the target components.

Upon completing this step, the source component is terminated, and the target one is started.

After some final cleanup, the migration of the components has concluded.

For further examples on the migration process, please refer to Section 8 which exemplifies

sample migrations using the applications being developed in Open’s WP5.

ICT-Open Migration Service Platform Design

 Open Platform components 26

Figure 12 Message sequence diagram for the migration of an application with two components

7.1.3. STATE HANDLER

The State Handler component is responsible for handling the state information from applications.

It does not deal with the state information internals, which it treats as a data “blob”, but rather

concerns itself with transporting it between applications which are in the process of migrating.

ICT-Open Migration Service Platform Design

 Open Platform components 27

Depending on the specific type of applications, the State Handler can take on different forms. We

would like to highlight the special case of Web pages, where state is extracted (on the client side)

using an injected JavaScript piece of code within the application, aimed at annotating the

application in order to capture the current state of the application at the time when a migration

is triggered. Then, this state information is handled by the Web State Handler module (on the

server side) which is responsible to map it onto the user interface provided on the target device,

so that the interaction can continue in a seamless way (from the user’s point of view) on this new

device. The Web State Handler component saves information like cookies and session_ID, as well

as all the data provided/modified by the user while visiting the page. Indeed, starting from a web

address, an HTTP request is sent (through a URLConnection) and the requested page is then

saved. Then, the HTTP response is analysed in order to identify the existing cookies and any

possible session_id existing in the querystring. From this point onward any request sent to that

application server will contain the saved information.

The functionalities that this module provides are basically two:

• The first one is getting the user interface of the application to be migrated. This

functionality can specify the application components to be migrated

• The second functionality is mapping onto/adapting for the target device UI the

information that the user has included in the version of the page which was last

visualized before migrating.

An example of how the Web State Handler is involved within a migration of a web application is

described in Section 8.1

OPEN INTERFACES

The Web State Handler module is only accessed by the Orchestrator on the Open Server, which

needs to support the appropriate handler for each application type (e.g. web, desktop, etc…). It

therefore does not have any Open interface methods, or rather, it mirrors those offered by the

Orchestrator in what relates to state.

INTERNAL INTERFACES

The first interface that Web State Handler module offers to the Open Server Orchestrator is the

getUI method. This allows for getting the UI for a specified set of components that are

considered for migration. A description of the method follows:

UI::getUI (String[] componentID, String callback)

componentID[] The components to migrate

callback Optional parameter. If it is missing then the request will be synchronous

Returns: The user interface for the specified components

This method is called by the OS Orchestrator Request to get the UI for the specified components (

the callback parameter is optional, if it is missing then the request will be done synchronously).

The second interface that Web State Handler module offers to the Open Server Orchestrator is

the setStateByServer method. This is aimed at adapting the state information with the interactive

ICT-Open Migration Service Platform Design

 Open Platform components 28

application, taking into account the characteristics of the new device. A description of the

method follows:

UI::setStatebyServer(State[] states, UI logicalUIDescr)

states The state of the various components, that has to be mapped. It basically

contains the mappings between state and target components.

logicalUIDescr The logical user interface description (at the concrete level)

Returns: A logical user interface description (at the concrete abstraction level) for

the target device, updated through the state information.

This method allows for updating the concrete UI description for the target device through the

state information.

7.1.4. TRIGGER MANAGEMENT

The Trigger Management component is responsible for prompting the migration orchestration

component to initiate a migration. In a sense, this module behaves as a classifier that chooses

when the states of the devices, the networks and the application should be changed in order to

start a migration. It also suggests to which state the individual configurations should be changed.

Such a classifier takes its decisions based on the application’s semantically described

characteristics, the situation of the user, and the situation of the devices involved in the

migration and properties of the underlying network. In most circumstances, said information can

be derived from context retrievers, using the context management framework, and from the

knowledge derived from the lower network layers using the performance monitoring component

– potentially also through the context management framework.

A detailed illustration of the components relevant for the trigger management is seen in Figure

13.

Figure 13: General interface specification for the trigger management module

ICT-Open Migration Service Platform Design

 Open Platform components 29

OPEN INTERFACES

The Trigger Management is an essentially active component. By monitoring the current situation,

it may decide to call the triggerMigration method on the Orchestration component, thus

initiating a migration. It therefore does not offer any interface, but behaves purely as a client.

In further detail, the situation monitoring will be based on collecting:

• Registration of application configurations: Takes a list of application component

identifiers coupled with technological requirements to the run-time platform (such as

javascript, flash, 3D-library, …), and QoS requirements to device and network in case of

communication with other peers

• Registration of network configurations

o Connectivity configurations: Takes a list of connectivity option identifiers

characterized by relevant performance and reliability parameters

o Performance measurements: Takes as input relevant dynamic network

properties from current network topology and traffic

o QoS configurations: Takes as input a list of QoS option identifiers characterized

by relevant performance and reliability parameters

INTERACTIONS

Figure 14 shows an example of an automatic migration trigger interacting with migration

orchestration functions and mobility support functions. The Open Client (OC) at the source, is

receiving data from an Application Server. As the network conditions change, an automatic

migration trigger is generated that points the application server to feed the data (e.g. a video

stream) to a different component, potentially in a different device.

In a real world situation, this example could represent a scenario where a user watches a video

on his mobile phone. As QoS drops due to lack of coverage as the user moves, the system might

trigger the migration, making the video available on the car built-in TV, which has a better

network link at the moment.

ICT-Open Migration Service Platform Design

 Open Platform components 30

Figure 14 Message Sequence Diagram showing the automatic trigger for the migration of a server side data source

7.1.5. POLICY ENFORCEMENT

The policy enforcement component verifies if a migration proposed by the Trigger Management

is possible according to a set of rules. The rules may be matched against the current situation,

not unlike in the case of the Trigger Management. The Policy Enforcement module, however,

does not make recommendations on migrations, but rather allows or forbids them.

OPEN INTERFACES

The Policy Enforcement module is only accessed by the Orchestrator on the Open Server. As

such, it is not a public component, and therefore does not implement any of the Open Interface

methods.

INTERNAL INTERFACES

The Policy Enforcement module offers an interface to the Open Server Orchestrator:

allowMigration. This provides the PDP (Policy Decision Point) functionality that the module is

responsible for. A description of the method follows:

ICT-Open Migration Service Platform Design

 Open Platform components 31

bool::allowMigration (String[] componentID)

componentID[] The components to migrate

targetDeviceID The migration target

Returns: A Boolean determining if the migration is allowed or not

This method is called by the Trigger Management component before sending a migration trigger

to the Migration Orchestrator. It returns true, if it is possible to perform the migration, false if it

is not possible (for example for some privacy requirements).

INTERACTIONS

This component interacts with the Context Management Framework, in order to retrieve the

needed data, and responds to the Open Server Orchestrator on migration decisions.

7.1.6. MOBILITY SUPPORT (SERVER SIDE)

The primary goal of the mobility support function is to make mobility transparent to other

functions. These functions can be either within the OPEN platform or in the application. The

mobility supports function has to hide any mobility during migration and still allow for continuity.

Several mobility methods were introduced in (2): NAT, Mobile IP, SCTP and SIP. Deciding the

method used in the mobility process is not a trivial decision because involves the current

situation at the source device. Which applications are currently running? Which one should I

migrate? Will there be consequences for the rest if I change the IP? Etc.

There is no optimal solution applicable in all the cases meaning it will be a task of the mobility

support function to evaluate the scenario conditions at each moment and decide which is going

to be the most suitable method to perform the mobility with absolute transparency.

For example, if the user is running only one application and wants to migrate it, mobility support

could choose NAT as a method since the change of IP in the source device will not affect other

applications because they do not exist. On the contrary, if the user is using different applications

and only wants to migrate one of them, methods affecting IP addresses would not be a good

solution because the connectivity in the other applications will be affected.

Another task that belongs to the mobility support function is updating the CMF with relevant

information related to available networks for each client and its characteristics/performance.

This task is introduced in the client side components.

Figure 15 depicts in detail all the mobile support interactions within OPEN Platform.

ICT-Open Migration Service Platform Design

 Open Platform components 32

Figure 15 Mobility support interactions within the OPEN Platform

OPEN INTERFACES

The Mobility Support component may call on its correspondent adaptor, or on the application to

reconfigure a certain network connection using the following method:

Open Client

methods at the

Mobility Support

component

boolean::reconfigureNetwork(String deviceID, NetworkConfiguration

networkConfiguration)

Likewise, client side components will keep the Mobility Support component updated on network

availability by registering their network connections and reporting on the effect of changes

triggered by the server, using the following methods:

Open Server

methods at the

Mobility Support

component

void::networkReconfigured(String deviceID, boolean isReconfigured)

boolean::registerNetworkConfiguration(String deviceID)

As usual, the details of these methods can be found in appendixes A and B.

INTERACTIONS

ICT-Open Migration Service Platform Design

 Open Platform components 33

In its basic functionality, the Mobility Support component will trigger the reconfiguration of

networks in straightforward migrations. It will instruct both ends of the migration on what

connections to shut down, and which ones to establish.

As development progresses, we envision the mobility support not only as a passive function but

also as information provider. Specifically, it will provide information related to the networks

availability and performance to Context Access Manager. This information will be sent either

periodically/event based or after receiving a query from the Context Access Manager. Next,

Figure 16 to Figure 18 shows an example scenario and Figure 19 shows its sequence diagram

respectively.

Figure 16 Scenario A description

ICT-Open Migration Service Platform Design

 Open Platform components 34

8
0
2
.1
1
n

Figure 17 Scenario B description

Figure 18 Scenario C description

ICT-Open Migration Service Platform Design

 Open Platform components 35

Figure 19 Network Information Provision sequence diagram. (Event-based model)

7.1.7. UI ADAPTATION (WEB)

UI Adaptation, on the Open server side, refers to the adaptation of Web User Interfaces, and is

complementary to the adaptation of Java interfaces presented in Section 7.2.3.

This module, implemented in Java, generates a logical description of the UI rendered on the

source device and transforms this description into a new UI adapted for the target device. This

module exposes the following functionalities: one is aimed at building a Concrete User Interface

(CUI); the other one gets the CUI for the source device and generates an adapted CUI for the

target device. Another functionality/interface that is provided by this component is that of

generating the final UI for the concerned platform.

OPEN INTERFACES

This component provides Web specific solutions for the retrieval of User Interface and state

information from web pages. This functionality, however, is exposed by the Orchestrator, and

therefore no Open interface methods are directly implemented.

INTERNAL INTERFACES

As explained in the previous section, the following methods are provided internally by the Web

UI Adaptation module, mirroring those offered by the orchestrator, which are part of the Open

interface (Appendix B contains more details on these interfaces)

ICT-Open Migration Service Platform Design

 Open Platform components 36

Open Server methods

offered internally at the

Web UI Adaptation

component

void:: retrieveUI(String componentID)

void:: adaptedUISet(Boolean isUpdated, String componentID)

void::retrieveState (String componentID)

void::setState (String componentID, State state)

INTERACTIONS

This module does not call any method/function of other modules. Section 8.1, however, provides

an interesting example of a full migration that involves the Web UI adaptation.

7.1.8. APPLICATION LOGIC RECONFIGURATION (ALR)

The server side Application logic reconfiguration module (ALR) supports applications by the

dynamic adaptation of the application logic to their specific needs in constantly changing

situations. At this, an application is divided into two parts, namely the reconfigurable application

logic, and the rest of the application which could be among others static application logic and the

User Interface. The ALR module is responsible for the adaptation of the reconfigurable part of the

application logic. At this, we offer two types of adaptation like introduced in deliverable (5),

namely the change of the wiring between components and the adaptation of their behavior. To

perform these tasks, several interactions between the reconfigurable application logic on the

client side and the ALR module on server side are required. For this, the application logic

components have to implement the OPEN Client Interface directly, or by using a proxy or an

adapter. On the other hand, the ALR module implements methods of the OPEN Server Interface

to let the application interact with the platform. The ALR-related methods of both interfaces will

be explained in the following.

The communication between the reconfigurable application logic part and the rest of the

application can be done using an arbitrary protocol, like Web Services (PacMan prototype) or

JSON over HTTP (Emergency Scenario prototype).

OPEN INTERFACES

The ALR may call on the following methods from an application or client side component:

Open Client

methods at the

ALR component

void::setRunningStatus (String componentID, String runningStatus)

void::reconfigureApplication (String applicationID, Configuration

configuration)

void::reconfigureComponent(Component component,

ConfigurationInstruction configurationInstruction)

And therefore, expects replies on the corresponding asynchronous interfaces:

The ALR module works on the following methods (further explained in appendixes A and B.)

Open Server

methods at the

void::runningStatusSet (String componentID, String runningStatus)

void::ApplicationReconfigured(Boolean isReconfigured, String applicationID)

ICT-Open Migration Service Platform Design

 Open Platform components 37

ALR component void::componentReconfigured(Component component)

In summary, if a component of the application logic has to be reconfigurable, it has to implement

these three methods of the Open Client accordingly. If a component of the application logic is not

able to implement these methods directly, a dispatcher can be used which takes the calls from

the ALR module and forwards the call to the right component. Thus, the concept presented here

enables the developer to implement the application logic in the preferred programming

language, as long as the ALR method can call methods at the components, directly or by using a

wrapper.

INTERACTIONS

The diagram in Figure 20 shows a typical reconfiguration, where, once the components have

been registered, the application decides to reconfigure one of the components by first stopping

it, then reconfiguring it, and finally restarting it.

Figure 20 Reconfiguration of a component’s behavior initiated and controlled by the ALR module on server side. The

reconfigTrigger can be a migration or change of context of one or more components.

ICT-Open Migration Service Platform Design

 Open Platform components 38

7.2. OPEN ADAPTORS IN THE OPEN CLIENT

7.2.1. CMF (CONTEXT AGENT)

The CMF on the client side is also a Context Agent, hence has same basic capabilities as the

server side Context Agent. The difference, however, is the role of this Context Agent, which is

only to retrieve local context, and to provide locators of this information to the CMN (Context

Management Node, i.e. the server side Context Agent) for later lookup. Except for that, the

interaction and interfaces to the agent on the client side as seen from an application or

component view, is identical to what has previous explained in section 7.1.1.

7.2.2. MOBILITY SUPPORT (CLIENT SIDE)

Different kinds of mobility were introduced in (2): personal, referred to the ability to reach a

mobile user through devices currently available to the user; terminal, when a device is reachable

by a correspondent node while moving between networks; session, when user sessions can be

maintained while moving between terminals; and finally service, when the device is changed

without affecting the access to the same services. Service mobility combined with session

mobility is called service migration.

In OPEN, mobility means that components of the application, providing the service to the user,

moves during the service session. In general the moving components can be located both server-

side and client-side in the communicating application, but in OPEN we only consider client-side

components in the first year version. Thus, the mobility type to be supported in the platform is

service mobility.

The mobility support function at the client side consists of a simple passive module that interacts

with the mobility support function at the server side (Figure 21). The mobility support function

main goal is to provide service mobility to the rest of functions in a transparent way.

Apart from providing transparent mobility, subsequent stages envision the client mobility

support function as the way of providing all the information related to networks to the mobility

support server side. This information will basically consist of the available networks for each

device, characteristics and performance. Therefore, aspects like estimating the QoS of the

applications in the target device can be managed.

Thus, summarizing, there will be interaction between all the mobility support modules at the

client side and the mobility support function at the server side. This last one will group all the

information provided for all the clients and will send it to the Context Access Manager using a

retriever.

ICT-Open Migration Service Platform Design

 Open Platform components 39

Figure 21 Mobility support server-client side interaction

The interfaces of the Mobility Support module match those in the server side, and implement the

Open Client and Open Server interfaces where appropriate. Please refer back to section 7.1.6 for

further details.

INTERACTIONS

The mobility support function at the client side must interact with the mobility support function

at the server side by sending network information updates. These updates will initially consist of

a list of available networks and its characteristics: type of network, bandwidth, delay, jitter,

congestion alarms and restricted ports. The list of restricted ports could be useful information

since some application initially running in a network can be blocked by firewalls after migration

into a new different network.

All these information will be forwarded to the Context Access Manager by using the

correspondent retriever as shown in Figure 21.

WEB APPLICATION LOGIC RECONFIGURATION

Web Application Logic reconfiguration has certain peculiarities that warrant further in-depth

explanation.

A web application is able to dynamically update its logic, which is separated from the user

interface. The Application Logic Reconfiguration (ALR) is responsible for keeping up to date with

the logic of the application based on the current contextual state.

Application Logic components, implemented as web services, register to the ALR and allow the

web application to get the updated logic configuration according to the current state. As an

example, whenever a ghost of the Pacman game has to choose one among many possible

directions (i.e.: it is over a crossing), the web application asks the ALR for the new direction of the

ICT-Open Migration Service Platform Design

 Open Platform components 40

ghost. This is done by calling a specific web service and by passing to it all the information

needed by the ALR to compute the new ghost direction. Information to be passed may include

(but not be limited to) the position of the pacman and of all the ghosts.

newValue::getNewParameterValue(currentApplicationState)

currentApplicationState the value of the set of parameters defining the application state. In

practice, this would be a set of strings and/or integers to be passed as

parameters to the web service, or even a single string encoding the

whole application state.

Returns: the new value of the requested parameter computed by the ALR

according to the input application state.

Creates the GUI components according to the layout specified in the XML file that contains the

concrete GUI description for the respective device.

7.2.3. UI ADAPTATION FOR DESKTOP APPLICATIONS

By using the Open Client Adaptors, Desktop (i.e., non-web) applications can adapt their user

interface to the enhanced possibilities of Multicore devices. This type of adaptation is disjoint

from the one performed for Web pages, presented in Section 7.1.7.

The UI Adaptation adaptor of the OPEN platform handles the task of generating an adapted GUI

of a Java application according to the capabilities and characteristics of the target device. In order

to use this module, the application programmer has to specify an XML description of the GUI

layout of the application. During the application migration process this XML description is fed to a

sub-system of the Web (non-Generic) UI Adaptation component (see section 2.2.6), which will

transform it to an adapted XML description that takes the characteristics of the target device into

account. The migrated application on the target device can then use this adapted description to

re-build the GUI.

Instead of hard-coding the creation of GUI widgets in the Java source code, the developer has to

use a Java library that is provided by the Generic UI Adaptation module: This package parses the

XML GUI description and creates the corresponding GUI widgets on the fly (e.g. at application

start-up time). Furthermore it will hand back a (possibly hierarchical) data structure that allows

the programmer to access the created GUI components from the application logic code.

LOW-LEVEL INTERFACES

The Desktop UI adaptation operates through the use of Java libraries linked to lower-level, C

applications that exploit the multicore capabilities. Java applications can use the following

method to adapt their interface:

GUIInfo::createGUI(ConcreteGUIDescXML GUIInfo)

ConcreteGUIDescXML An XML file that contains the concrete GUI description for the respective

ICT-Open Migration Service Platform Design

 Open Platform components 41

device.

GUIInfo This data structure maps identifiers (name strings or IDs) to references

to the created GUI components (like buttons, labels, etc.). This allows

the application logic code to access the created GUI widgets.

Returns: Void

Creates the GUI components according to the layout specified in the XML file that contains the

concrete GUI description for the respective device.

7.2.4. OPEN CLIENT DAEMON WITH UI

This module represents the Open Client running on the user mobile device. It includes the Device

Selection Map, formerly Discovery Map, which supports the discovery of available devices

The Open Client Daemon is written in C# and deployed on the user device, while the Context

Agent (also deployed on the user’s device) is defined by a set of Java classes. Thus, for integrating

the Open Client and the SCMF (i.e.: to enable interaction between the two modules), a

lightweight Java Virtual Machine suitable for PDAs (Mysaifu JVM) has been exploited.

The strategy that seems, so far, the most efficient is explained in the following.

The Context Agent is started whenever the Open Client is launched. It is the Open Client that

creates an instance of JVM for executing the main class of the Context Agent (i.e.: the

ContextAgent.class of the de.nec.nle.contextagent package).

In detail, the C# code for launching the JVM is the following:

Process contextAgentProcess;

string ca_logFileName = "ca_log.txt";

string jvmExecutable = "\\Programs\\Mysaifu JVM\\jre\\bin\\jvm.exe";

string jvmPar = " -cp \"\\SCMF\\lib.jar;\\SCMF\\external.jar;\\SCMF\\;\"

-Xmx10M -Xlogfile:" + ca_logFileName +

" de.nec.nle.contextagent.ContextAgent \\SCMF\\CMN.xml";

contextAgentProcess = System.Diagnostics.Process.Start(jvmExecutable, jvmPar);

ICT-Open Migration Service Platform Design

 Open Platform components 42

Figure 22 Client Daemon interaction with the CMF

By holding the contextAgentProcess reference it is possible to close the JVM from C#

environment. The Context Agent might not be running for an unlimited time. Thus, on closing the

Open Client, contextAgentProcess.Kill() is executed.

The Migration Client also opens and continuously shares the output stream of the JVM for

getting the state of the Context Agent (i.e.: to know whether it is running). This is done by

opening the log file of the JVM console in “read only” way:

FileStream fs = File.Open(ca_logFileName, FileMode.Open,

FileAccess.Read, FileShare.ReadWrite);

OPEN INTERFACES

The Open Client Daemon implements parts of the Open Client Orchestrator functionality to

handle migrations. This is specially the case for web applications: using the Open platform, scripts

are injected into the page to retrieve state, and indeed, the UI is adapted to the target device.

The interface, however, is never enriched with migration controls to preserve the page contents,

and therefore a separate UI is needed. Additionally, the Open Client Daemon can be used for

device selection, and to trigger manual migrations.

The Open interfaces provided by this adaptor are, therefore, those of the Orchestrator, as

explained in Section 7.1.2.

INTERACTIONS

The following diagram (Figure 23) shows how the Open Client Daemon is used to trigger a

migration of a component.

ContextAgent.class

ICT-Open

Figure 23 Sequence diagram of the manual migration trigger with respect to the Open Client Daemon.

The steps depicted therein are as follows:

1. The Open Client Daemon (in the following: OC) of the source device, after being started,

sends a CALA query to the CMF asking for the list of currently available devices (i.e.:

candidate target devices for migration)

2. The source OC subscribes for new available devices (in order to be notified whenever a

potential target device joins the smart environment)

3. A new target device joins the smart environment: the target OC sends an insert to the CMF

specifying its parameters (that are embedded in the CALA string and that depend on the

entity format)

4. As soon as the new target device has joint, the CMF notifies the subscr

5. The user of the source OC (who is interested in migrating one or more component towards

the new target device) selects the target device in the OC interface and requests migration.

The manual trigger is initially sent to the OS (since the

address of the target OC)

6. The OS, which is aware of the actual address of the target OC, sends an incoming migration

request message to the target OC

Migration Service Platform Design

 Open Platform components

Sequence diagram of the manual migration trigger with respect to the Open Client Daemon.

The steps depicted therein are as follows:

The Open Client Daemon (in the following: OC) of the source device, after being started,

to the CMF asking for the list of currently available devices (i.e.:

candidate target devices for migration)

The source OC subscribes for new available devices (in order to be notified whenever a

potential target device joins the smart environment)

arget device joins the smart environment: the target OC sends an insert to the CMF

specifying its parameters (that are embedded in the CALA string and that depend on the

As soon as the new target device has joint, the CMF notifies the subscriber (source OC).

The user of the source OC (who is interested in migrating one or more component towards

the new target device) selects the target device in the OC interface and requests migration.

The manual trigger is initially sent to the OS (since the source OC should not know the IP

address of the target OC)

The OS, which is aware of the actual address of the target OC, sends an incoming migration

request message to the target OC

Migration Service Platform Design

Open Platform components 43

Sequence diagram of the manual migration trigger with respect to the Open Client Daemon.

The Open Client Daemon (in the following: OC) of the source device, after being started,

to the CMF asking for the list of currently available devices (i.e.:

The source OC subscribes for new available devices (in order to be notified whenever a

arget device joins the smart environment: the target OC sends an insert to the CMF

specifying its parameters (that are embedded in the CALA string and that depend on the

iber (source OC).

The user of the source OC (who is interested in migrating one or more component towards

the new target device) selects the target device in the OC interface and requests migration.

source OC should not know the IP

The OS, which is aware of the actual address of the target OC, sends an incoming migration

ICT-Open Migration Service Platform Design

 Open Platform components 44

7. When the target OC accepts the incoming migration request, a feedback message is sent to

the source OC

8. A launch message is sent to the target OC in order to start the adapted (parts of) migrated

application

Note that, even if the CMF is shown in the sequence diagram as a separate entity, it is actually a

distributed system. The CMF lies in the Open Server (as Context Management Node – CMN) as

well as in each OC (as Context Agent – CA). Thus, whenever a OC needs to forward or to retrieve

data, it just “contacts” the local interface (CA) that manages the synchronization with the server

(CMN).

7.2.5. MIGRATION ORCHESTRATOR CLIENT

This component manages applications migrations on the OPEN client side. In our prototypes, it

will be merged with the Open Client Daemon, which offers the same interfaces. Further details

can be found in Section 7.1.2

7.2.6. WEB STATE HANDLER (CLIENT SIDE)

This module (which is a JavaScript component) manages the application state on the OPEN client

side. Basically, it has to check if a manual migration has been triggered and, whenever a

migration request is received, it captures the state of the page and sends this state to the

Orchestrator. Then, the Web State Handler (server side) will manipulate such information in

order to deliver an adapted state that will be used for providing the new application that will be

uploaded on the target device.

ICT-Open Migration Service Platform Design

 Open Platform components 45

7.3. DISPATCHERS

Dispatchers have already been introduced in Section 4. This section provides further insight in

how components may use them to communicate.

Notice that, because of the choices in interface design, there is only one dispatcher

implementation, which can be deployed in multiple points of the platform, as shown in Figure 7

(page 11). Said dispatcher will always present an Open Client interface to the Client side, and a

Server one to the server side.

OPEN INTERFACES

Dispatchers are unique in that they expose the complete Open Interface. Far from complexity

reasons, this is due to their proxy nature: every component in the Open platform will talk to a

Dispatcher, which will handle the proper routing of the messages, regardless of whether that is:

• Towards the right component that it proxies for

• Between the Open Server and an Open Client

In both cases, it will rely on the Mobility Support module to detect changes in network

infrastructure.

INTERNAL INTERFACES

Beyond the Open interfaces, the dispatcher components need to offer the methods required to

register and de-register components, so it can keep track of where incoming messages should be

routed. To this effect, the following interfaces are used:

String::registerListeningOpenComponent(String openComponent, URL endpoint)

openComponent The type of component that is being registered (e.g. orchestrator, ALR)

endpoint The URL of the XML-RPC endpoint where messages should be sent

Returns: A String representing the registrationID, which can be used to get pending

requests or unregister

This method is called by an Open Client or Server component, as well as by applications, to

register their functionality at the appropriate Dispatcher. In doing so, the Dispatcher will bind the

methods associated to the component to the provided endpoint. For instance, once this call is

done, all incoming “triggerMigration” calls will be forwarded to the endpoint registered for the

“Orchestrator” component

String::registerPollingOpenComponent(String openComponent)

openComponent The type of component that is being registered (e.g. orchestrator, ALR)

Returns: A String representing the registrationID, which can be used to get pending

requests or unregister

ICT-Open Migration Service Platform Design

 Open Platform components 46

This method is called by an Open Client or Server component, as well as by applications, to

register their functionality at the appropriate Dispatcher. In doing so, the Dispatcher will know

that a component is available to satisfy the given methods, and that it will poll the dispatcher to

get pending requests at regular intervals.

void::unregisterOpenComponent(String registrationID)

registrationID The registrationID returned by the either of the registration methods

Returns: Void

This method is called by an Open Client or Server component, as well as by applications, to

announce to the dispatcher that they do no longer support the methods associated to the

component type.

Additionally, when polling mode is used, components will need to poll the dispatcher interface to

obtain the buffered messages using the following method:

String[]::getPendingRequests(String registrationID)

registrationID The registrationID returned by the either of the registration methods

Returns: An array of Strings representing the XML-RPC requests that were buffered

and pending retrieval through the polling mechanism

This method is called by an Open Client or Server component, as well as by applications, to

retrieve the XML-RPC requests that have been buffered by the dispatcher.

Finally, dispatchers at the edge of the Open Client that wish to be listen for Open Server calls

(those not in polling mode), need to register to the dispatchers at the edge of the Open Server.

To do so, the following methods are used:

String deviceID:: registerOpenClientDispatcher(String serviceEndPoint)

serviceEndPoint the URL where this Open Client Dispatcher is listening

Returns: A String with the deviceID that’s assigned to this Open Client at registration

time

This method is called by the dispatcher at the edge of the Open Client to register the Open Client

to the Open Server. In return, it receives a deviceID which can be used by applications in the

future.

Boolean success:: unregisterOpenClientDispatcher(String deviceID)

deviceID The deviceID that we want to unregister

Returns: True if the unregistration was successful, false otherwise

This method is called by the dispatcher at the edge of the Open Client to detach itself from the

Open Platform. After this call, the Open Server will no longer consider this device to be an Open

Client under its control.

Finally, applications need to know the ID of the device they are running inside of, in order to

register themselves with the Open Server. For this purpose, the following method is offered:

String deviceID:: getDeviceID()

ICT-Open

Returns: The deviceID that was assigned to this Open Client by the Open Server

This method is called by a component that requires the deviceID (usually for registration at the

Open Server)

INTERACTIONS

Figure 24 shows the operation of the polling mode. A server side component sends an XML

request to the dispatcher, which buffers it, instead of sending it forward.

When, after a poll interval timeo

calls getPendingRequests on its closest dispatcher. This will then ask the next dispatcher in the

chain, until it reaches the Open Server. Eventually, the pending requests at all the dispatche

collected and delivered synchronously to the client.

After processing them, the client side can respond asynchronously using the methods designated

for this purpose on the Open Server interface.

Figure 24

7.4. COMPONENT DEPENDENCY

The Open components and example applications are closely related, with modules depending on

other modules to perform their functionalities.

In order to coordinate our work, we

it, components depend on the components they point to. At the top, we have applications which

require the whole platform for migration, and at the very bottom is the UI adaptation and the

Context Management Framework, which perform the lowest

Migration Service Platform Design

 Open Platform components

The deviceID that was assigned to this Open Client by the Open Server

is called by a component that requires the deviceID (usually for registration at the

shows the operation of the polling mode. A server side component sends an XML

request to the dispatcher, which buffers it, instead of sending it forward.

When, after a poll interval timeout, the Client component wishes to retrieve pending methods, it

calls getPendingRequests on its closest dispatcher. This will then ask the next dispatcher in the

chain, until it reaches the Open Server. Eventually, the pending requests at all the dispatche

collected and delivered synchronously to the client.

After processing them, the client side can respond asynchronously using the methods designated

for this purpose on the Open Server interface.

24 Example operation of the polling mode in the dispatcher

COMPONENT DEPENDENCY

The Open components and example applications are closely related, with modules depending on

other modules to perform their functionalities.

In order to coordinate our work, we have identified the dependency graph shown in

it, components depend on the components they point to. At the top, we have applications which

hole platform for migration, and at the very bottom is the UI adaptation and the

Context Management Framework, which perform the lowest-level operations.

Migration Service Platform Design

Open Platform components 47

The deviceID that was assigned to this Open Client by the Open Server

is called by a component that requires the deviceID (usually for registration at the

shows the operation of the polling mode. A server side component sends an XML-RPC

ut, the Client component wishes to retrieve pending methods, it

calls getPendingRequests on its closest dispatcher. This will then ask the next dispatcher in the

chain, until it reaches the Open Server. Eventually, the pending requests at all the dispatchers are

After processing them, the client side can respond asynchronously using the methods designated

The Open components and example applications are closely related, with modules depending on

have identified the dependency graph shown in Figure 25. In

it, components depend on the components they point to. At the top, we have applications which

hole platform for migration, and at the very bottom is the UI adaptation and the

ICT-Open

Figure 25 Dependencies among the project's implementations. Upper component

A good understanding of this graph is being used to coordinate and prioritize the Open work.

Migration Service Platform Design

 Open Platform components

Dependencies among the project's implementations. Upper components depend on the lower components

A good understanding of this graph is being used to coordinate and prioritize the Open work.

Migration Service Platform Design

Open Platform components 48

s depend on the lower components

A good understanding of this graph is being used to coordinate and prioritize the Open work.

ICT-Open Migration Service Platform Design

 Open Platform Operation examples 49

8. OPEN PLATFORM OPERATION EXAMPLES

This section aims at providing an overview of the platform functionality, by showing how two

sample applications integrate with the Open Platform components in order to migrate and adapt

their components.

8.1. MIGRATION OF A WEB APPLICATION

Figure 26 shows the migration of a Web Application. In it, the application (source device) asks the

OS Orchestrator for retrieving the user interface (retrieveUI) of the specified component. Then,

the OS Orchestrator asks the OS Web State Handler to get the user interface for the specified

components, also specifying an optional callback (if it is missing then the request will be

synchronous).

Afterwards, there is the callback method UIRetrieved() from the OS Orchestrator to the

application (source device). Then, there is the possibility either of a manual migration request

from the OC Orchestrator (source device) to the OS Orchestrator (manualMigrationRequest()

function), or an automatic migration trigger coming from the OS Trigger Manager

(startMigration() method).

After receiving one of such requests, the OS Orchestrator asks the OS Policy for the authorization

for allowing a migration and, if the answer from the OS Policy is positive, then the OS

Orchestrator asks the OC Orchestrator (source device) to retrieve the state of a specified

component. After the state has been retrieved, the OS Orchestrator can pause the application on

the source device and then it asks the OS Web Adaptation to adapt the user interface (which

means reverse engineering the retrieved web page, getting a logical UI description of it, and

semantically redesign it for the target platform).

Then, the OS Orchestrator asks the OS Web State Handler to set the state of the user interface,

then generates the new user interface for the target device (namely, produce a user interface in

a specific implementation language). Then, the OS Orchestrator asks the OC Orchestrator (target

device) the permission to activate a migration on the target device. If the answer is positive, the

application on the source device has to be closed, and then the adapted UI is uploaded to the OC

Orchestrator on the target device (setAdaptedUI()). After receiving the callback (adaptedUISet()),

the OS Orchestrator can start the application onto the target device.

ICT-Open Migration Service Platform Design

 Open Platform Operation examples 50

Figure 26 Message Sequence Diagram for the migration of a web application

8.2. COMPONENT MIGRATION IN THE SOCIAL GAME

The diagram describes the migration of a component of the Social Game from a source device to

a target device, keeping the application running on the source device. Note that the application

and the remaining components on the source device need to be reconfigured in order to work

properly without the migrated component. To this end, the methods reconfigureComponent and

reconfigureApplication with proper configuration information have to be called both on the

source device and the target device.

ICT-Open

Figure 27 Message Sequence Diagram for the Social Game component's migration

Migration Service Platform Design

 Open Platform Operation examples

Message Sequence Diagram for the Social Game component's migration

Migration Service Platform Design

Open Platform Operation examples 51

Message Sequence Diagram for the Social Game component's migration

ICT-Open Migration Service Platform Design

 Conclusions 52

9. CONCLUSIONS

Since the beginning of the work package’s activities, WP4 has strived to harmonize the

contributions in the rest of work areas of the project, and this deliverable constitutes a snapshot

of the results achieved thus far. D4.2 is meant as a living document that will evolve as

implementation progresses. As the final prototypes are delivered in month 24 with D4.4, we will

wrap this up, and present its consolidated version as part of the documentation for the

prototypes.

In this sense, this document will evolve to adapt to the changes and needs that will be uncovered

as further cooperation and integration takes place.

In this version, the deliverable has introduced the guiding principles in the design of the platform,

how it’s structured and how it can be used by external applications. Additionally, the document

reflects the unanimous agreement from all partners regarding the interfaces to be used during

the development phase. In order to consolidate the cooperation, we have also shown multiple

sequence diagrams that illustrate how the different components integrate with each other to

provide the platform functionality.

Finally, Section 8 puts it all together by introducing the use of the Platform components to

support the migration of the applications and components under development in WP5.

This document and its future evolutions will be used by WP1 both as feedback to the

architectural work and as baseline check for requirements. Additionally, WP6 will further benefit

from the presentation of components to plan and perform their testing activities.

Finally, from Work Package 4, we would like to acknowledge the effort and dedication poured

into this deliverable by all the Open Partners, which now puts the project well on the road

towards a fully functional, integrated Open Platform for Migratory applications.

ICT-Open Migration Service Platform Design

 Bibliography 53

10. BIBLIOGRAPHY

1. Open partners. D1.2: Initial OPEN Service Platform architectural framework. 2008.

2. Open partners. D3.1: Detailed Network Architecture. 2009.

3. Magnet Beyond Consortium. My personal Adaptive Global NET (MAGNET). [Online] 2008.

[Cited: June 15, 2009.] http://magnet.aau.dk/.

4. R. Olsen, M. Martin. CMF Tutorial. CMF Tutorial. March 2009.

5. Open partners. D4.1: Solutions for application logic reconfiguration. 2009.

6. Open partners.. D5.1: Initial application requirements and design. 2008.

ICT-Open Migration Service Platform Design

 Bibliography 54

A. APPENDIX: OPEN CLIENT INTERFACE

void::setRunningStatus (String componentID, String runningStatus)

String

componentID

A String identifying the component intended as target for setting the

running status.

String

runningStatus

A String object containing the target running status (one of: Running,

Paused, Terminated, Busy)

Returns: void

Set the running status of the specified component.

Execution: asynchronously

Callback at the Open Server Orchestrator Interface: runningStatusChanged()

void::reconfigureApplication (String applicationID, Configuration configuration)

String applicationID A String object containing the id of the application to be reconfigured

Configuration

configuration

A Configuration object describing the configurations of the given

application

Returns: void

Reconfigures an application after some changes in the number and in the components

configuration has changed.

Execution: asynchronously

This method can be called both on the source device after the migration of some components has

started and on the target device once the migration has finished.

void::migrationTriggerAccepted(String sourceDeviceID, Boolean accepted)

sourceDeviceID The ID of the device that requested the mgiration

accepted A boolean indicating if the trigger and subsequent migration was successful

Returns: Void

This method is the callback from OS to OC of the triggerMigration() method. The accepted

parameter indicates if the migration was triggered and executed successfully.

boolean::reconfigureNetwork(String deviceID, NetworkConfiguration networkConfiguration)

deviceID The identifier of the device where network reconfiguration is enforced

networkConfiguration The configuration to be enforced

Returns: A boolean indicating if the reconfiguration was successful

The function changes the configuration of the underlying network connection of a device as

indicated by the networkConfiguration object. This object is registered with the

registerNetworkConfiguration() method upon device registration, containing relevant network

parameters. The method is called asynchronously by the OS on a OC and the status is returned by

the networkReconfigured() method.

ICT-Open Migration Service Platform Design

 Bibliography 55

void::reconfigureComponent(Component component, ConfigurationInstruction

configurationInstruction)

component The component object describing the component.

configurationInstruction This object provides instructions to a component for reconfiguration.

Returns: void

This method is part of the OC Interface. It is called by the OPEN Server every time reconfiguration

of a component is required. This could be the case if context changes or if components migrate.

Reconfiguration includes the replacement of a component instance or change of a component’s

behavior like described in deliverable D4.1 (5). What kind of adaptation has to be performed in a

specific situation and how it is realized is described in the configurationInstruction object.

void:: UIRetrieved(String componentID, UI ui)

componentID The componentID where the UI originated

ui The user interface that has been retrieved

Returns: none

This method is offered by the OC Orchestrator and it is called by the OS Orchestrator. It

represents the callback for the retrieveUI() method.

void:: setAdaptedUI(UI ui, String componentID)

ui The user interface that has to be uploaded on the target device

componentID The ID of the component which the ui is associated to

Returns: none

This method is offered by the OC Orchestrator and it is called by the OS Orchestrator. It is aimed

at uploading the adapted user interface onto the target device

void::retrieveState (String componentID)

String

componentID

A String identifying the component intended as target for retrieving the

state.

Returns: void

Get the state of the specified components.

Execution: asynchronously

Callback at the Open Server Orchestrator Interface: stateRetrieved()

void::setState (String componentID, State state)

String

componentID

A String identifying the component intended as target for setting the state.

State state A State object carrying the target state.

Returns: Void

Set the state of the specified component.

Execution: asynchronously

Callback at the Open Server Orchestrator Interface: stateSet()

ICT-Open Migration Service Platform Design

 Bibliography 56

B. APPENDIX: OPEN SERVER INTERFACE

String deviceID:: registerDevice(Device device)

device The device that will be registered in the OPEN platform

Returns: an univocal ID associated by the platform to the registered device

This method is offered by the OS Orchestrator and it is called by the OC Orchestrator in order to

register a device (with its capabilities) in the OPEN platform. This method is synchronous and

returns an univocal ID that the OS associates to the device. Some invalid device IDs could be

defined in order to be used as error codes in case of failure.

String applicationID::registerApplication(Application application)

application The application that will be registered in the OPEN platform

Returns: an univocal ID associated by the platform to the registered application

This method is offered by the OS Orchestrator and it is called by the OC Orchestrator in order to

register an application in the OPEN platform. When an application is instantiated, an application

object must be created and registered in the OPEN platform.

This method is synchronous and returns an univocal ID that the OS associates to the application.

Some invalid application IDs could be defined in order to be used as error codes in case of failure.

String componentID::registerComponent(Component component)

application The application component that will be registered in the OPEN platform

Returns: an univocal ID associated by the platform to the registered component

This method is offered by the OS Orchestrator and it is called by the OC Orchestrator in order to

register an application component in the OPEN platform.

This method is synchronous and returns an univocal ID that the OS associates to the component.

Every time this method is called, the OS Orchestrator must update the hasComponent attribute

of the Application object associated to the registered component.

Some invalid component IDs could be defined in order to be used as error codes in case of

failure.

Boolean::unregsiterDevice(String deviceID)

deviceID The device that will be unregistered by the OPEN platform

Returns: True if the unregistration is correctly performed.

This method is offered by the OS Orchestrator and it is called by the OC Orchestrator in order to

unregister a device.

All of the applications and their components running on the device will be unregistered.

This method is synchronous.

ICT-Open Migration Service Platform Design

 Bibliography 57

Boolean::unregisterApp(String applicationID)

applicationID The application that will be unregistered by the OPEN platform

Returns: True if the unregistration is correctly performed.

This method is offered by the OS Orchestrator and it is called in order to unregister an

application.

The application and all of their components will be unregistered.

This method is synchronous.

Boolean::unregisterComponent (String componentID)

componentID The application component that will be unregistered by the OPEN platform

Returns: True if the unregistration is correctly performed.

This method is offered by the OS Orchestrator and it is called in order to unregister an application

component.

The component and its sub-components will be unregistered. Depending components will be

paused.

This method is synchronous.

Device[]::getDevicesSupporting(String[] componentID)

componentID An array of component IDs that must be supported.

Returns: An array of devices that support all of the argument components

This method is offered by the OS Orchestrator.

Get a list of devices registered on this Open Server which can fulfill the requirements of the

components in the parameter. The Open Server will go through the requirements in the

component objects and verify that the devices can fulfill it.

This method is synchronous.

void::runningStatusSet (String componentID, String runningStatus)

String

componentID

A String identifying the component whose running status has changed

String

runningStatus

The String object containing the running status of the requested

component.

Returns: void

Notifies the changed running status of the specified component.

Execution: asynchronously

Callback for the Open Client Orchestrator Interface Function: setRunningStatus()

void::ApplicationReconfigured(Boolean isReconfigured, String applicationID)

Boolean

isReconfigured

True if the application has been successfully reconfigured

String A String object containing the id of the application that has been

ICT-Open Migration Service Platform Design

 Bibliography 58

applicationID reconfigured

Returns: void

Notifies the reconfiguration of the given application.

Execution: asynchronously

Callback for the Open Client Interface Function: reconfigureApplication()

This method can be called both on the source device after the migration of some components has

started and on the target device once the migration has finished.

boolean::triggerMigration(String targetDeviceID, String[] componentID)

targetDeviceID Identifier of the device intended as target for the migration

componentID[] Array of componentIDs to be migrated to target device

Returns: A boolean indicating if the migration succeeded

This functionality is aimed at triggering the migration of a set of components towards a specific

target device.

void::networkReconfigured(String deviceID, boolean isReconfigured)

deviceID The identifier of the device that enforced reconfiguration

isReconfigured A boolean indicating if the reconfiguration was successful

Returns: Void

The function is a callback from OC to OS to the reconfigureNetwork() method called from OS to

OC. The function indicates from which device it was sent and whether the reconfiguration was

successful.

boolean::registerNetworkConfiguration(String deviceID, NetworkConfiguration

networkConfiguration)

deviceID The identifier of the device that registered the network configuration

networkConfiguration A NetworkConfiguration object containing parameters describing a

network connection on the device

Returns: A boolean indicating if the network configuration registration was

successful.

The function registers a network configuration from a device in the mobility support module. The

network configuration contains relevant parameters describing one possible network connection

on the device.

void::componentReconfigured(Component component)

component The component object describing the component.

Returns: void

Because the method reconfigureComponent(…) is called asynchronously by the OPEN Server, it

needs to know, whether the reconfiguration has been performed successfully. This method is

called by a component if it has successfully been reconfigured its behavior according to the

instructions given during the reconfigureComponent(…) method call.

ICT-Open Migration Service Platform Design

 Bibliography 59

void:: retrieveUI(String componentID)

componentID The component whose UI has to be retrieved

Returns: none

This method is offered by the OS Orchestrator and it is called by the OC Orchestrator in order to

request to get the UI for the specified component.

void:: adaptedUISet(Boolean isUpdated, String componentID)

isUpdated A Boolean value saying whether the user interface has been adapted

componentID The ID of the component which the ui is associated to

Returns: none

This method is offered by the OS Orchestrator and it is called by the OC Orchestrator. It

represents the callback for the setAdaptedUI() method.

void::stateRetrieved (State state)

State state The State object of the requested component.

Returns: void

Returns the State object of the component referenced in a preceding retrieveState() call.

Execution: asynchronously

Callback for the Open Client Orchestrator Interface Function: retrieveState()

void::stateSet(Boolean isSet, String ComponentID)

Boolean isSet Signals whether the state was changed successfully.

True: Success – State changed; False: Error – State not changed

String

componentID

A String identifying the component which state has been changed.

Returns: void

Signals whether a state change requested was executed successfully.

Execution: asynchronously

Callback for the Open Client Orchestrator Interface Function: setState()

ICT-Open Migration Service Platform Design

 Bibliography 60

C. APPENDIX: OBJECT TYPE DEFINITIONS

Device Object

ID deviceID

Type Device

It contains all the information needed by the Migration Platform about a specific device.

Attributes

Name Type Multiplicity Description

hasName String (1…1) Name of the device (in human readable

format)

isAvailable Boolean (1…1) True if the device is available for migration

hasCapability Capability (1…*) The set of the Device capabilities

IsOfClass String (1…1) The class of the device (e.g. mobile, desktop,

console, set-top-box etc)

Application Object

ID applicationID

Type Application

It contains all the information needed by the Migration Platform about a specific application instance.

Attributes

Name Type Multiplicity Description

hasName String (1…1) Name of the application (in human readable

format)

hasLaunchCommand String (1…1) Script for launching the application on the

target device

hasComponent Component (1…*) The components forming the application

hasConfiguration Configuration (1…1) The application specific relationships among

components together with the information

needed for creating and initializing

components

Component Object

ID componentID

Type Component

It contains all the information needed by the Migration Platform about a specific component instance.

Attributes

Name Type Multiplicity Description

hasComponentDescription ComponentDescription (1...1) A description of the component

in terms of input, output,

interfaces etc.

ICT-Open Migration Service Platform Design

 Bibliography 61

hasRunningStatus String (1...1) One of: Running, Paused,

Terminated, Busy

hasMigrationStatus Boolean (1...1) Migrating or not Migrating

hasState State (1...1) Describes the state of the

component

hasComponentRelationship ComponentRelationship (0...*) A set of relationships with other

components

belongsTo ApplicationID (1...1) The application which owns the

component at a given time

hasRequirement Requirement (0...*) A set of minimum needed

requirements in terms of

software, hardware, network

and UI.

Component Relationship Object

ID relationshipID

Type ComponentRelationship

It contains the description of constraints and relationships between the owner component and other

components. Multiple relationships are supported.

Attributes

Name Type Multiplicity Description

hasComponent ComponentID (1...*) The componentIDs with which the owner

component has a relationship

hasRelation String (1...1) Relation type between components

(dependency, input-output etc)

Capability Object

ID capabilityID

Type Capability

Contains the capability of an entity in the specified category

Name Type Multiplicity Description

hasName String (1…1) Name of the capability

hasValue String (1…1) Value of the capability

hasUnit String (1…1) Unit of the capability

usesRetriever Retriever (1…1) Indicates if the value of the capability is

retrieved by a retriever and thus dynamic

isOfCategory String (1…1) One of: Software, Hardware, Network, UI

ICT-Open Migration Service Platform Design

 Bibliography 62

Requirement Object

ID requirementID

Type Requirement

Contains a component’s requirement of a certain capability of the specified category

Name Type Multiplicity Description

hasName String (1…1) Name of required capability

hasValue String (1…1) Required value of the capability

hasUnit String (1…1) Unit of the required capability

usesComparator String (1…1) One of: less-than, less-than-equal, greater-

than-to, greater-than-equal-to, equal-to

isOfCategory String (1…1) One of: Software, Hardware, Network, UI

Example of capabilities and requirements:

A device can have a numeric keyboard capability with the hasName=“NumericKeyboard”,

hasValue=”true”, hasUnit=””, usesRetriever=”” (as this is considered a static capability) and

ifOfCategory=“Hardware”. An application can require this capability by using the equal properties

in the Requirement object, and using the usesComparator=”equal-to”, as this is a non-

measureable requirement.

Examples of requirements specifications and capabilities will be presented in D5.3 (6) and the

functions where comparisons are made between requirements and capabilities (mainly trigger

management, migration orchestration and ALR) will be detailed in D3.4.

Example use-cases of capabilities and requirements is also be seen in the prototypes

demonstrating integration between applications and platform functions.

NetworkConfiguration Object

ID NetworkConfigurationID

Type NetworkConfiguration

Contains the connection-specific details of a connectivity option from a device (source) to

another device (target)

Name Type Multiplicity Description

endpointAddress URL (1…1) The socket and protocol to connect to in

order to use this connection

sourceDevice Device (1…1) The source device of the connection

targetDevice Device (1…1) The target device of the connection

ConfigurationInstruction Object

ID configurationInstructionID

ICT-Open Migration Service Platform Design

 Bibliography 63

Type ConfigurationInstruction

This object contains instructions relating to specific component describing how to reconfigure.

Mainly two kinds of instructions are coded within this object. The first one instructs the

component to change its internal behavior, while the second one instructs the component to

change its bindings to other components. The instructions will be coded within an XML

document. Therefore we enable the reconfiguration of components written in different

programming languages and running on different operating systems.

Attributes

Name Type Multiplicity Description

instruction XML

document

(1…*) Contains a reconfiguration instruction.

Configuration Object

ID configurationID

Type Configuration

The configuration object describing the configurations of an application. As applications are built

out of interacting components, the Configuration object defines among others which

components are part of the application, the dependencies between these components and how

they may change during runtime based for example on context information or migration trigger.

Attributes

Name Type Multiplicity Description

- - - Application Specific

UI Object

ID UIID

Type UI

This object contains a whole description/specification of a user interface. Such a UI specification

can be described at a concrete level (in this case it will be a XML-based file describing e.g. the

interactors that compose the user interface in a platform-dependent way, how they are

composed each other within it, the connections between different presentations belonging to

the same user interface,..), or at an implementation level (in this case it will contain a

specification of a UI using a particular implementation language, e.g. XHTML, C#, etc).

Attributes

Name Type Multiplicity Description

uri URI (1…1) It contains the specification of the user

interface, made available through the

provision of its Uniform Resource Identifier

(URI).

abstractionLevel String (1…1) It contains the information about the type of

UI abstraction level considered (e.g. concrete

or implementation level)

ICT-Open Migration Service Platform Design

 Bibliography 64

State

ID N/A

Type State

Contains a component’s state

Name Type Multiplicity Description

belongsToComponent String (1…1) Pointer to the component

hasState String (1…1) BLOB containing the application

dependent state of the component

