#@ OPEN Project

J’ STREP Project FP7-1CT-2007-1 N.216552

Open Pervasive Environments for migratory iMteractive services

Title of Document:
Editor(s):

Affiliation(s):
Contributor(s):
Affiliation(s):
Date of Document:
OPEN Document:
Distribution:
Keyword List:

Version:

Solutions for Application Logic Reconfiguration

H. Klus, D. Niebuhr, B. Schindler, M. Deynet, C.
Deiters

Clausthal University of Technology
Agnese Grasselli, Stefano Marzorati
Vodafone Omnitel NV

31.01.2009

WP 4, D4.1
Public

Adaptive Systems, System Reconfiguration,
Migration, Context-Awareness

Final

OPEN Partners:
CNR-ISTI (ltaly)

Aalborg University (Denmark)

Arcadia Design (Italy)
NEC (United Kingdom)
SAP AG (Germany)

Vodafone Omnitel NV (Italy)
Clausthal University (Germany)

"The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any
particular purpose. The above referenced consortium members shall have no liability for damages of any kind including without
limitation direct,special, indirect, or consequential damages that may result from the use of these materials subject to any liability
which is mandatory due to applicable law. Copyright 200.. by ...[Annotation: please list all partners who contributed to the

respective project deliverable]."

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

Abstract

This document introduces aspects and solutions for the reconfiguration and
adaptation of services during their lifecycle. During the migration of one or more
services, their look and behaviour has to be adapted to the target device. Context
information is for example one important aspect which may influence how to
adapt services, like residence of the service user or current battery power and
CPU frequency of the devices in use. In this document we will introduce an
application scenario which demonstrates various kinds of adaptation and their
triggers and according parameters which influence the way services are adapted.
Furthermore we will present current solutions for application logic
reconfiguration. Finally we will show architectural solutions for the different
reconfiguration approaches.

Title: Solutions for Application | Id Number: WP 4, D4.1

Logic Reconfiguration

Table of Contents

1 LN I O 1 10 O I 1]\ 2
2 SCENARIO FOR APPLICATION LOGIC RECONFIGURATIONcovovvveieieieeiiieene 4
2.1 THE ORIGINAL PACMAN GAME ..uiiiiiiiiiiiiiiiie ittt sttt iabbba e s e s ssbabbae s s e s s seananes 4
2.2 MIGRATION AND ADAPTATION SCENARIOS.......ciittttriieietiiiitirrieseessisiisreessessssssnssesssessssssnnnes 4
2.3 BASIC SOFTWARE ARCHITECTURE OF THE GAME.....ccciitiiiiittieeecreeeeeetieeeeeiaee s s sveeessrveeesnes 7
2.3.1 Architecture of the Single-Player PacMan Game...........cccccevvevereresinsieseeieenenennens 7
2.3.2 Architecture of the Multi-Player Game............ccocvviviieieeiecie s 9
3 SOLUTIONS FOR APPLICATION LOGIC RECONFIGURATION......cccccceevveee. 10
3.1 DIFFERENTIATION OF WIRING AND ORCHESTRATING SERVICESoeovvvviiiieeiiiiiiiieieeee e 10
3.2 WIRING APPROACH .. .uttttiiiie e sttt et e e s s e sttt et s e e e s s st at e e e e e s s st bbb e eesesssa bbbt e et s eessasabbbanasaessaas 11
3.2.1 Service Usage Adaptation..........ccccoeiereriiiieiiesiese et 11
3.2.2 Service Behaviour Adaptationc.ccoeeeiiiineneie e e 13
3.3 ORCHESTRATION APPROACH.tttiiiieiiiiiittitiiie e e s s it bate e e e e s s st bbb ae s s e s s sabbbb e s e s e s s sssabbbanasaesseaas 15
3.3. 1 WOTKFIOW PABINSvvieviiiceie ettt ettt sttt sttt sae s st sbae e 15
3.3.2 Example of WOrkflow Patterns.........ccccueiveiieieieiiiie e 16
3.3.3 Evaluation of State of the Art TeChNOIOQIE€S.........cccevviiiiecicierce e 18
334 JBPIM e e a et 19
TG TR T 7\ 1 21
3.3.6 Windows Workflow FOUNAAtIONcoovviiiieiiei ettt 23
R T A © 1111 T TR 24
3.3.8 Orchestration TOOIS COMPAIISON......cciiriiiiirieiririese e 25
The features of the tools that have been evaluated are summarized in the following. 25
3.4 CoOMPARISON OF WIRING AND ORCHESTRATION APPROACH.cccciiiiiiiiiiiiee e ssiiiiinieeee e 26

4 ARCHITECTURAL SOLUTIONS FOR APPLICATION LOGIC
RECONFIGURATION ..ottt ettt ettt e e e s et e e sttt e e s ettt e e s st et e e st aeessabbeeesabaeessreneeas 28
4.1 ARCHITECTURE OF WIRING APPROACH.......cctttiiieiiiiiiitittiee e e ieiiitiees s e e s ssssbbasesesesssassaneeess 28
4.2 ARCHITECTURE FOR ORCHESTRATION APPROACHcuvtiiiiieiiiiiiiiiie e eeiitbeee e e e e s sasbnneee s 30
4.3 ARCHITECTURE OF COMBINED APPROACH.......cuutieiitieesiteeeesitieeeseateeessreeeesetveeesssaeeessnneeas 32
5 COMMUNICATION ASPECTS ...ttt sttt eaaas s s sban e b s 33
6 CONCLUSION AND NEXT STEPS ...ttt 36
7 REFERENGCES.o oottt sttt e s s e e s et b e s s s baa e e s sabe e e s sabaeeeens 37

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

1 Introduction

In these days the trend towards “everything, every time, everywhere” becomes more and
more apparent. Electronic assistants, so called "information appliances”, like network
enabled PDAs, Internet capable mobile phones and electronic books or tourist guides are
well known. The continuing progress of all IT sectors towards "smaller, cheaper, and
more powerful” mainly enables this trend.

IT components are embedded in nearly every industrial or everyday life object. This
trend is driven by new developments in the field of materials science like midget sensors,
organic light emitting devices or electronic ink and the evolution in communications
technology, especially in the wireless sector. As consequence of this trend, nearly
everyone has small, nearly invisible devices in his adjacencies, e.g. mobile phones,
PDAs, or music players. Furthermore, network technologies like (W)LAN or Bluetooth
moved mainstream. This facilitates the connection and combined usage of those devices.

The mobility of users and their devices leads to the need of customizable applications
that adapt dynamically to their specific needs in constantly changing situations. Services
and devices for example can appear or disappear at any time, the physical environment of
the user may change, or the user’s preferences.

In OPEN we consider applications which migrate from one device to another. Hereby,
the application has to adapt to the new environment during migration. For this the
application has to consider available resources like battery power or CPU rate, and
display size and resolution for example. Furthermore, not always the whole application
migrates, but sometimes only parts of it.

Therefore, we distinguish two parts of which an application typically consists of,
namely the user interface part, and the application logic part as illustrated in Figure 1.

]

User Interface Layer

Services

1 1 1

Application Logic Layer

Services

Figure 1: Two layers most applications consist of, namely the user interface layer and the
application logic layer.

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

The user interface layer is responsible for the interaction between the user and the
application. It retrieves user input and provides also feedback to the user. The user
interface itself can be realized by one or more services which interact with each other or
with the user. The application logic layer on the other hand is responsible for computing
the reaction to user input. To do this, the services within the user interface layer interact
with services within the application logic layer. In the next section we will present an
example application and according services at the user interface and application logic
layer.

Adaptation is required in the user interface part, as well as in the application logic
part. The user interface part for example has to adapt to the new screen size while
migrating from a PC to a PDA. The application logic part has among others to adapt to
the change of resources for example by replacing a resource-consuming service by
another one which might not offers the full functionality, but which is less resource-
consuming.

In this deliverable we will describe how adaptation of the application logic can take
place. We will describe triggers for adaptation, how context can be considered during
adaptation, and which technologies are available at the moment. In order to introduce the
relevance of adaptation for the user, we will first present an application scenario. The
mentioned topics will then be explained using this example.

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

2 Scenario for Application Logic Reconfiguration

In this section we will introduce an application and scenarios from the user’s point
of view where adaptation of the application logic is relevant. After that we will
introduce two main approaches of how applications can be structured, namely the
wiring approach and the orchestration approach.

2.1 The Original PacMan Game

PacMan is a game where a character called PacMan, which is steered by the user,
has to collect dots in a maze, like shown in Figure 2.

Special dots for
initiating scared
mode

PacMan

Ghosts

Prison for
ghosts

PacMan hasto
collect these dots
to get points

Scared
Ghosts

SeQRe 1620 LivesS 29

SeORe 440 Lives 939

Figure 2: The two modes of a single PacMan game. On the left hand side the game is in normal
mode where the ghosts try to catch the PacMan. On the right side the game is in scared mode
where the PacMan can catch the ghosts.

Ghosts, who are controlled by the computer, are running around with the goal to
catch the PacMan. If the PacMan collects special dots, ghosts and PacMan change
roles for some seconds like depicted in Figure 2 on the right hand side. That
means that the PacMan now can catch ghosts and that the ghosts try to run away.
Caught ghosts will be imprisoned in the middle of the maze for some seconds.
After some seconds the roles change back again. The goal for the player is to get
as much scores as possible by collecting dots and catching ghosts.

2.2 Migration and Adaptation Scenarios

Within OPEN we defined scenarios where migration, and therefore adaptation
takes place (Faatz et al., 2008). Assume that the user starts playing PacMan on her
PC at home using her keyboard to steer the PacMan. Then she remembers that she
has a PDA with an accelerometer. Therefore, she wants to use the PDA to steer
the ghost while keeping the GUI on the large screen of her desktop PC. To do this,
she simply switches on her PDA and the input is automatically migrated from PC
to the PDA like shown in Figure 3.

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

R <
E K S

Figure 3: The control of the PacMan is migrated from the keyboard of the PC to a PDA with an
accelerometer. After migration the PacMan can be steered by tilting the PDA. The GUI stays at the
display of the PC.

After migration the PacMan can be steered by tilting the PDA into the desired
direction. In this case, a service from the user interface layer is migrated and
adapted to the target platform. However, this may also trigger a reconfiguration of
services of the application logic layer. As it is now much more difficult for the
player to steer the PacMan, the speed of the ghosts could for example be adapted.

After some time she leaves to meet some friends. Therefore, she would like to
continue playing the current game on her PDA during the bus trip. To do this, a
migration like depicted in Figure 4 is needed.

o

&y

o g
-
>

Figure 4: Migration of PacMan from PC with large screen to PDA with small screen and limited
resources.

The OPEN platform offers a context menu with the option to migrate the game.
By clicking on the migration button, the game will pause first. Afterwards the user
can select an available target device and confirm the migration. The game will
now appear on his PDA. When the user gets into the bus and takes a seat, she can

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

resume the game by clicking on the resume button of the OPEN platform context
menu on her PDA.

In this case, not only services of the user interface are migrated, but the whole
application including the services of the application logic layer. Because of the
limited screen size and resources of her PDA, the game has to adapt to the target
platform. Since there is no place to display all information at once on the PDA,
some options are now no longer accessible directly, but moved into an extra
dialog. Thus, services on the user interface layer have to be adapted again, this
aspect is described in depth in the D2.2 deliverable. Furthermore, the number of
dots within the maze is less than on the PC because of limited screen size which
again results in an adaptation of services within the user interface layer. But also
the application logic has to be adapted accordingly. If for example fewer dots are
available on the screen, the game now has to adapt in a way that the player gets
more points for collecting a single dot. As it is more difficult to steer the PacMan
on such a small screen, the speed of the ghosts is also reduced. Depending on the
current game level, the artificial intelligence of the ghost is also adapted. All these
kinds of adaptation result in the adaptation of services within the application logic
layer.

Arriving at her friend’s home, she and her friend want to play together. Both want
to play on their own PDA. At this, a new variant of the PacMan game enables it.
Her friend starts the PacMan game on the PDA, too. Now the friend gets the
option to join the game. She decides to do so and both start their game. If she
catches a ghost then that ghost will now appear in the game of her friend and vice
versa instead of appearing in her own game like depicted in Figure 5. That means
they play against each other by sending ghosts to each other.

Player A @ Player B

T

Tl

CEYAEE LA

Figure 5: Two players play against each other by sending ghosts to each other.

Finally, a third friend visits them and also joins the game using again her own
PDA like depicted in Figure 6.

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

, h_;‘._a -
Player B
B ﬁ_.,;.__a - YN
-l ! v)
Playver A Plaver C

Figure 6: Special rules define where to send the caught ghosts if more than two players have
joined the game.

Now special rules define where to send a caught ghost. One rule could be to send
the ghost to the closest player. Another possible rule is to send them to the player
with the highest or lowest score for example. These kinds of rules are also part of
the application layer and thus, the orchestration of the application logic services
has to be adapted in this case, too.

2.3 Basic Software Architecture of the Game

The game can be divided into two main building blocks, namely the single
PacMan game running on the individual devices, and the multiplayer
functionality. In addition, we distinguish two application layers, namely the user
interface layer, and the application logic layer. We will now sketch a possible
architecture for both building blocks and including the relevant services, their
interaction, and their belonging to one of the two application layers.

2.3.1 Architecture of the Single-Player PacMan Game

The single PacMan game can be divided into the following components, where a
component may implement one or more services, and in addition may require
other services in order to be executable:

e OutputPacman: A component that displays the ghosts and the PacMan,
the maze including dots, the score, the left lives of the PacMan, and so on.
This component implements services which belong to the user interface
layer.

e InputPacman: A component which is responsible for accepting user input
and forwards it to services which need information about what the user
did, as for example a service within the application layer. The component
itself belongs to the user interface layer. Possible user instructions could
be to start/stop the game and steering directions of the PacMan.

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

e GamelLogic: This component is responsible for steering the ghosts,
computing the position of the PacMan based on user input coming from
InputPacman, computing the score of the player, and so on. This is a
typical example of a component which implements services within the
application logic layer.

e GameState: This component encapsulates the state of the game as
described in the previous bullet point. In many systems, those kinds of
components also belong to the application layer.

These components are wired in order to build the single PacMan game. Figure 7
shows a possible wiring between these components. The structure is derived from
the Model-View-Controller pattern described in (Buschmann et al., 1996). In this
example, the GameState takes the role of the Model, the GameLogic the role of
the Controller, and the GUI takes the role of the View.

! 1
I User Interface Layer I
I Output I
I <<component>> =] InputPacmanif <<component>> | Pacmanlf I
I 'I _O _D_ .0 P I
I :InputPacman :OutputPacman I
| 1
| 1
| 1
| 1
| <<component>> {l —D— <<component>> $:| |
P — :GameState O |_)_ :Gamelogic |
I GameStatelf I
! s . [
I Application Logic Layer I

Figure 7: White-Box-view of a single PacMan game.

The figure shows one possible wiring of these components. The illustration is
similar to the UML 2.0 notation for component diagrams. The blue boxes
represent components, the circles attached to components represent provided
services, and the semi-circles, also attached to components, represent required
services. In the figure, the game state is manipulated by InputPacman and

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

GamelLogic via the service called GameStatelf. The OutputPacman accesses the
game state via the service called GameStatelf in order to display the various items
of the game like dots, score of the player, or information like speed of ghosts and
PacMan. In summary, the game consists of two services on the user interface
layer, called InputPacmanlf and OutputPacmanlf, and of one service within the
application logic layer called GameStatelf. Later in this section, we will extend
the game by further services in order to demonstrate reconfiguration within the
application logic layer.

2.3.2 Architecture of the Multi-Player Game

In the multiplayer scenario, multiple single PacMan games like described before
have to cooperate in a way that they are able to send ghosts to another game.
Therefore, the different instances of the PacMan games have to be orchestrated
like shown in Figure 8. At this, a central orchestrator is responsible for
orchestrating the different PacMan games to build the multiplayer PacMan. The
main difference between this orchestration approach and the wiring of services
described in the previous section is that components in the orchestration approach
are not communicating directly with each other, but through the orchestrator. To
do this, the orchestrator decides which method to call at which service.
Furthermore, the orchestrator is responsible to manage the data flow.

Multiplayer
PacMan
Business)
Context
Rules /\(\m Information
Single PacMan Game Orchestrator Single PacMan Game

Single PacMan Game

Figure 8: Orchestration of single PacMan games considering business rules and Context
Information in order to build a new application called Multiplayer PacMan.

Business rules can be used to define how the orchestration should be performed,
which components should interact, and under which circumstances they should
interact. The outcome is a new functionality, which is in this case the multiplayer
PacMan game. The rules have also to consider context information like location
of persons and devices, as well as information like battery power for example.

In the next sections, we will describe techniques for realizing these different kinds
of adaptation using the example scenario described above.

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

3 Solutions for Application Logic Reconfiguration

In this section, we will first describe different types of adaptation using the
PacMan game introduced above. The adaptation approaches can be distinguished
in what we call wiring approach and orchestration approach. The main differences
between the wiring approach and the orchestration approach and how they can be
combined to allow a large diversity of supported applications will be described
next. Afterwards we will describe both approaches in detail including techniques
for application logic reconfiguration.

3.1 Differentiation of Wiring and Orchestrating Services

In service-oriented applications, we can distinguish the wiring of services and the
orchestration of services, no matter if these are services within the application
logic layer or the user interface layer. In Figure 9 the wiring approach (left) is
opposed to the orchestration approach (right).

A e o B2 s 5 amm o am
OnTicii
Lonngula

lre)con figures

h_d

Figure 9: Illustration of the wiring approach on the left and the orchestration approach on the
right.

In the wiring approach, the application is built out of services, which
communicate directly with each other. A Configurator is responsible to build the
application by wiring the different services, starting them and if required adapts
the application. In the next section, we will describe in detail which kind of
adaptation can be considered.

In the orchestration approach on the other hand, the various services are not
connected with each other directly. To build an application, a central orchestrator
accesses required services and manages the data flow between the various
services. Out of that, a new application is built like shown in Figure 9 on the right
hand side.

Due to the fact that an application itself again can be a service, both approaches
can be combined in at least two ways like illustrated in Figure 10.

10

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

Orchestrated
Service

forms

Configurator

Orchestrator re)configures

T

/\

Application

Application

Orchestrator

ETTY!

Figure 10: Two possible ways of combining the wiring approach and the orchestration approach.

(re)configures

Configurator

On the left hand side, an application is built out of single services. In addition,
some of these services are also used within the realization of an orchestrated
service. On the right hand side of Figure 10, the Orchestrator forms a service,
which in turn is used within an application where services are wired by a
Configurator.

In fact, if both approaches are combined, the behaviour of a wired application and
an orchestrated application may influence each other. If for example the
Configurator decides to remove a certain component, which in turn is part of an
orchestrated service, the orchestrated service has to adapt itself as well. If on the
other hand the orchestrator changes the behaviour of an orchestrated service, the
Configurator may have to adapt the wired service as well.

In the following, we will finally describe both approaches in detail including
solutions for reconfiguration.

3.2 Wiring Approach

We mainly distinguish two types of adaptation within the wiring approach, which
will be described in the following sections. These types of adaptation have already
been described in (Niebuhr et al., 2007). In addition, we will describe how the
different adaptation types can be realized and how they can be applied to the
PacMan game.

3.2.1 Service Usage Adaptation

As we already described before, services usually interact with other services like
shown in the single-player version of the PacMan game. In the following we are

11

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

considering how to realize the adaptation scenario depicted in Figure 3 where the
control of the PacMan migrates from the keyboard of the PC to the accelerometer
of the PDA. As already described before, this migration leads not only to
adaptation of user interface services, but also to adaptation of application logic
services. Figure 11 shows the deployment and the configuration before and after
migration of the InputPacman component from the PC to a PDA.

PC

InputPacmanlif
<<component>> <<component>>

1ake
. @oJepauliasn

—
o3&
Q5
o =
<<component>> El o <<component>> = 5 §
:GameState :GamelogicPC S o
GameStatelf =3

Before migration

After migration

PDA

Output

Pa;manlf
:OutputPacman

Input
<<component>> &7 Pacmanlf

:InputPacman

1ake
aorpalU| JasN

<<component>> =

:GamelogicPDA

<<component>> {l

:GameState

GameStatelf

Jake1 01607
uonealddy

Figure 11: Migration of the InputPacman component and the resulting change within the
application logic layer.

As already described in Section 2.2, the application logic has to adapt to the new
situation for example by slowing down the speed of the ghost as it is now more
difficult to steer the ghost. One possible solution is, to replace the GameLogic
component by another one which implements the appropriate behaviour. In this
case, the component GameLogicPC is replaced by a component called
GameLogicPDA. This example shows how changes in the user interface services
result in adaptation of the application logic.

12

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

Service Usage Adaptation may also occur during migration of the whole game
from the PC to the PDA. Also other components may have to be replaced in some
situations. The game state component for example could be replaced by another
one, if the user interface layer offers new kind of state information. However, the
replacement of components during runtime is a kind of adaptation which may
occur in many applications and situations.

We call this type of adaptation Service Usage Adaptation, because the service in
use is changed based on information like context, user preferences or other
information. A middleware could perform this kind of adaptation automatically
like introduced in (Niebuhr et al., 2007).

3.2.2 Service Behaviour Adaptation

This type of adaptation considers the adaptation of the behaviour of single
services without replacing them. Adaptation means that the behaviour of single
services changes with respect to context information, user preferences, or with
respect to the availability of other services.

To illustrate Service Behaviour Adaptation we will now enrich the GameLogic
component by two so called Component Configurations. Each component
configuration is attached with required services (semi-circles). If all required
services of one configuration are available, the configuration can become active
and will now offer all attached provided services. But not only new services may
become available; also the behaviour of a single service may change according to
the currently active component configuration.

Figure 12 shows the enriched GamelLogic component. The component
configuration called “Standard” implements the same behaviour as described in
the previous section. It requires the services GameStatelf and OutputPacmanif to
be present in order to become active. As both services are available, the
component configuration called “Standard” becomes active.

13

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

—0 componen>> &l ()
()
:InputPacman :OutputPacman

<<component>> g) <<component>>
GameStatelf El

Standard

Al

GhostAllf

<<component>> $:| InputPacmanif <<component>>{| A
:InputPacman ® :OutputPacman

<<component>> {I o <<component>>
GameStatelf iGamelogic g]

Standard

<<component>> {l
GhostAllf RN

1ake
. aoJepalulJasn

1efeoi607 |
uoneolddy

Before installation of GhostAl

T—— Afterinstallation of GhostAl

Jafe
. 8depalullasn

lafeq01607 |
uonesiddy

Figure 12: Example which illustrates the concept of component configurations. The GameLogic

component is therefore enriched with two component configurations.

If now a service GhostAllf becomes available, the component configuration of
GameLogic switches from “Standard” to “Al”. That may result in a higher
difficulty for the PacMan while running away from the ghosts as the ghosts now

behave according to some kind of artificial intelligence.

14

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

Component Configurations may not only change on behalf of available services,
but also with respect to the change of context information like battery power of
the device hosting the component.

Again, this kind of adaptation can be performed automatically by an appropriate
middleware. Doing so, an unobtrusive way to perform adaptation can be realized.

3.3 Orchestration Approach

The orchestration approach enables the application developer and/or the
application provider to define a workflow, which provides an overall application
logic description and decides how and when the different services interact. The
orchestration approach is mainly used for business processes: a business process
can be modeled as a sequence of services, e.g. web services, with a specific
language, as BPEL (Business Process Execution Language) (Alves et al., 2007).
This model is used by an orchestration engine, as ActiveBPEL (Active Endpoints,
2008), which creates an instance of the process. The engine calls the different
services involved in the process, maintaining the control of the process during all
the time in which it is running.

The main components of the orchestration approach are:

— The workflow languages or the business process modeling language:
these languages define the grammar for connecting services or tasks to
produce an application logic description.

— The available tools for specifying the application logic: different tools are
available for supporting the application logic description, as for example
graphical tools which enable the designer to describe the application logic
as a workflow diagram.

— The orchestration engine: it takes as input the application logic
description and creates an instance of the process. The engine calls the
different services involved in the process, maintaining the control of the
process during all the time in which it is running.

In the next paragraph, the evaluation of state of art technologies will be addressed,
using a list of criteria to compare and to evaluate the existing languages and
workflow engines.

3.3.1 Workflow Patterns

We refer to Workflow Patterns (Aalst et al., 2004; Aalst et al., 2007), which
provide a thorough examination of the various perspectives that need to be
supported by a workflow language or a business process modelling language.
Workflow Patterns are widely used for examining the suitability of a particular
process language or workflow system for a particular project, assessing relative
strengths and weaknesses of various approaches to process specification,
implementing certain business requirements in a particular process-aware
information system, and as a basis for language and tool development.

In process-aware information systems, various perspectives can be distinguished.

15

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

e The control-flow perspective captures aspects related to control-flow
dependencies between various tasks (e.g. parallelism, choice,
synchronization etc). Originally, the Workflow Pattern Initiative
proposes twenty patterns for this perspective, but in the latest iteration
this has grown to over forty patterns.

e The data perspective deals with the passing of information, scoping of
variables, etc.

e The resource perspective deals with resource to task allocation,
delegation, etc.

The exception handling perspective deals with the various causes of exceptions
and the various actions that need to be taken as a result of exceptions occurring.

3.3.2 Example of Workflow Patterns

In this paragraph, some examples taken from the control-flow patterns are given.
The control-flow perspective captures aspects related to control-flow
dependencies between various tasks (e.g. parallelism, choice, synchronization etc)
(Russell et al., 2006) and are more intuitive respect to the other patterns. Simple
examples of control flow patterns are illustrated using the Colored Petri-Net
(CPN) formalism. This allows providing a precise description of each pattern that
Is both deterministic and executable.

A Petri net is a directed graph, in which:

e the nodes represent transitions (i.e. discrete events that may occur) and
places (i.e. conditions)

e the directed arcs describe which places are pre- and/or post-conditions
for which transitions.

Arcs run between places and transitions, never between places or between
transitions. The places from which an arc runs to a transition are called the input
places of the transition; the places to which arcs run from a transition are called
the output places of the transition. Places may contain any non-negative number
of tokens. A distribution of tokens over the places of a net is called a marking. A
transition of a Petri net may fire whenever there is a token at the end of all input
arcs; when it fires, it consumes these tokens, and places tokens at the end of all
output arcs. A firing is atomic, i.e., a single non-interruptible step.

There are some blanket assumptions that apply to all of the CPN models used in
this document. For each of them, we adopt a notation in which input places are
labelled i1...in, output places are labelled ol...on, internal places are labelled
pl...pn and transitions are labelled A...Z, tokens are represented by the “c”. In
general, transitions are intended to represent tasks or activities in processes, and
places are the preceding and subsequent states which describe when the activity
can be enabled and what the consequences of its completion are. We assume that
the tokens flowing through a CPN model are typed CID (short for “Case ID”) and
that each executing case (i.e. process instance) has a distinct case identifier.

16

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

Examples of Basic Control Flow patterns capturing elementary aspects of process
control are listed below.

e Sequence: a task in a process enabled after the completion of a
preceding task in the same process.

o oA o —w B — a

o Parallel Split: the divergence of a branch into two or more parallel
branches each of which execute concurrently.

'.-"' ", H ' _f" ",
[p ——m B |—m o |
W “ ¢ o
./..- 1_ ..\. ¢ A
o .
‘I.V e o — @ ;-.
e -

oD — oo

e Synchronization: the convergence of two or more branches into a
single subsequent branch such that the thread of control is passed to
the subsequent branch when all input branches have been enabled.

. c
P —mw & b—» p]
A __./ L. __,-'{-.__ c

e - -:

E Y e .
c - ol
C R
¥ T CiD

~ - B - B T e
L 2 .-'_." B —— 2 ._’__:

. o -

-

(%)

-

More complex patterns are defined in order to design more elaborate workflow, as
for example the Advanced Branching and Synchronization Patterns, used in order
to characterise more complex branching and merging concepts. Some pattern

examples are:

e Multi-Choice: The divergence of a branch into two or more branches
such that when the incoming branch is enabled, the thread of control is
immediately passed to one or more of the outgoing branches based on
a mechanism that selects one or more outgoing branches.

17

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

If condi —_— c ¢ —,
then 1'c ¢ \ i ~.
EisE EMpty L P B o
- " ’
~ CiD CiD
i - -‘_ o
L e 2 I
=} -
- —~, & B
i cond2 P2 W W 2 /.
then 1°c S S
gle ampty Cio CiD

e Structured Synchronizing Merge: The convergence of two or more
branches (which diverged earlier in the process at a uniquely
identifiable point) into a single subsequent branch such that the thread
of control is passed to the subsequent branch when each active
incoming branch has been enabled. The Structured Synchronizing
Merge occurs in a structured context, i.e. there must be a single Multi-
Choice construct earlier in the process model with which the
Structured Synchronizing Merge is associated and it must merge all of
the branches emanating from the Multi-Choice. These branches must
either flow from the Structured Synchronizing Merge without any
splits or joins or they must be structured in form (i.e. balanced splits
and joins).

if condl thenempty else 17 ¢

if condlthen 1'c — X
else empty 7 T e c ™
.—h_\ Pl —w B —F"_\ pro—m 0 S
[condl orelse Cio i o
cond] i
/.--' ~ - r’,-" "x\
[t —m & S
o -.’J \" -/
—C1n B [+
A
ifoondZ then 17c R
| else empry F N ~ 7 ™ £
. e oz —e i — pS)
h A b -
1 I |

if cond? then empty else 1°c

The exhaustive description of the workflow patterns is out of scope for this
document, a complete description can be found in (Aalst et al., 2007).

3.3.3 Evaluation of State of the Art Technologies

The evaluation of existing service orchestration and workflow engine tools is
based on the parameters listed in the Table 1. This is a first round of evaluation of
the state of art technologies, if the orchestration approach will be chosen for the
OPEN platform, a second round of evaluation should be performed, in order to
select the proper system to adopt.

Table 1: Evaluation parameters.

Criteria Description Values

Workflow The Workflow Patterns are a well known method to | 0: limited number of

18

Title: Solutions for Application

Logic Reconfiguration

Id Number: WP 4, D4.1

patterns analyze the representation capacity of a workflow | workflow patterns
modeling language. represented
The complete description of the workflow patterns is | 1: able to represent crucial
available on (Aalst et al., 2007) workflow patterns
2: able to represent a great
number of workflow
patterns
Semantic There is semantic support to semantically | 0: No semantic support
.) 5
Support communicate the processes in the proposed model? 1: Semantic support
Efficiency There is an engine available that implements the | 0: No available Engine
5 ; . oo
proposed model? Is this engine efficient” 1. Engine available, but
slow
2: Engine available and
efficient
Easiness to | Is the proposed model easy to understand even for | 0: Model difficult to
understand process design people? There are designing tools | understand & design
and design available to build processes choreography?

1: Model understandable,
but design by coding

2: Model understandable,
with native authoring tool

Connectivity

Is it possible to connect the system with external
systems? The connectivity is made only by Web
Services or it is possible to create native process
coding?

0: Unable to connect with
external systems

1: Interoperable with

external systems

2: Able to be integrated
with external system

Time
modeling

Is it possible to define time driven processes in the
model (i.e. wait 2 hours, or begin at 15:30)?

0: Unable to model the
time

1: The time model can be
simulated

2: Able to odel the time

Extensibility

Is it possible to derive custom patterns from the
proposed model?

0: Unable to be modified

1. Open Source, but

difficult to modify

2. Able to create custom
patterns

3.3.4 jBPM

JBoss jBPM (JBoss, 2009) is a framework enabling the user to create and
automate business processes that coordinate between people, applications, and
services. JBoss jBPM provides both the tools for an easy development of
workflow applications and a process execution engine to integrate services.

19

Title: Solutions for Application | Id Number: WP 4, D4.1

Logic Reconfiguration

PROCESS
L AR
jBPFM PROCESS ENGINE
PROCESS LIBRARY Fisns sl St
PROSESS | o | CEFIMTERM REOUEST w+— (" |
DEFIMTICK LOWOER HARDLER: . |
' LEEA SYETEM
CLIETOM v
MTERACTION = - PROCESS PRDCESS
PROCESS a -
SERVICES oEETIN 1 ATTRIBTES ATTRIBTES
L
CLETOM * CEFALLT —
INTERACTICH] MTERACTION PIACED
SERVICES SERVICES HHIres
T T
ETATE LOG
MLARACER RCER

Figure 13: jBoss JBPM system.

The system contains the following main components:

The jBPM process engine: takes care of the execution of process instances.
JBoss jBPM process engine provides a powerful foundation for
orchestrating interactions between applications and services. It is suited to
service-oriented architectures and is interoperable with all of the J2EE-
based integration technologies including Web Services, Java Messaging,
J2EE Connectors, JDBC, and EJBs. The process engine automatically
handles state, variable, and task management as well as process timers.
JPDL (Process Definition Language): process oriented programming
model.

JBoss jBPM GPD (Graphical Process Designer): provides support for
defining processes in jJPDL. This tool is a plugin to Eclipse. A screenshot
of the tool is depicted in Figure 14.

JBoss jBPM console web application: it is a web based workflow client
whereby, in Home mode, users can initiate and execute processes. It is also
an administration and monitoring tool, which offers a Monitoring mode
where users can observe and intervene in executing process instances.
JBoss jBPM identity component, which will take care of the definition of
organizational information, such as users, groups and roles to which
different tasks can be assigned. Currently the definition of all these
information is done through standard SQL insert statements directly in the
workflow database.

20

Title: Solutions for Application
Logic Reconfiguration

Id Number: WP 4, D4.1

Figure 14: jBoss jBPM GPD.

In Table 2, the evaluation of jBoss jBPM is provided.
Table 2: Evaluation of jBoss jBPM.

Criteria Description Values

Workflow Not able to represent some patterns, however these | 2: able to represent a great

patterns can be simulated using arbitrary cycles. number of workflow
patterns

Semantic jBPM does not have semantic support. 0: No semantic support

Support

Efficiency jBPM is a heavy engine that requires a powerful | 1. Engine available, but

Server. slow

Easiness to | If the process designer is intimately familiar with | 1: Model understandable,

understand Java, jBPM may be a good choice, while if this is not | but design by coding

and design the case, choosing jBPM is less advisable.

Connectivity

jBPM is able to be integrated with external system
using Java coding.

2: Able to be integrated
with external system

Time
modeling

Time can be simulated; jBPM has a calendar class
and other time tools to implement this.

1: The time model can be
simulated

Extensibility

It’s not possible to derive custom patterns but we can
design custom activities.

0: Unable to be modified

3.3.5 YAWL

YAWL (Yet Another Workflow Language) (Hofstede et al., 2008) is a workflow
language defined by the authors of the reference articles on workflow patterns
(Aalst et al., 2007). YAWL is supported by a software system that includes an
execution engine and a graphical editor. The system is open source, distributed
under the LGPL license. In Figure 15 a screenshot of the YAWL editor is

provided.

21

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

Specilication Net Din Dements Took Vew pisin

D20 »irk B 2 A %
olalo
L= Rl (5) Cruste S s
0|33 h
+ ®—1{e]) o) {8, llof!
in Top Decidets # Learn to play ™ H'-_:\J Jain band ._ '-M'iu_:snnu Fr— H-’-
4 Taak e make musie b Instrument L . : e
o Lt (™ - Tk o= \
- anual Y ot -4 | 2] reeording |
y futoeraied %\ ruston; | Ducide to go Initial sala Ll
§ rouinn N Ty AiRicnpinend o o z salo ([perfornamee |
Do audition everyhing
you are told i = §- =
@— o e @ e (8
Dnrt"i'ap Develop as """'"f'cnun path _-Blake Record
artist -
Develop bad
habits |—
Do tour Rehsarse
s
1 mzkio Racond o' o [
—_— —
®——4] =5 —@
in ake Choose Recard Dape? Send recard Out Maks
Record songs songs o marketing Record
dept

Figure 15: screenshot of YAWL editor.

Designers of YAWL decided to take Petri nets as a starting point and to extend
this formalism with three main constructs, namely or-join, cancellation sets, and
multi-instance activities. These three concepts are aimed at supporting five of the
Workflow Patterns that were not directly supported in Petri nets, namely
synchronizing merge, discriminator, N-out-of-M join, multiple instance with no a-
priori runtime knowledge and cancel case. In addition, YAWL adds some
syntactical elements to Petri nets in order to intuitively capture other workflow
patterns such as simple choice (xor-split), simple merge (xor-join), and multiple
choice (or-split). During the design of the language, it turned out that some of the
extensions that were added to Petri nets were difficult or even impossible to re-
encode back into plain Petri nets. As a result, the original formal semantics of
YAWL is defined as a Labeled Transition System and not in terms of Petri nets.

The evaluation of YAWL system is provided in Table 3.
Table 3: Evaluation of YAWL system.

Criteria Description Values

Workflow Although YAWL was considered for the purposes of | 1: Able to represent
patterns the patterns-based evaluation, some patterns needed | crucial workflow patterns
structured loop to be represented. Nevertheless, it is
possible to simulate it using arbitrary loops.

Semantic YAWL does not have semantic support. 0: No semantic Support
Support

Efficiency YAWL has workflow engine but still is a beta, its | 1: Engine available, but

22

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

engine is slow and unstable. slow
Easiness to | YAWL has a workflow Editor written in Java. 2: Model understandable,
understand with native authoring tool
and design
Connectivity | YAWL is able to be integrated with external system | 2: Able to be integrated
using Java. with external system
Time It is possible to define time driven processes with | 1. The time model can be
modeling timers using the YAWL editor and it is possible to | simulated

control processes life cycle with the workflow engine

Extensibility | YAWL is open source. 1. Open Source, but
difficult to modify

3.3.6 Windows Workflow Foundation

Windows Workflow Foundation (Microsoft, 2009) is a framework that enables
users to create workflows. Windows Workflow Foundation comes with a
programming model, a hostable and customizable workflow engine, and tools for
quickly building workflow-enabled applications on Windows.

Windows Workflow Foundation supports the following authoring modes for
workflow implementation:

— Code-only. This is the default authoring mode for Windows Workflow
Foundation. It enables you to use C# or Visual Basic code to specify a
workflow using the Windows Workflow Foundation API set. In the code-
only workflow, the workflow definition uses C# or Visual Basic code to
declare the workflow structure. A code-only workflow must be compiled.

— Code-separation. This mode enables you to define workflows by using
workflow markup and combining it with C# or Visual Basic code. Unlike
the no-code authoring mode, code-separated workflows must be compiled
and do not have the option of being loaded directly into the workflow
runtime engine.

— No-code. This mode enables you to create a workflow by using workflow
markup. You can then compile the workflow with the Windows Workflow
Foundation command-line workflow compiler, or you can load the
workflow markup file into the workflow runtime engine through a host
application. Windows Workflow Foundation gives designers and
developers a declarative way to create workflows by using eXtensible
Application Markup Language (XAML) to create markup source files.

Every running workflow instance is created and maintained by an in-process
runtime engine that is commonly referred to as the workflow runtime engine.
When a workflow model is compiled, it can be executed inside any Windows
process including console applications, forms-based applications, Windows
Services, ASP.NET Web sites, and Web services. Because a workflow is hosted
in process, a workflow can easily communicate with its host application.

In Table 4 the evaluation of the windows workflow foundation is provided.
Table 4: Evaluation of WF.

23

Title: Solutions for Application

Logic Reconfiguration

Id Number: WP 4, D4.1

Criteria Description Values
Workflow Although WF is not based in standard patterns, it is | 2: Able to represent a
patterns able to represent all recommended workflow patterns | great number of workflow
(Design can be very complex in some cases) patterns
Semantic WEF does not have semantic support. 0: No semantic support
Support
Efficiency Engine is heavy. 1: Engine available, but
slow
Easiness to | The proposed model is easy to understand although | 1: Model understandable,
understand workflows are addressing to code. but design by coding
and design
Connectivity | The connectivity is made only by Web Services in | 2: Able to be integrated
ASP.NET and the connectivity with external systems | with external system
can be made using C#.
Time WF has a hosting layer with runtime services, one of | 2: Able to Model the time
modeling them is the timer runtime service. At workflow
model level we can design workflows with delay
activities.
Extensibility | It is not possible to derive custom patterns but we can | 0: Unable to be modified
design custom activities.

3.3.7 OWL-S

OWL-S (Martin et al., 2004) is based on the OWL (Ontology Web Based)
Recommendation and supplies a core set of markup language constructs to
describe Web services in an unambiguous, computer-interpretable form. To make
use of a Web service, a software agent needs a computer-interpretable description
of the service, and the means by which it is accessed. In this context, an important
goal for markup languages is to establish a framework within which these
descriptions are made and shared. Web sites should be able to employ a standard
ontology, consisting of a set of basic classes and properties, for declaring and
describing services, and the ontology structuring mechanisms of OWL provides
an appropriate, Web-compatible representation language framework within which
to do this. OWL-S enables the creation of ontologies for any domain and the
instantiation of these ontologies in the description of specific Web sites. Tasks
that OWL-S is expected to enable are:

— Automatic Web service discovery: automated location of web services
(WSs) that provide a particular service and adhere to requested constraints

— Automatic Web service invocation: automated execution of an identified
WS by a computer program or agent

— Automatic Web service composition and interoperation: automatic
selection, composition and interoperation of WSs to perform some tasks

— Automatic Web service execution monitoring: individual services and
composite services generally require some time to execute completely; it
is useful to know the state of execution of services

24

Title: Solutions for Application

Logic Reconfiguration

Id Number: WP 4, D4.1

The OWL-S ontology has three main parts: the service profile, the process model
and the grounding.

— The service profile is used to describe what the service does. This
information is primary meant for human reading, and includes the service
name and description, limitations on applicability and quality of service,
publisher and contact information.

— The process model describes how a client can interact with the service.
This description includes the sets of inputs, outputs, pre-conditions and
results of the service execution.

— The service grounding specifies the details that a client need to interact
with the service, as communication protocols, message formats, port
numbers, etc.

The following table provides the evaluation of OWL-S.
Table 5: Evaluation of OWL-S.

Criteria Description Values
Workflow OWL-S offers many control constructs. 1: Able to represent
patterns crucial workflow patterns
Semantic There is semantic support to semantically | 1: Semantic support
Support communicate the processes in the proposed model

(ontology).
Efficiency There is no engine available. 0: No available Engine
Easiness to | The model is quite easy to understand. The OWL-S | 2: Model understandable,
understand environment exists in the form of a loose collection | with native authoring tool
and design of individual tools that focus on different specific

aspects of its conceptual model.

Connectivity

The connectivity is given in the "grounding”. The
grounding provides the needed details about transport
protocols, allowing for automatic invocation of
services.

1. Interoperable with

external systems

Time From the specification it seems that it is not possible | 0: Unable to model the
modeling to define time driven processes. time
Extensibility | Is should be possible to derive custom patterns from | 2: Able to create custom

the proposed model.

patterns

3.3.8 Orchestration Tools Comparison

The features of the tools that have been evaluated are summarized in the

following.

JBPM has a wide community and it is always in a continuous developing and bug-
fixing processes. jBPM includes an Eclipse plug-in to model business processes.
The developer can specify a workflow using a drag and drop interface, adding
nodes and transitions in a very seamless way. Eclipse automatically creates an
XML file that defines the process. The developer can deploy this file and jBPM

25

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

workflow engine controls its execution. JBPM is a Java-based solution, also
supporting OSGi.

The YAWL initiative comes from the workflow research community, it supports
almost all workflow patterns and is available a graphical editor. YAWL is an open
source and is able to be integrated with external system using Java. The major
drawback of the YAWL engine is quite inefficient and far from being stable.
Windows Workflow Foundation (WF) is a Microsoft technology for defining,
executing, and managing workflows. This technology is part of .NET Framework
3.0 which is available natively in the Windows Vista operating system. WF has
many advantages, e.g. typical Visual Studio‘s “Drag and Drop” system design
applied to flowcharts, similar to Visio or other drawing tools. When a workflow
model is compiled, it can be executed inside any Windows process including
console applications, forms-based applications, Windows Services, ASP.NET
Web sites, and Web services. The main disadvantage of WF is the dependence of
Windows platform.

OWL-S supplies a core set of markup language constructs to describe Web
services in an unambiguous, computer-interpretable form. For OWL-S there is no
engine available, however it can be used to establish a framework within which
the services descriptions are made and shared in an environment in which other
workflow engine are implemented.

3.4 Comparison of Wiring and Orchestration Approach

As introduced before, both approaches can be applied for specific application
scenarios. In addition, they can be combined in order to build applications like the
multiplayer PacMan for example as shown in Section 3.1. However, both
approaches have their assets and drawbacks, which are summarized in Table 6.

26

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

Table 6: Summarized comparison between wiring and orchestration approach.

Orchestration approach Wiring approach

CON: Application logic is embedded in
the code and therefore IT knowledge is
required.

PaXelalllersti[oTa R IeLe[[Ne [SINNITIe) PRO: People without IT knowlege can
EQERNETEREREE] design a workflow using available tools.

PRO: Fine-granular realization of
adaptation and therefore manifold types
of adaptation possible.

CON: High-level adaptation and

AETIENN therefore types of adaptation limited.

PRO: Graphical tools for the workflow CON: No graphical tools for specifying the

B IR design are available. wiring is available at the moment.

CON: application logic embedded in the
code and therefore legibility may suffer.
PRO: Framework support can alleviate

definition of application logic.

Ao oIt 1o g Mo e[ETsTToNIIIA] PRO: Workflows have a high legibility.

PRO: possible users are:
-application developers

. . CON: Developers are main users.
-service providers

CON: The components know which
PRO: The orchestrator creates an method of which component to call, no
WIS ARehliGeIihlefl instance of the workflow. The activities in |easy monitoring can be performed.

a workflow instance can be monitored. [PRO: Graphical tool to monitor current
system configuration is available.

CON: Only a centralized architecture can [PRO: Both, centralized and distributed

A G be supported. approach can be supported.

PRO: Loosly coupled service enable PRO: Tighter coupled services enable
independent service development satisfactorily communication performance
CON: Performance of communication between services even in the game

may suffer. domain.

Service Coupling

We identified various criteria which may be relevant in order to decide which
approach to use in which use case. The orchestration approach on the one hand
can be applied even by people without IT knowledge because of the availability of
various graphical tools for designing workflows and service orchestrations.
Furthermore, many realizations offer to monitor the execution of the orchestrated
service. But the drawbacks are that a central orchestrator is required which in
addition must have access to all required services. Therefore, such orchestrator
may become a bottleneck. Furthermore, the performance of the communication
between services is quite low as some of our experiments have shown. We will
discuss this topic on more detail in Section 5.

The wiring approach on the other hand provides high performance in
communication between services. But using this approach, the definition of
workflows is not provided. However, as already shown in Section 3.1, both
approaches can be combined in order to take advantage of both.

27

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

4 Architectural Solutions for Application Logic
Reconfiguration

In this section we will present roughly three architectural alternatives regarding
the realization of application logic reconfiguration.

4.1 Architecture of Wiring Approach

The wiring approach can be realized in two ways, namely a centralized and a
decentralized approach. The main assumption of the centralized approach is that
there exists a server which is accessible by all clients and vice versa like depicted
in Figure 16. On the OPEN Server, the main part of the OPEN middleware is
executed, including the Configurator. Other middleware components like the
Context Manager or the Migration Manager may also run here. A complete list of
middleware parts according descriptions are presented in (Nickelsen et al., 2009).
The Migration Manager is responsible for controlling and executing the migration
of services. The Context Manager on the other hand collects and evaluates
available context information and makes this information available to other
middleware parts. Finally, the Configurator performs the various kinds of
adaptation, including the reconfiguration of wired services like described in
Section 3.2.1 and 3.2.2. Therefore it may access the Context Manager in order to
get the latest context information to determine the most appropriate kind of
adaptation.

OPEN Server OPEN Client
. Application Application
OPEN Middleware (Server) A - == service [T

@ OPEN Middleware (Client)

OPEN Client

Application Application ||
Service : Service

@ OPEN Middleware (Client)

Figure 16: The centralized approach for realizing adaptation of services.

The Application Services on the other hand are services which implement an
application or parts of it. They are executed on OPEN Clients. Furthermore, on
each client a client-version of the OPEN middleware is running. Among others, it
collects context information which the device provides like for example location,

28

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

battery power, CPU rate, etc. and sends it to the Context Manager of the OPEN
Server. Furthermore, it may realize reconfigurations initialized by the
Configurator.

Following this centralized architecture, the deployment of the PacMan game
could look like depicted in Figure 17.

OPEN Client

Jwiar)
uonetmddy SOBLKTM] Ty

i oibr

OPEN Middleware (Client)

OREN Sérver

OPEN Midtllgtvare (Server)

Figure 17: Centralized architecture for the single player PacMan before and after migration of the
user input.

All parts of the application run in this case on one device together with the client
version of the OPEN middleware. Other deployment alternatives are also possible,
like for example running the GameState component on one PC, and the
GameLogic on another. The main part of the OPEN middleware runs on the
OPEN Server.

A contrary approach to the centralized approach is to omit the specific OPEN
Server. Therefore, an application is built out of independent OPEN Clients, which
build a federation like shown in Figure 18.

29

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

OPEN Client OPEN Client
Application Application Application Application
Service == Service Service == Service
OPEN Middleware OPEN Middleware
: 25 :

[

OPEN Client OPEN Client
Application Application Application Application
Service == Service Service == Service
OPEN Middleware U OPEN Middleware

Figure 18: A decentralized architecture realizing adaptability of services.

This approach has some assets and drawbacks compared to the centralized
approach. As there is no central server available, service discovery becomes more
complex as well as managing context information and performing migration.
Furthermore, the realization of service orchestration is not possible. The main
advantage of a decentralized architecture is that the clients do not need a
connection to a central server anymore. Thus, there is no single point of failure.
On the other hand the middleware running on each client will be more complex
than in the centralized approach. Adaptation and reconfiguration strategies would
have to be established in a distributed way. Furthermore, the middleware may
become too resource-consuming in order to be executable on a PDA for example.

4.2 Architecture for Orchestration Approach

The orchestration approach requires a central server which has access to all
required services in order to orchestrate them building an application. In Figure 19
a possible deployment of the required software parts is shown.

30

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

Server
Application
/ Service
i OPEN Server |
Client / |
OPEN Middl S / Application
Application Service iddleware (Server) p . '
OPEN Middleware
(Client) ' Server
ontext Manager \ N Apgzlirs?;céon
N
\ :
Application
l Service l

Figure 19: Architecture for the orchestration approach.

The Orchestrator decides which services to include in a workflow. To do this, the
Orchestrator takes a workflow description like introduced in Section 3.3 and tries
to find the according services within the network. Finally, the orchestrated
services may build a new service, which in turn can be used by other services.
Figure 20 shows how the deployment of the multi-player PacMan game could
look like.

Server
Single Player
PacMan
OPEN Server / !
- i Single Player
OPEN Middleware (Server) // PacMan I
Server
ontext Manager \ N S";,g;i,\;zer
\ I
\ Single I;Iayer
I PacMan I

Figure 20: Orchestration approach for realizing the multiplayer PacMan game.

There are several single player PacMan games running on different devices. Each
of them offers a service through which the Orchestrator can send and retrieve
ghosts in order to realize the multi player PacMan game, like introduced in
Section 2.2 and illustrated in Figure 6. The Orchestrator takes rules, which

31

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

describe among others where to send ghosts or how to adapt the speed of the
ghosts. To do this, the Orchestrator takes information from the Context Manager
in order to decide how to adapt the orchestration.

4.3 Architecture of Combined Approach

An architectural solution for combining the wiring and the orchestration approach
could look like is depicted in Figure 21.

OPEN Client OPEN Client

OPEN Middleware (Server)

Figure 21: Possible deployment for the PacMan game integrating both, the wiring and the
orchestration approach.

In this solution, the Configurator is responsible for adapting the single-player
PacMan games while the Orchestrator coordinates the communication between
them in order to realize the multi-player PacMan game

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

5 Communication Aspects

As already explained above, the application logic is mostly only one part of an
application. Another important part is the user interface, which builds the bridge
between the user interaction and application logic. That means, services within the
user interface layer have to communicate with each other, and with services
within the application logic layer. Figure 22 illustrates possible communication
paths as black lines.

!

User Interface Layer

Servi

Apvylication LogicLaye

Services

Figure 22: Possible communication paths within typical service-oriented applications.

There exist many technologies to realize the communication between services.
TCP/IP for example is a quite low level mechanism to realize the communication.
More high-level communication techniques are for example Remote Method
Invocation (RMI) and Web Services based on the exchange of SOAP messages.
Furthermore there exist more enhanced middleware frameworks like CORBA
(Common Object Request Broker Architecture) or OSGi (Open Service Gateway
initiative) for example, which bring already additional functionality with them
like secure communication, look-up mechanisms, or event-based communication.
There are a lot of parameters which influence the decision which technique to use.
In the following we will shortly introduce some standard settings and appropriate
techniques.

The first setting we consider is to have user interface services and application
logic services running on two different machines. The user interface is executed in
a browser and implemented with JavaScript while the application logic is written
in Java using OSGi and which offers their functionality via Web Services by
exchanging SOAP messages.

33

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

User Interface Layer

JavaScript JavaScript

Application LogicLayer

OSGi
Bundle OSGi
Bundle

Figure 23: User Interface and application logic deployed on different machines and
communicating via web services.

However, internally, the application layer services may communicate via RMI,
OSGi, or CORBA for example. This setting is appropriate, if communication
between the user interface services and application logic services does not have to
be very fast as the transfer time of a single dataset through Web Services can take
up to 400 milliseconds. However, the advantage is, that the user interface
implementation and application logic implementation are independent from each
other regarding the programming language and the operating system. The
JavaScript application can for example be executed in a browser on a PDA with
Linux running, while the application logic can reside on a PC with Windows
running. It is also possible to use CORBA within the application layer instead of
OSGi. Also adaptation for the user interface and application logic can be
performed independently from each other.

In Figure 24 an alternative setting is shown. Here both, the user interface and the
application layer are realized using OSGi.

34

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

User Interface Layer

OSGi 0SGi
Bundle Bundle

Application Logic Layer

OSGi . 0SGi
Bundle 0OSGi Bundle
Bundle

Figure 24: Both, the user interface and the application logic are realize using OSGi.

The advantage is that the same adaptation mechanism can be used to adapt the
user interface and the application logic. Furthermore, the communication between
network boundaries is much faster than using Web Services. One disadvantage is
that an OSGi framework has to be executed on the client side which may be not
available for all platforms. However, we already executed OSGi bundles
successfully on a Windows Mobile 5 platform. One disadvantage of OSGi is that
it is only available for Java applications. Thus it is not possible to implement one
part in Java and another in C# for example. However, CORBA provides this
functionality but needs an Object Request Broker running on each peer which in
fact is not available for all kinds of platforms.

Many other settings are imaginable, but are out of scope of this deliverable. In
order to realize application logic reconfiguration using the wiring approach, all
presented alternatives are feasible and already partially tested. However, many
orchestration approaches require services offered as Web Services with the
advantages and drawback already presented.

35

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

6 Conclusion and Next Steps

In this deliverable, we introduced two main approaches for realizing application
logic reconfiguration, namely the wiring approach and the orchestration approach.
Furthermore, we introduced techniques and types of adaptation for both
approaches followed by a comparison. Next, two basic architectures have been
introduced which show how the several involved middleware services interact and
where they could be deployed. Finally, some communication aspects have been
discussed.

The next steps will be to decide which approach to use or if an integrated solution
is more appropriate depending on target platforms, considered applications and
available middleware components. Furthermore, the architecture has to be
finalized and the integration of other middleware parts like the Context Manager
and the Migration Manager has to be done.

36

Title: Solutions for Application | Id Number: WP 4, D4.1
Logic Reconfiguration

7 References

Aalst, W., Hee, K. Workflow Management, Models, Methods, and Systems. First
MIT Press paperback edition, 2004.

Aalst, W., Hofstede, A., Russell, N. Workflow Patterns Initiative. 2007. Online
available at: http://www.workflowpatterns.com/patterns/index.php

Active Endpoints. The ActiveBPEL Community Edition Engine. 2008. Online
available at http://www.activevos.com/community-open-source.php

Alves, A. et.al. Web Services Business Process Execution Language. Version 2.0.
OASIS Standard, 2007. Online available at: http://www.oasis-
open.org/specs/

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.. Pattern-
Oriented Software Architecture. Wiley, 1996.

Faatz, A., Goertz, Manuel. Requirements for OPEN Service Platform. OPEN
Deliverable D1.1. 2008.

Hofstede, A. et al. YAWL — Yet Another Workflow Language. 2008. Online
available at: http://yawlfoundation.org/index.html

JBoss. JBoss JBPM. 2009. Online available at:
http://www.jboss.com/products/jopm/

Martin, D. et al. OWL-S: Semantic Markup for Web Services. W3C Member
Submission 22 November 2004.

Microsoft. Windows Workflow Foundation. 2009. Online available at:
http://msdn.microsoft.com/en-us/library/ms735967.aspx

Nickelsen, A., Olsen, R. L., Schwefel, H.P., Martin, M., Kovacs, E., Ghiani, G.,
Klus, H., Marzorati, S., Grasselli, A., Piunti, M. Detailed Network
Architecture. OPEN Deliverable D3.1. 2009.

Niebuhr, D., Klus, H., Anastasopoulos, M., Koch, J., WeiR, O., Rausch, A. DAISI
— Dynamic Adaptive System Infrastructure. IESE-Report No.
051.07/E, Fraunhofer Institut fir Experimentelles Software
Engineering, 2007.

Russell, N., Hofstede, A., Aalst, W., Mulyar, N. Workflow Control-Flow Patterns
: A Revised View. BPM Center Report BPM-06-22, BPMcenter.org,
2006.

37

