

OPEN Project
STREP Project FP7-ICT-2007-1 N.216552

"The information in this document is provided "as is", and no guarantee or warranty is given that the information

is fit for any particular purpose. The above referenced consortium members shall have no liability for damages of

any kind including without limitation direct,special, indirect, or consequential damages that may result from the

use of these materials subject to any liability which is mandatory due to applicable law. Copyright 200.. by

…[Annotation: please list all partners who contributed to the respective project deliverable]."

OPEN Partners:

CNR-ISTI (Italy)
Aalborg University (Denmark)

Arcadia Design (Italy)
NEC (United Kingdom)
SAP AG (Germany)

Vodafone Omnitel NV (Italy)
Clausthal University (Germany)

Title of Document:
 System support for application migration

Author(s): Anders Nickelsen, Rasmus Olsen (AAU), Miquel Martin(NEC),

Holger Klus (ClU), Giuseppe Ghiani (CNR)

Affiliation(s): AAU, NEC, CNR, ClU, Vod

Date of Document: Dec 2008

OPEN Document: D3.2

Distribution: Public

Keyword List:

Version: Draft

Title: Detailed network architecture Id Number: D3.2

Abstract

This document describes in brief the implemented prototypes and demos

developed as a part of WP3 implementation work carried out in the first year of

OPEN. This contains three demos; one related to context triggered service

migration, one with specific use of context to select the appropriate target device

to migrate the service session; and one to illustrate the OPEN platforms

capability to support logic reconfiguration in a game scenario. The demos are for

the first year working more or less independently, while second year will search

to bring the demos into an integrated OPEN platform.

Title: Detailed network architecture Id Number: D3.2

 1

1 INTRODUCTION ... 2

2 PROTOTYPE DESCRIPTION .. 4

2.1 MOBILITY SUPPORT AND CONTEXT INFORMATION MANAGEMENT 4
2.2 DISCOVERYMAP AS CONTEXT PROVIDER .. 6
2.3 CONTEXT AWARE LOGIC RECONFIGURATION ... 9

3 FUTURE WORK AND NEXT STEPS .. 12

4 REFERENCES .. 13

Title: Detailed network architecture Id Number: D3.2

 2

1 Introduction

WP3 has a prototype deliverable due in M12 and in M23. These deliverables will

illustrate the system support for application migration researched and developed in

WP3. The deliverable approach is iterative meaning that the M12 deliverable will

illustrate a first version of the system support and the M23 deliverable is the M12

deliverable revised, containing additions developed during year 2 of OPEN.

This document specifies details regarding the M12 prototype deliverable. The

purpose of the deliverable is to illustrate WP3 functions interaction in a scenario.

The following text describes which functions are in focus in the first version and

also describes a scenario performed by the prototype(s).

As the overall purpose of WP3 is to research context management solutions and

mobility support these are the primary functions contained in the first version:

• Context management

• Migration orchestration

• Migration trigger

• Mobility support

• Application logic reconfiguration trigger

The mobility support and context information management prototype will

show full migration of a simple video-streaming application from a mobile

terminal to a large-screen computer. The application is served from a non-OPEN

aware video server (e.g. using VLC) and is displayed to the user on the mobile

terminal. All nodes, except the user’s mobile device (which has a Windows

Mobile system), are running Linux.

When the user uses a computer with a large screen, the receiving end of the

application is migration onto that computer for enriched experience by the user.

The migration triggers are issued based on gathering of relevant context

information. The information used for the triggers is for instance user location

and orientation/direction. The user location can be determined using the

Bluetooth signal strength between the computers and a mobile phone on the user,

and detecting whether the user is oriented toward the screen can be done by

analysing if the user is active on the computer or using an electronic compass as

done in the DiscoveryMap context provider prototype described below. Once

the migration is triggered, the prototype illustrates context-aware migration by

using user-location and user-profile settings and chooses the large screen

computer as target device. Throughout the migration process, the connectivity of

the streaming application is assured, despite the fact that the network context of

the receiving device changes from the mobile terminal to the computer.

Upon successful migration, the application illustrates context-awareness by setting

the volume depending on the number of people in the room. If the spectator is

Title: Detailed network architecture Id Number: D3.2

 3

alone, the volume is set high, and if there are more people, the volume is kept low.

In the first version prototype, the number of people can be simulated by entering a

specific number into the system. In future versions, the number can be detected by

presence of device actually in the room.

The context aware logic reconfiguration prototype illustrates how context

information can be used to reconfigure the internals of an application in a more

complex way than just setting the volume.

Title: Detailed network architecture Id Number: D3.2

 4

2 Prototype description

2.1 Mobility support and context information

management

Figure 1 illustrates the flow of functions and information involved in running the

described scenario. Figure 2 shows the node and network setup for the prototype.

Figure 1: Sequence diagram of function flow during migration in the prototype (U=User,

MT=mobile terminal, WS=workstation)

Encircled actions are performed on the

migration server (OPEN platform)

Title: Detailed network architecture Id Number: D3.2

 5

LAN 2

Change of location Video server

User

Switch

Access point

Access point

Switch

Switch

LAN 1

Video display migrated

Figure 2: Architecture of prototype setup

The demonstrator demonstrates:

Context-triggered and context-aware migration of a video-streaming application

using a migration server

Components active in demonstrator

- Streaming application (VLC server and client)

- Context management (SCMF, Siafu (context simulator), new providers

(Bluetooth, DiscoveryMap))

- Trigger management (Simple user based, semi automatic via position

change (notification from context), complex automatic algorithm)

- Migration orchestration (handles which components go where)

- Security (encrypted wireless channel, key exchange, security associations,

login session, dialog pop-up on location change)

- Mobility support (application is first run from mobile device and then on

workstation, hence, support for mobility is needed, forwarding, port-

mapping, route reconfiguration, mobile IP, IPv6)

- State persistence logic (buffering video content…)

Title: Detailed network architecture Id Number: D3.2

 6

Figure 3: Illustration of which functions are used when during migration. Dashed functions are not

of interest in D3.2 - but may be later on.

Milestones for development

- Bluetooth context provider (provides ‘location’ or ‘signal strength’ to

SCMF)

- Mobility support (redirect stream to new target)

- Migration orchestration (control application on nodes)

- Trigger management (without persistence logic, handling manual triggers)

- Trigger management from context information (interface to SCMF, Siafu)

- Context-aware reconfiguration (resize screen, adjust volume, …)

- Framework for intelligent and automatic trigger management

- Persistence logic (hand-over of latest state)

2.2 DiscoveryMap as context provider

For the end user, the DiscoveryMap is mainly a graphical-interaction component

embedded on the OPEN-client that may facilitate her in discovering the available

target devices, their capabilities and their state.

Title: Detailed network architecture Id Number: D3.2

 7

From an internal point of view the DiscoveryMap is also a context-provider. It is

aware of the layout of the environment and of current location/direction of the

user and it raises relevant events related to user’s location and/or heading: a

“location changed” occurs whenever the user approaches a new tagged point; a

“new device(s) pointed” event is raised only if the set of the available devices

currently pointed by the user changes (i.e. when the user watches towards a new

device).

What has already been done

So far, a DiscoveryMap version for Windows Mobile devices has been developed

in C#. The component expects the following inputs:

- XML specification of the environment

o Size of the area, expressed in centimeters, and absolute direction of the

area, expressed in degrees (e.g., the heading of the room’s edge with

respect to the North).

o Device information for all devices in the area (name, type, address,

position within the area)

- ID of the tag currently detected by the localization support (we have used so

far a RFID infrastructure)

- Absolute direction of the user detected by a wearable electronic compass

- State of the stationary devices, currently obtained by a device discovery

protocol

The component provides the user with a basic map of the environment with

respect to the deployed target devices. Each device is represented by an interactive

icon which shows:

- the device type: different icons are used for different types

- the state of the device: a sign on the top-left corner of the icon indicates

whether the device is active (V) or not (X).

The current area map is automatically scaled to let all the devices fit on the

component widget. However, the user can zoom in or out the currently visited

point in order to have a better view of the neighboring devices. For facilitating the

spatial continuity when zooming, a grid of the area is also displayed.

The user’s line of sight is displayed by a green line and the devices s/he is

currently pointing are highlighted by green squares (see Figure 4).

Two presentation modalities are available on the DiscoveryMap:

- Map-centered (or north up): the map is fixed while user icon moves and

rotates according to user’s position and direction (see Figure 4 a and b);

- User-centered (or heading up): user icon is on the center of the widget

while the map is translated and rotated when the user moves or changes

direction (see Figure 4 c and d).

Title: Detailed network architecture Id Number: D3.2

 8

Figure 4: Map-centred (a, b) and user-centred (c, d) modes.

ISTI-CNR has performed a user test involving 11 people for evaluating the

usability of the DiscoveryMap. Since just a slight preference towards the map-

centered mode emerged, both modes are still available on the component

(allowing the user switch to the preferred mode).

Planned work

DiscoveryMap will exploit context information provided by the SCMF such as the

list of discovered devices (that, so far, comes from an embedded device discovery

protocol) and other location related information (such as discovered Bluetooth

beacons).

The Device Orientation parameter is also considered in the description of the

target devices. Such a value represents the direction of the target device with

respect to the visited area. It is fundamental to detect when the user is actually in

c d

a b

Title: Detailed network architecture Id Number: D3.2

 9

front of the main side of a device (e.g., at the display of a desktop PC or of a large

screen).

An investigation on whether the orientation of target devices would improve the

graphical presentation on the DiscoveryMap is being done (but no user test has

been performed yet). Temporal features of the devices may be considered too. For

example, information related to the estimated amount of time the user has to wait

before accessing a busy target device. Time-related information should be

available on the SCMF.

DiscoveryMap component may in the future be implemented in Java, in order to

make it potentially suitable to any device.

2.3 Context aware logic reconfiguration

In this section we will describe how the work of WP3 is used for application logic

reconfiguration which is considered in deliverable [3]. To illustrate that, we will

introduce how the Pacman game as introduced in [2] can become context-aware.

PacMan is a game where a figure called PacMan, which is steered by the user, has

to collect dots in a maze like depicted in Figure 5. Ghosts who are controlled by

the computer are running around with the goal to catch the PacMan. If the PacMan

collects special dots, ghosts and PacMan change roles for some seconds. That

means that the PacMan now can catch ghosts and that the ghosts try to run away.

Caught ghosts will be imprisoned in the middle of the maze for some seconds.

After some seconds the roles change back again. The goal for the player is to get

as much scores as possible by collecting dots and catching ghosts.

Ghosts

PacMan
Special dots for

initiating scared

mode

PacMan has to

collect these dots

to get points

Scared

Ghosts

Prison for

ghosts

Figure 5: The two modes of a single PacMan game. On the left hand side the game is in normal

mode where the ghosts try to catch the PacMan. On the right side the game is in scared mode

where the PacMan can catch the ghosts.

Within OPEN we defined scenarios where migration, and therefore adaptation

takes place [2]. Assume that the user starts playing Pacman on his PC at home

using his keyboard to steer the PacMan. Then he remembers that he has a PDA

with an accelerometer. Therefore, he wants to use the PDA to play the game. He

migrates the game using the OPEN middleware from the PC to the PDA. Using

Title: Detailed network architecture Id Number: D3.2

 10

the accelerometer he now can steer the ghost by tilting the PDA to the according

direction.

Already this small example shows why adaptation and the comprehension of

context information are important. Because of the limited screen size and

resources of his PDA, the game has to adapt to the target platform. Since there is

no place to display all information at once on the PDA, some options are now no

longer accessible directly, but moved into an extra dialog. Furthermore, the

number of dots within the maze is less than on the PC because of limited screen

size. Therefore, the game now has to adapt in a way that the player gets more

points for collecting a single dot. As it is more difficult to steer the PacMan on

such a small screen, the speed of the ghosts is also reduced. Depending on the

current game level, the artificial intelligence of the ghost is also adapted. All this

shows the importance of considering context information during adaptation. More

adaptation scenarios are described in more detail in [3] (Solutions for Application

Logic Reconfiguration) and [4] (Prototype for Application Logic

Reconfiguration).

First prototypes of the Pacman game have already been developed with focus on

different aspects of the game. We structured the game into several components

which communicate with each other through services like depicted in Figure 6.

Single PacMan Game

<<component>>

:GameState
GameStateIf

<<component>>

:GUI

GUIIfGameStateIf

<<component>>

:GameLogic
<<component>>

:InputPacman

InputPacmanIf

Figure 6: The internal structure of a single PacMan game.

We divided the game into four components, namely InputPacman, GameState,

GUI, and GameLogic. This structure is derived from the MVC pattern (Model,

View, Controller) [1] where the GUI and InputPacman represent the View, the

GameState represents the Model, and the GameLogic represents the Controller.

However, most applications are built out of components and services which have

to interact. Therefore, the Pacman example is only one example for such a system.

The division into components enables us to migrate the whole application but also

parts of it. So far we used two basic technologies to realize this application,

Title: Detailed network architecture Id Number: D3.2

 11

namely CORBA (Common Object Request Broker Architecture) [5] and Web

Services.

Using CORBA, the application has been running satisfactorily with good

performance. However, to write a CORBA component, the developer has to

specify the interfaces in IDL (Interface Definition Language), generate stubs and

skeletons, and he has to start the CORBA infrastructure, a quite heavyweight

system. Therefore, it is difficult to integrate devices like PDAs or mobile phones.

The advantage is that components can be written in different programming

languages like Java or C++ and that the communication has good performance.

Furthermore, there are already several infrastructure services available like a

Naming Service and Event-based Communication.

On the other hand it has been found that the implementation with Web Services is

not appropriate because of a lack of performance. The communication overhead is

too large to realize a distributed application like this game with these components.

However, there are other application domains where the usage of Web Service is

more appropriate like for the orchestration of different independent services.

Therefore, we developed a multiplayer Pacman scenario where different

autonomic Pacman games are orchestrated to a multiplayer Pacman game.

For both types of realizations we also developed and evaluated concepts for

application adaptation which are described in [3] and [4].

There are several touching points between WP3 and WP4 which we will now

introduce roughly. First, context information like screen size, location of user and

devices, network bandwidth and so on will be provided by WP3 and used in WP4

among other for application logic reconfiguration, but also for migration and the

adaptation of the user interfaces which is considered in WP2. A second main point

of collaboration is the realization of the communication between application

services. As described before, both so far evaluated technologies have their

advantages and drawbacks. Thus the network infrastructure is still a main issue

where solutions are developed in WP3. Therefore, the goal will be to find a

network infrastructure, which is easy to use for service developers, enables

communication with high performance, and is able to integrate resource-

constrained devices. Finally, it should enable the adaptation of services during

migration or on change of context information.

Title: Detailed network architecture Id Number: D3.2

 12

3 Future work and next steps

The demos for the first year did not aim specifically on an integrated

implementation, but on showing different core aspects of the migration concept,

keeping the implementation focused and relative simple, e.g. we assume a

migration server is present and do not implement all functionalities envisioned.

The demos therefore support each other to show the benefits of using the OPEN

platform. The next steps which will be the focus of year two of the project is first

to remove the assumption of a migration server thereby enabling service migration

in ad hoc scenarios, and second to provide the full integrated platform and show

this is working and capable of supporting the migration of a variety of services

(and in particular those developed in other work packages).

Title: Detailed network architecture Id Number: D3.2

 13

4 References

[1] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,

Michael Stahl. „A System of Patterns“, 1996.

[2] OPEN Deliverable D1.1, “Requirements for the OPEN Service Platform”,

2008.

[3] OPEN Deliverable D4.1 „Solutions for Application Logic

Reconfiguration“, 2009.

[4] OPEN Deliverable D4.3 “Prototype for Application Logic

Reconfiguration”, 2009.

[5] Object Management Group (OMG). “Common Object Request Broker

Architecture: Core Specification”, 2004. Online available at:

http://www.omg.org/docs/formal/04-03-12.pdf

