

OPEN Project
STREP Project FP7-ICT-2007-1 N.216552

"The information in this document is provided "as is", and no guarantee or warranty is given that the information

is fit for any particular purpose. The above referenced consortium members shall have no liability for damages of

any kind including without limitation direct,special, indirect, or consequential damages that may result from the

use of these materials subject to any liability which is mandatory due to applicable law. Copyright 200.. by

…[Annotation: please list all partners who contributed to the respective project deliverable]."

OPEN Partners:

CNR-ISTI (Italy)
Aalborg University (Denmark)

Arcadia Design (Italy)
NEC (United Kingdom)

SAP AG (Germany)
Vodafone Omnitel NV (Italy)

Clausthal University (Germany)

Title of Document: Detailed network architecture

Author(s): A. Nickelsen, R. L. Olsen, M. Martin, E. Kovacs, G. Ghiani, H.

Klus, S. Marzorati, A. Grasselli, M. Piunti

Affiliation(s): AAU, NEC, CNR, ClU, Vod

Date of Document: Feb. 2009

OPEN Document: D3.1

Distribution: Public

Keyword List: Service migration, network architecture, OPEN

Platform

Version: V1.0

Title: Detailed network architecture Id Number: D3.1

Abstract

Deliverable D3.1 presents the work carried out in Work Package 3 during the

first year of the OPEN project, and elaborates on the OPEN platform and the

architecture for supporting service migration. The deliverable presents and the

developed architecture, distinguishing between core and support functions. This

description is followed by a set of deployment scenarios where we further detail

the interaction patterns, under the assumption of a centralized solution, i.e. using

a dedicated migration server. Finally, we also present an initial analysis of the

security requirements and sketch potential solutions to address them, The

conclusion section wraps up the documents and provides an outlook on the next

steps.

Title: Detailed network architecture Id Number: D3.1

 1

1 EXECUTIVE SUMMARY ... 3

2 INTRODUCTION ... 4

3 CORE FUNCTIONS FOR MIGRATION .. 8

3.1 MIGRATION ORCHESTRATION FOR TASK CONTINUITY .. 8
3.1.1 Candidate systems ... 8

3.2 CONNECTIVITY SUPPORT FOR MIGRATION .. 12
3.2.1 Candidate systems ... 14

3.3 CONTEXT MANAGEMENT ... 16
3.3.1 Candidate systems ... 18

4 SUPPORT FUNCTIONS FOR MIGRATION ... 24

4.1 TRIGGER MANAGEMENT .. 24
4.1.1 Functionality ... 24
4.1.2 Interactions ... 25
4.1.3 Requirements/Scenarios .. 25
4.1.4 Candidate systems ... 25

4.2 POLICY/PROFILE MANAGEMENT ... 25
4.2.1 Functionality ... 25
4.2.2 Interactions ... 26
4.2.3 Requirements/Scenarios .. 26
4.2.4 Candidate systems ... 26

4.3 SESSION MANAGEMENT ... 27
4.3.1 Functionality ... 27
4.3.2 Interactions ... 27
4.3.3 Requirements/Scenarios .. 27
4.3.4 Candidate systems ... 27

4.4 PERFORMANCE MONITORING ... 27
4.4.1 Functionality ... 27
4.4.2 Interactions ... 28
4.4.3 Requirements/Scenarios .. 28
4.4.4 Candidate systems ... 28

4.5 CLOCK/FLOW SYNCHRONIZATION .. 29
4.5.1 Functionality ... 29
4.5.2 Interactions ... 29
4.5.3 Requirements/Scenarios .. 29
4.5.4 Candidate systems ... 29

4.6 DEVICE DISCOVERY ... 30
4.6.1 Functionality ... 30
4.6.2 Discovery model .. 30
4.6.3 Interactions ... 32
4.6.4 Requirements/Scenarios .. 32
4.6.5 Candidate systems ... 32

4.7 SERVICE ENABLERS ... 35
4.7.1 Presence server ... 35
4.7.2 Location .. 36
4.7.3 Access Layer ... 37
4.7.4 Device Provisioning .. 37
4.7.5 Streaming .. 37

4.8 SUMMARY ... 37

5 DEPLOYMENT SCENARIOS .. 38

Title: Detailed network architecture Id Number: D3.1

 2

5.1 POTENTIAL ARCHITECTURES AND CHALLENGES ... 38
5.1.1 General Infrastructure .. 38
5.1.2 Network Operator / Cellular networks .. 39
5.1.3 Enterprise Networks .. 40
5.1.4 Home Networks ... 41
5.1.5 Ad-hoc/peer-to-peer networks ... 41

5.2 SUMMARY AND DEVELOPMENT PLAN .. 42

6 DETAILED INTERACTIONS IN THE OPEN SCENARIOS .. 43

6.1 HIGH LEVEL SCENARIO WITH INFRASTRUCTURE SUPPORT .. 43
6.1.1 SIP/IMS based architecture .. 44
6.1.2 Internet based architecture ... 47

6.2 DETAILED OPEN PLATFORM INTERACTIONS AT COMPONENT LEVEL 49
6.2.1 Interfaces between OPEN platform components .. 49
6.2.2 Interaction and component activity – example scenario ... 50
6.2.3 Migrating from many devices to many devices ... 52

6.3 DETAILED SOLUTIONS FOR SELECTED COMPONENTS .. 53
6.3.1 Solution proposal for Device Discovery ... 54
6.3.2 Context Management Framework ... 55
6.3.3 Mobility support in central migration server .. 60

7 SECURITY ASPECTS OF MIGRATION SUPPORT .. 65

7.1 OPEN SECURITY REQUIREMENTS AND SELECTION CRITERIA ... 65
7.2 OVERVIEW AND ANALYSIS OF EXISTING SECURITY SOLUTIONS .. 65

7.2.1 Secure connectivity ... 65
7.2.2 Security and privacy control for Context Management Framework 66
7.2.3 Trust establishment ... 67

7.3 SECURITY SOLUTIONS IN OPEN ... 67

8 CONCLUSIONS AND NEXT STEPS ... 69

9 REFERENCES .. 71

A GLOSSARY ... 73

Title: Detailed network architecture Id Number: D3.1

 3

1 Executive summary

This deliverable presents the work of Work Package 3 which has been carried out

during the first year of the OPEN project. Work Package 3 is focused on

developing the supporting platform for service migration as envisioned in the

project.

The deliverable starts by introducing the platform, followed by a dedicated chapter

on the core functions and describing them in further detail. The core functions

entail migration orchestration, connectivity support and context management,

which are core to the envisioned service migration. Following this, we describe

the supporting functions, e.g. performance monitoring, clock/flow synchronisation

etc. which are needed in order to obtain an efficient service migration and for

supporting the application and core components in the migration process.

From this we investigate different deployment scenarios in order to place

functionalities in the network, clarify assumptions, and explore possible

interaction models. Based on these investigations we choose to focus the

remaining work on scenarios which includes a migration server, i.e. a centralized

support service that enables the migration process. We elaborate this with message

chart diagrams, first with respect to external actors, and then with a focus on

internal OPEN components. Scenarios without a migration server, e.g. ad-hoc

scenarios are left for the second year in OPEN.

Finally, although not the core topic of the project and WP3, we take a look at the

security requirements of the OPEN platform, and take a brief look at what

possible means we can meet these requirements to obtain a secure service

migration.

We conclude the deliverable after the security section, and provide an outlook for

the coming period, which will focus on scenarios where no infrastructure is

available, i.e. scenarios where we cannot assume a migration server being

available. Further enhancements and clarification of the final interfaces

specifications between components is also to be expected in the coming time

period.

Work Package 3 work is supported in shape of several demos, developed by

different partners, illustrating different aspects of the OPEN platform as described

in this deliverable. The descriptions of those demos are documented in

Deliverable D3.2, whereas the reader is encouraged also to read this deliverable in

conjunction with Deliverable D3.1. Future aspects on this part are to reach a fully

integrated platform which is capable of running all the demo applications as

envisioned in different scenarios.

Title: Detailed network architecture Id Number: D3.1

 4

2 Introduction

An important aspect of ubiquitous environments is to provide users with the

possibility to freely move about and continue the interaction with the available

applications through a variety of interactive devices (including cell phones, PDAs,

desktop computers, digital television sets, and intelligent watches). With such

freedom envisioned, one big potential source of frustration is that people have to

start their session over again from the beginning at each interaction device change.

The purpose of the OPEN project is to enable migration of services and

applications, so that users may easily shift interaction devices and focus on the

service itself. In [4] this focal point was summarized as

Migration = Device Change + Adaptation + Continuity.

In [3] a set of scenarios describing the migration process as seen from a user‟s

point of view was described. Two major themes were creating the basis of this

document, namely gaming and business. From these, requirements to the system

were derived, which have been further analysed during the project.

In Work Package 3 the focus is on the supporting platform that enables

applications and services to migrate easily. By careful study of the requirements

described in [3] and [4] a set of functional blocks has been proposed. A short

summary of the investigations and rationale for the components are as follows:

 Migration orchestration: We will need a component to manage the

migration process, both at inter component level and also between

platform and application/services.

 Context management: We plan to trigger the migration based on the user‟s

given situation or context, hence we need a context management solution

to gather, distribute and provide access to context information for other

components.

 Mobility support: When the user moves around, there should be minimal

hassle of adjusting and setting the system to the correct network etc. hence

mobility support is needed.

 Trigger management: We will need a component to evaluate, based on the

given context, when to trigger a migration process.

 Session management: We will need a component to extract, store and

inject session information during migration in order to support application

state persistence, which is needed to feature for the continued use of the

application after migration.

 Policy management: Since many decisions are based upon policies, we

need to have a management framework to handle policies.

Title: Detailed network architecture Id Number: D3.1

 5

 Performance monitoring: In order to make the right decisions about when

and where to migrate, different performance metrics of the computational

environment can be monitored. These can be host specific such as

processing load, network specific such as end-to-end delay or bandwidth

and service (session) specific in terms of experienced throughput as a

quality of the service.

 Clock/flow synchronization: Some applications and services may require

data streams to be synchronized, in particular in gaming scenario

synchronization is important.

 Device discovery: Prior to any activity, it is important that relevant devices

(for a potential migration) have discovered each other. This is the purpose

of this component.

 Security: The application or service may contain sensitive and personal

data within its internal states potential for migration, which should not be

migrated to the wrong devices; hence security mechanisms are surely

needed.

All the above functions are graphically shown in Figure 1, which includes

components for the entire project.

Comm. interface

Application logic

layer

Middleware layer

Presentation layer

Core

Services

Usage

App. logic reconf/orchestration

UI Reconfiguration/Adaptation

Component repository/access

OPEN migration platformOPEN Application

S
ta

te
 p

e
rs

is
te

n
c
e
 lo

g
ic

Device discovery

Policy mgt

Context mgt.

Clock/flow synchronization

Security

Performance monitoring

Mobility support

Session mgt

Service enablers

Streaming

Presence

Location

Network

Context

provider
Service Enablers Interface

Migration orchestration Trigger mgt.

Migration ClientDevice

Comm. interface

Application logic

layer

Middleware layer

Presentation layer

Core

Services

Usage

App. logic reconf/orchestration

UI Reconfiguration/Adaptation

Component repository/access

OPEN migration platformOPEN Application

S
ta

te
 p

e
rs

is
te

n
c
e
 lo

g
ic

Device discovery

Policy mgt

Context mgt.

Clock/flow synchronization

Security

Performance monitoring

Mobility support

Session mgt

Service enablers

Streaming

Presence

Location

Network

Context

provider
Service Enablers Interface

Migration orchestration Trigger mgt.

Migration ClientDevice

Comm. interface

Application logic

layer

Middleware layer

Presentation layer

Core

Services

Usage

App. logic reconf/orchestration

UI Reconfiguration/Adaptation

Component repository/access

OPEN migration platformOPEN Application

S
ta

te
 p

e
rs

is
te

n
c
e
 lo

g
ic

Device discovery

Policy mgt

Context mgt.

Clock/flow synchronization

Security

Performance monitoring

Mobility support

Session mgt

Service enablers

Streaming

Presence

Location

Network

Context

provider
Service Enablers Interface

Migration orchestration Trigger mgt.

Migration ClientDevice

Figure 1: Illustration of components for the OPEN platform

Given the previous explanations, one can see that WP3 will focus on the lower

part of the the OPEN migration platform. The upper part is mainly related to WP2

while there is some interface between functions developed in other work

Title: Detailed network architecture Id Number: D3.1

 6

packages; this is in the system manifested between these upper and lower

component groups.

To recap the involvement of WP4, dealing with integration and inter

communication of the system functions: it is related directly to the common

communication interface marked as a background vertical block.

In the following part of the deliverable, we will focus on describing details of the

different components; detailed functionality descriptions, how components

interact and their respective interfaces. The purpose is to provide the

understanding of the system necessary to carry out first demo concept of the

system which is also Deliverable 3.2, [11]. Further work and refinements in the

coming part of the project will be based on this document.

The deliverable is structured as follows: First, in Chapter 3, we introduce the core

functionality required for service migration. Core functionality, includes migration

orchestration to ensure a correct migration, connectivity support during the

migration process and finally also context management to support a context

sensitive migration process, e.g. to trigger the service migration at the right time

and place.

Chapter 4 introduces the various support functions in the OPEN platform which

are not necessarily directly used in the migration process, but are supporting the

process in some way. Component requirements, functionalities and interactions

are described in the chapter.

In Chapter 5 we provide deployment scenarios for the components and

functionality shown in Figure 1, and detailed in Chapter 4 and 5. Different types

of network scenarios are described, including the description of aspects to the

different deployment scenarios. Finally, we focus ourselves in the year one, to a

scenario which relies on a migration server (centralised) which is the focus of the

following chapter.

In Chapter 6, based on the decision from previous to focus on scenarios including

a migration server, we investigate and detail the component interaction in three

levels; 1) an overall manner which addresses interaction with external service

components (external to OPEN), 2) internal interfaces and high level interaction

between OPEN components and finally 3) detailed interaction and activity

diagrams of the scenario detailing the interaction of components at the message

level.

In Chapter 7 we address the security part, which mainly focuses on security

analysis of the components. It should be noticed that as the main focus of the

project is not on security, this part will be limited to requirement analysis and how

we can utilise existing off-the-shelf solutions in the migration to meet the most

important requirements.

Title: Detailed network architecture Id Number: D3.1

 7

In Chapter 8 we conclude and provide an outlook of the coming project period, as

well as which challenges we will address. This outlook will be focused as

mentioned on the ad hoc scenario solution.

Title: Detailed network architecture Id Number: D3.1

 8

3 Core functions for migration

In this chapter an overview of the solutions is presented under development for

migration and technologies that will support service migration in OPEN. The

chapter focuses here on the core functions related to service migration, which are

under development in WP2 for user interface migration and in WP4 (T4.1) for

application logic reconfiguration.

3.1 Migration orchestration for task continuity

Migration orchestration controls the migration process – its operations start when

a migration trigger is received, and finishes when the application has successfully

migrated to the new device(s). As an orchestration component, this function will

interact with every other module in the platform, and ensure that all their

operations are carried out successfully and in the right order.

An example of migration orchestration is when migrating a user interface: then

various migration services need to be accessed: the reverse engineering for

building the logical description; the adaptation service; the state-mapper, which

maps the state of the source user interface in the target one; the user interface

generator for the target device; and the target device itself for uploading the

migrated user interface.

Migration orchestration interacts with the context management function, the

trigger management function, policy management and synchronization for its

management functionalities. It then orchestrates the functionality of the rest of the

modules in the platform, including network, user interface and application logic

reconfiguration.

The migration orchestration function is relevant in all of the migration scenarios.

3.1.1 Candidate systems

3.1.1.1 Generic orchestration mechanisms

There is a lot of literature that deals with the orchestration of a sequence of events,

or the concatenation of services. At the bottom of the problem, however, lies the

fact that orchestration systems are central to the environment they organize, and as

such, are highly specific.

3.1.1.2 Mechanisms for logic reconfiguration

In [12] some orchestration engines are analyzed as potential candidates for

application logic reconfiguration, these can be also considered as solutions for

OPEN migration orchestration.

Title: Detailed network architecture Id Number: D3.1

 9

3.1.1.3 UI and state migration: Scorcia

Sorcia, presented in [13] is a solution for enabling the migration of interactive

applications among various devices while preserving the state and adapting the

user interface to the capabilities of the target device is under development in

OPEN WP2 (see [13]) and WP4 (see [12]). This is allowed by a dynamic user

interface generation for different platforms (digital TV, mobile device, desktop)

using transformations that are able to generate UI in different implementation

languages (XHTML, XHTML+Javascript, Java for Digital TV, …). Logical

descriptions of existing interactive Web applications are automatically built and

are used, by means of suitable transformation, to dynamically generate user

interfaces that are adapted to various types of target devices and implementation

languages, including non-Web languages, with the state updated to the point at

which the interaction was left off in the previous device.

The architecture behavior relies on several software modules that perform a

number of activities. For example, the context management module proactivly

performs the monitoring of the current context and, at each change, evaluates the

new scenario. If better conditions are recognized, the module triggers this module

alert the user the possibility for migration: this is the case of a better device

(meaning that the new device has more suitable interaction resources, or more

processing power and/or memory, etc.) which has become available for migration

or of another one that has been freed by the previous users. The purpose of

transformational modules is, instead, to transform the user interface description

for a given platform into a new description suitable for a platform with different

interaction resources. Such transformation is obtained following a number of rules

indicating the most suitable transformation for each type of user interface element

or structure.

While users interact with the applications available in the intelligent environment,

the main migration features have to be supported; such features are: task

continuity, state preservation and adaptation to interaction resources of the target

device. For this purpose, the migration architecture supports a number of reverse

and forward transformations for adapting existing desktop Web applications to

various interaction platforms and supporting task continuity.

Title: Detailed network architecture Id Number: D3.1

 10

Figure 2: Example of a migration environment

The basic assumption is that there exists a large amount of easily accessible

content for desktop Web applications, which can be processed and transformed to

support migratory interfaces, even across non-Web implementation languages.

Figure 2 shows an overview of an environment empowered with migratory

interfaces. The client devices run a module, called migration client that subscribes

to the migration service and provides information regarding the device

characteristics. The devices access Web applications through the migration server,

which includes proxy functionalities. Migration can be triggered either by the user

(through the migration client) or can be automatically triggered by the smart

environment when some specific event (such as very low battery or connectivity)

is detected. A mixed initiative solution is also possible, in which the environment

suggests possible migrations based on the devices available and the user decides

whether or not to accept them. In the case of automatic identification of the

migration target, there is a module in the migration infrastructure that is able to

analyze the characteristics of the available devices and to identify the most

suitable one according to a number of rules.

Title: Detailed network architecture Id Number: D3.1

 11

The migration platform has been designed using a service-oriented architecture

and implemented using Web services. This means that the main functionalities

have been encapsulated in the following modules that can communicate with the

external world through XML-based interfaces:

• Device Discovery, which is the module in charge of discovering the devices

currently available for migration)

• Trigger Manager, which decides when the migration has to be activated

• Reverse Engineering, which builds the logical user interface descriptions from

the desktop Web implementations;

• Semantic Redesign, which transforms the logical description of the source user

interface into the logical description for the target device;

• State Mapper, which associates the state of the source user interface to the

logical description for the target device;

• User Interface Generator, which generates the user interface implementation

for the target device.

• Migration Device Module, which runs on each device notifying its

presence/availability for migration and provides information on the state of the

user interface running on each device;

• Migration Manager, which orchestrates the general behavior of the system

When the user accesses the application through an interaction platform other than

the desktop, the server transforms its user interface by building the corresponding

logical description and using it as a starting point for creating the implementation

adapted to the accessing device. In addition to interface adaptation, the

environment supports task continuity. To this aim, when a request for migration to

another device is triggered, the environment detects the state of the user interface,

which depends on the user input that has been provided in the source device

before activating the migration (e.g., elements selected, data entered) and

identifies the last element accessed in the source device. A logical version of the

interface for the target device is then generated, and the state detected in the

source device version is associated with the target device version so that the user

inputs (selections performed, data entered, etc) are not lost. Lastly, the user

interface implementation for the target device is generated and activated remotely

at the point corresponding to the last basic task performed in the initial device. In

the process of creating an interface version suitable for a platform different from

the desktop, Open uses a semantic redesign process. This part of the migration

environment automatically transforms the logical description of the desktop

version into the logical description for the new platform. Therefore, the goal of

this transformation is to provide a description of the user interface suitable for the

new platform. This means that intelligent rules are used for adapting the

description of the user interface to the new platform taking into account its

Title: Detailed network architecture Id Number: D3.1

 12

capabilities (e.g.: using constructs that are suitable for the new platform) but

ensuring at the same time that the original goal is maintained.

This solution allows the environment to exploit the semantic information

contained in the logical description and obtain more meaningful results than

transformations based only on the analysis of the specific user interface

implementation languages. In this case the semantic information is related to the

basic tasks that the user interface elements are expected to support.

3.1.1.4 Summary

While no single system can satisfy the specific requirements of the Open platform

(or any other functionality specific platform, for that matter), there are valuable

lessons to be learned from the orchestration strategies presented in these sections.

Web based applications in the Open platform will borrow from the Scorcia

system, while WP4 is likely to take its roots on the systems put forward in section

3.1.1.2. The rest of the platform will be adapted to the needs of the components,

bearing in mind the available orchestration patterns.

3.2 Connectivity support for migration

Mobility support is required in the middleware to handle connectivity when the

user is mobile so that correspondent nodes do not need to be aware of and handle

mobility. Correspondent nodes are application node(s) in remote networks. As

these could be non-OPEN-aware application peers, such as regular web- and

application servers which are relevant in web-service scenarios and applications, it

is not feasible to expect that they can handle mobility themselves. Thus to support

users moving around, e.g. from one network to another or from a fixed

infrastructure network to an ad-hoc network, the functionality must be embedded

in the OPEN platform and it must provide transparent mobility support to non-

OPEN service providers.

Several types of mobility support are considered [2]:

 Personal mobility is the ability to reach a mobile user through devices

currently available to the user. As this is more focused on the user, and less

on the device and the services used by the user, personal mobility is not in

the scope of OPEN.

 Terminal mobility is the ability for a mobile device moving between

networks to be reachable by a correspondent node. Terminal mobility

considers the entire device, and not only one application (or even just one

application flow). Therefore, the mechanisms supporting terminal mobility

may only be applicable for OPEN when the migration application is the

only application on the device, i.e. there is a one-to-one mapping between

device and application. If migration of one among several applications

Title: Detailed network architecture Id Number: D3.1

 13

from a device was migrated using terminal mobility, the remaining

applications on the device would have their environment changed after

migration.

An example of terminal mobility is handling IP mobility, i.e. where a

device moves between LANs, the mobility support handles mapping the

new IPs to the old IP (in mIP this is done using home agent entities) and

masks the change from other nodes. If a device holds more applications,

and only one migrates, but the IP of the device is masked into a new one,

the remaining applications will loose connectivity after migration.

 Session mobility is the ability to maintain and continue user sessions

while moving between terminals. Session mobility is very relevant to

OPEN and requires additional support from protocols above the network

level, e.g., the session mobility support functions in OPEN will have to

employ higher level support. The handling of the application state and

state persistence at the application layer of the OPEN platform will require

interaction with the application level components of the OPEN platform

from the system support level in order to get information about application

state information.

 Service mobility the ability to change device and still have access to the

same services. Service mobility combined with session mobility is called

service migration as migration of services requires session continuity.

With a migration server in the architecture, the session- and service mobility

should be handled at the server. Placing the migration server in the data-stream

allows for complete knowledge of and control over the potential mobility of the

involved devices.

The primary objective of the mobility support function is to make mobility

transparent for other functions. These functions can be either within the OPEN

platform or in the application.

To achieve this in the OPEN platform, the mobility support needs to interact with

the functions handling application changes during migration. These functions are

the migration orchestration (for control and information) and context management

(for information).

To achieve mobility support towards the application, the mobility support needs to

act as a façade toward correspondent nodes, hiding any mobility during migration

and still allowing for continuity. In the infrastructure scenario, with a dedicated

server supporting migration, much of this mobility support can occur within the

server. On the network level, mobility support can be attained using simple NAT

for redirection of traffic where the server will know sender and destination of each

flow of data. On higher levels SIP proxy functionality or adaptors to the

middleware (e.g. CORBA or OSGi) can provide redirection of flows to support

service mobility.

Title: Detailed network architecture Id Number: D3.1

 14

Every scenario in D1.1 [3] contains one or more of the above mentioned mobility

types and therefore this function is relevant to all scenarios.

3.2.1 Candidate systems

Overall connectivity support in a mobile environment means support for

continuous and consistent addressing and message delivery. Both can be

challenged by mobile users, as the sending or receiving devices may change

networking context while in session.

Two types of support exist to handle such mobility in dynamic networks:

- Network-level: NAT, mobileIP, SCTP

- Application-level: SIP

These solutions are described in the following section.

3.2.1.1 NAT redirection / masquerading

Routers used to establish end-to-end connections can also provide a very basic

form of mobility support. By utilizing different kinds of network address

translation (NAT) techniques, a router in the data stream can redirect traffic from

one destination to another destination. The typical use of NAT is for

masquerading, to hide devices connected to a LAN behind one external IP. The

NAT router then handles translation in packets to enable transparent shielding.

Redirection using NAT can be used either purely on network addresses simply

mapping IP-addresses to each other; it can be used to map sockets on the external

IP address to sockets on the internal network or as described above to mask entire

networks. In terms of mobility the most relevant features are to use redirection on

sockets and when applications (or parts thereof) migrate, redirection of traffic

flows would be enforced in the NAT table of the NAT device. Other peers would

then not be required to provide any additional mobility support.

However, general to NAT rules are that they are set statically on the NAT device

meaning that each time a device moves, the rules have to be updated.

A current trend towards supporting more dynamic reconfiguration of NAT is

through using UPnP. Then the NAT device acts as a UPnP control point, to which

client UPnP devices can connect and issue changes to the NAT tables.

NAT is a solution to both terminal and flow mobility. The mapping of addresses

can be used to redirect both all traffic to a mobile node or particular flows (bound

to sockets).

3.2.1.2 MobileIP

MIP enables a mobile device to maintain its IP address and transport layer

connections while its point of attachment to the network changes.

Title: Detailed network architecture Id Number: D3.1

 15

MIP does this by using home agents (HA) that are static entities in the home

network of a mobile node (MN). When the MN operates in its home network,

regular routing mechanisms are used to deliver messages. If the MN moves to a

new network, it obtains a new IP address. The MN communicates its new address

to the HA which then handles redirection of traffic to and from other nodes. This

way peers connected to the MN (also called correspondent nodes (CN)) do not

need to implement MIP. If they do, the rerouting step using the HA can be omitted

by route optimization where a direct connection between CN and MN is

established to begin with.

Although, MIP can be classified as a solution to terminal mobility, extensions

such as filters for MIP [20] can also support service mobility. Through redirection

of particular flows instead of all traffic from an MN in one network to the MN in

another network, services can be accesses by and from the MN when in different

network, and thus mobility of the services between networks is supported.

3.2.1.3 SCTP

At the transport level, extended versions of the stream control transport protocol

(SCTP) can provide mobility support suitable for OPEN.

Basic SCTP enables control of multiple streams of data to destinations. The

destinations are defined as IP address-port pairs (transport addresses) and possible

multiple destinations are exchanged between peers during connection

initialization. SCTP features transport of data to all multiple destinations

simultaneously (called associations). One of these associations is called the

primary path and during transmission, this primary path can be relocated if a

device moves.

Through an extension called mSCTP [1] using an auto-reconfiguration protocol

called dynamic address reconfiguration (ADDIP), the possible destinations for the

primary path need not be fixed. When a device moves, it receives a new IP

address and through automatic reconfiguration this new address can be used as a

new destination.

SCTP is a solution to many of the described mobility problems, adding also

support for personal mobility through the use of the multiple destinations as multi-

homing and thus being able to address a user at several terminals.

3.2.1.4 SIP

The session initiation protocol (SIP) is a signalling protocol that enables control

of multiple data streams. SIP does not handle data transport, which is typically

handled by other protocols such as UDP or RTP.

Title: Detailed network architecture Id Number: D3.1

 16

SIP offers a number of logical entities, namely user agents, redirect servers, proxy

servers and registrars. Through these entities SIP offers management of different

kinds of mobility of user agents and data streams before and during a session.

Management of user agents prior to a session is called pre-session mobility and is

handled purely by a SIP server using static redirection. Mid-session mobility

occurs when user agents move during a session and is handled by message

exchange between user agents only, which makes mobility fast but requires

support of all peers.

SIP signalling from user agents must be performed by the application itself. SIP

can be used as a solution to all the described mobility types.

3.2.1.5 Summary

In summary the mobility aspects of service migration can be supported on several

layers of the communication protocol stack. Some technologies require the

application to be aware of potential mobile entities and provide means for

handling the mobility such as in SIP, while other technologies make mobility

completely transparent to the applications such as SCTP, MobileIP and NAT.

All technologies have different requirements in terms of additional logical entities,

which in turn may pose requirements to the migration platform architecture. This

must be considered when the specific technologies are evaluated as a part of the

migration platform solution.

3.3 Context management

At each device, there is a set of information elements useful to the migration

process, which could for example be the current processing capabilities at the

node, position of the device, achievable data rates or other user oriented

parameters as user activity or the orientation of the user, see Req. 137 in [3]. This

information is not static, but changes over time, hence requires real time access if

it should be used actively to adapt to situations.

A context management system generally handles information distributed in the

network and provides easy access for services, application and networking

components to needed information. Thus it is responsible for collecting, storing,

processing and delivering relevant information from different sources of context

to functions in need information, which can be either directly measurable or

inferred/processed information. Context providers can cover anything from

environment changes (the user is standing in front of the device) to very device

specific information, such as the remaining battery life. In the OPEN context it is

used for many purposes as envisioned and required in [3]. For example, it is used

in the trigger management function that is capable of issuing a migration trigger

based on a context change (e.g. once the battery capacity is below a certain

Title: Detailed network architecture Id Number: D3.1

 17

threshold). In addition, application logic reconfiguration, UI migration and

mobility functional modules also require use of context and thus access to it.

The challenge faced by the context management system is twofold:

1. To find out where to obtain specific information at any time: Mobility of

the user may render it impossible to get data from a specific node, making

the desired information element unavailable, or the other way around,

make it possible to get new types of information, or even one with better

characteristics (e.g. with better accuracy).

2. To ensure that the information is up-to-date, reliable and trustworthy:

Information elements are often dynamic, and changes over time. Hence, it

is important to realise that the communication delay which will always be

present when accessing remote information, may result in data becoming

outdated. Furthermore, suspect entities may provide false information

which could trigger migration to malicious devices, prevent migration or

other types of failures in the migration process.

Many of the components in OPEN are envisioned to utilise context information to

enhance their behaviour according to the given circumstances, i.e. context, hence

would need to interact with the Context Management system. Examples from the

OPEN communication platform include the device discovery, performance

monitoring (by checking device status) the migration manager and Trigger

management for triggering service migration at the right time and place. At one

hand, those client applications would require information in two ways (and more

generally also other client application):

- Reactively: Request for information on demand

- Proactively: Expect a notification from the Context Manager under certain

circumstances, which may be either

o Periodical: the application client will expect a notification at

certain time intervals

o Event based: the application client will expect a notification only

when a certain event has occurred (like a threshold violation of the

value of the context or similar)

At the other hand, a Context Manager would also need to interact with the sources

of the information. This is trickier since sources provide information in all

different data formats using different protocols or access methodologies, but gives

the benefit that the above client applications do not need to worry about this issue.

From [3] there has been set up some requirements to the Context Management

system. In the following the requirements that have a direct implication on the

technical requirements to the Context Manager are described. These OPEN

requirements are high-level, user-oriented requirements. The following list

Title: Detailed network architecture Id Number: D3.1

 18

contains a summary of technical requirements for the context management list

derived from the selected OPEN requirements. They are specific technical

requirements for the context system of OPEN and listed and related to each other

in the following list. Some of the requirements are originally picked from [3]

(indicated in parenthesis) while others are derived from the original ones.

 Context system shall provide information about different entities

o Context system shall provide information about devices

 Context system should support the process of filtering the

target devices list for suitable devices

 Context system shall provide information about the privacy

level of devices (especially displays)

 Context system shall provide information about devices in

vicinity (20), hereunder their location

o Context system shall provide information about users

 Context system should provide access to location, direction

and user preferences (137)

o Context system should support service selection based on location

and direction (22)

o Context system shall provide traffic information of roads from a

road information provider (112)

 Context system shall provide context information from various sources

(136)

 Context system shall provide good accuracy on context information (89)

 Context system shall provide an API to applications (59), hereunder a

continuous, asynchronous monitoring API

 Context system shall operate in a pervasive computing environment

 Context system shall handle all communication means necessary to access

context information

In the following we elaborate some candidate subsystems which may offer OPEN

context management a good starting point for further development and shaping

into service migration scenarios.

3.3.1 Candidate systems

3.3.1.1 Universal Plug and Play

Title: Detailed network architecture Id Number: D3.1

 19

Universal Plug and Play is a set of protocols promoted by the UPnP forum, [14]

and widely supported by the Windows operating system. Its objective is to allow

multiple devices to discover each other and be able to exchange services and

functionalities, and for such purpose, it enjoys relative success in the home

networking environments.

UPnP often operates using multicast UDP packets, which provides for good

discovery support on a local network, but does not extend beyond it. Several

authentication protocols are supported, but none of them provides a lightweight

standardized solution. On the other hand, device description is reasonably flexible,

as shown in [6], where OWL-S is used to semantically describe the required

inputs and outputs of a service.

Overall, while UPnP enjoys a solid installed base, but it ultimately lacks the query

flexibility required for a Context Management Framework.

3.3.1.2 The Context Toolkit

The Context Toolkit presented by Dey in [7] provide abstractions and support for

the management of Context Information. According to [8], it also offers

middleware for building and executing context-aware applications. The Context

Toolkit builds on top of a simple, distributed infrastructure that uses peer-to-peer

communications. Each object in the context toolkit, widgets, discoverers and

applications, are based on a BaseObject. This BaseObject encapsulates the

distributed communication abilities. A widget is responsible for the binding

between a specific piece of context and an application. All context widgets

register at a centralized discoverer. The application can find the right widget by

contacting that discoverer. An application can then subscribe to the context

offered by that widget via the BaseObject. When the sensor delivers the context,

the widget passes it on to the application if it matches the subscription.

3.3.1.3 PACE

As described in [8], Henricksens‟ work in the PACE (Pervasive Autonomic

Context-aware Environments) project resulted in the PACE infrastructure. [9]

This infrastructure has a Context Manager that consists of a distributed set of

context repositories. These repositories provide their clients, which can be context

producers or consumers, with five interfaces: query (pull), update, transaction

(multiple queries), subscription (push), and metadata (discovery of the available

data). A preference manager is also provided; which is a repository for user

preference information coupled with the application states and context

information. On top of the preference and the context manager is the programming

toolkit, which implements a simple conceptual model for formulating and carrying

out context based choices. This toolkit makes the process of discovering and

communicating with the management systems transparent to the applications.

Title: Detailed network architecture Id Number: D3.1

 20

3.3.1.4 PERSONA Project

The PERSONA framework for Context-Awareness builds on the PERSONA

middleware. Said middleware is designed as a solution for facilitating

interoperability within distributed systems, in which each node is able to talk to

other nodes directly, abstracting the connectivity layer and providing common

functionalities to all the applications that use the middleware. It is built using Java

and the OSGi framework to provide functionalities for easy deployment of the

components of choice in each node.

The middleware is composed by three different layers, from the bottom: the

abstract connection layer (ACL), handling p2p interconnectivity, over UPnP, R-

OSGi or Bluetooth, The Sodapop
1
 Layer (SPL) introducing the concept of buses

(either push or pull) and peers and serialization, and the PERSONA-specific layer

(PSL), which implements the input, output, context, and service buses .

The implementations supporting Context-Awareness are part of the PSL, and

define the context bus and the context specific anthologies used both on the

context bus and by the rest of the system. A high level diagram of the architecture

is shown on Figure 3.

Figure 3: The three different layers of the PERSONA middleware

3.3.1.5 MAGNET Beyond (Secure Context Management Framework)

1
 SodaPop: a software infrastructure supporting self-organization in intelligent

environments; M. Hellenschmidt, T. Kirste - Fraunhofer Inst. for Comput.

Graphics, Darmstadt;

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(hellenschmidt%20%20m.%3cIN%3eau)&valnm=Hellenschmidt%2C+M.&reqloc%20=others&history=yes

Title: Detailed network architecture Id Number: D3.1

 21

The framework from MAGNET Beyond is called the Secure Context Management

Framework (SCMF) and is presented in [15], [18], [19] and [16].

In MAGNET Beyond the „Secure context management framework‟ (SCMF) [16]

has been developed for the very purpose of management and provisioning of

context information in a secure manner. The basis assumption of the framework is

that all nodes involved have a so-called Context Agent running, These are

capable, in a distributed manner, of collecting, gathering and distributing context

information to each other. The framework we elaborate on in the following

section.

Figure 4 shows the internal functional blocks of a Context Agent. So the main

functionality provided by the framework is divided into different functional

blocks. The first and one of the most fundamental is the Data Source Abstraction

Manager (DSAM). This block is responsible for collecting node local context

information, such as from built-in sensors on the node, current system status

(current memory usage or processing capabilities) or other specific information,

which effectively creates a data source abstraction layer which abstracts raw data

sources and their individual data representations, into a common data model and

representation. The key point with this block is that it allows any arbitrary context

information into the framework through specifically written software components,

called retrievers. The retrievers are creating the interface between the framework

and any arbitrary data source that may be of interest.

Context Management Interface (CMI)

Queries SubscriptionsResponses

Processing
&

Storage (P&S)

DSA Manager

Network

Data
Source

Abstractio

n
Layer

Notifications

Context Access
Manager (CAM)

Context Aware
Security Manager

(CASM)

Context
Agent

Modifications

Data Source
(Sensors)

Retriever

Data Source
(OS
Status)

Retriever

Data Source
(PHY/MAC
Parameters)

Retriever

Data Source
(…)

Retriever

Context Management Interface (CMI)

Queries SubscriptionsResponses

Processing
&

Storage (P&S)

DSA Manager

Network

Data
Source

Abstractio

n
Layer

Notifications

Context Access
Manager (CAM)

Context Aware
Security Manager

(CASM)

Context
Agent

Modifications

Data Source
(Sensors)

Retriever

Data Source
(Sensors)

Retriever

Data Source
(OS
Status)

Retriever

Data Source
(OS
Status)

Retriever

Data Source
(PHY/MAC
Parameters)

Retriever

Data Source
(PHY/MAC
Parameters)

Retriever

Data Source
(…)

Retriever

Data Source
(…)

Retriever

Figure 4: Internal structure of Context Agent (see e.g. [16], [19]). Each device in

a network is assumed to have a Context Agent running.

The retrievers take the raw input, meaning the input as provided by e.g. a sensor,

the OS, file etc., and map it into the specifically used data format specified in [15].

Title: Detailed network architecture Id Number: D3.1

 22

This allows later on very generic searches on a highly diverse type of information,

i.e. exactly what is required for context management.

Similar to the DSAM, the Processing and Storage Unit (P&S module) allows for

further processing of context information in a similar way. The major difference is

that the information provided by the P&S module, is not directly measured

information, but will typically be information inferred, derived or estimated by

some algorithm which uses measured data from the DSAM (either locally or

externally to the node). This module works in the same way, hence allows for easy

add on of new types of context information. Furthermore, this module provides a

storage space of e.g. user profiles, and allows easy access to user profiles in a

distributed environment similar to other context information.

At the very heart of things, the Context Access Manager (CAM) is responsible of

creating an index of the whereabouts of different context information elements in

the network. This means, by starting from creating a list of locally available

context information (both retrieved, processed and stored information) this is then

registered at the CMN which then later on can respond to queries on the location

of given context information.

To ensure network communication and the security related to accessing context

information, the Context Aware Security Manager is ensuring access control to the

information. Context information is potentially very personal to the user, and

should only be distributed to trusted entities. Thus, this module would either not

allow access to requested context information, or it may provide obfuscated

information, e.g. providing the location of the user but with much less accuracy

than is actually available, or instead of a GPS position, providing the name of the

city that the user is currently in. In this block, all communication functionality

such as serialization of internal data objects, registration messages etc., are carried

out as well.

Finally, the Context Management Interface (CMI) is a module which accepts and

provides notifications to the client application in a dedicated XML based query

language. This language is called Context Access Language (CALA) and allows

for flexible types of queries, see [15]. This CALA language is based on an

information model specified within the MAGNET Beyond framework, hence

terminology and definitions will need to be based on this too. In particular the

main entity from which everything is based is called a Context Entity. This ensures

another abstraction level of context description, which effectively defines the

interface towards client applications of the framework.

Additionally to this, a context enabler based on IP-based Multimedia Subsystem

(IMS) called ICE has been developed in the IST-Spice project which provides a

layer atop the Magnet CMF that enables cross-domain communication using the

SIP protocol and the IMS infrastructure.

3.3.1.6 Summary

Title: Detailed network architecture Id Number: D3.1

 23

Assessing the requirements to the Context management framework for OPEN, and

mapping those to the existing solutions, we find that the SCMF developed in the

MAGNET Beyond projects holds the best potential for being the basis for a

context management framework in OPEN.

In particular, one of the strong points with the SCMF is the extensibility of the

framework, i.e. if a new source is becoming available, a developer in OPEN

would simply write a retriever or processing component that maps the information

from the new source into the SCMF data format, and this information becomes

now automatically available to all interconnected Context Agents. These facts

matches quite well our requirements in OPEN, and considering the fact that the

implementation is available to the consortium through partners previously in the

MAGNET Beyond project, makes the framework a highly interesting candidate to

continue working with.

The downside of the framework so far, is that this has to be manually setup up and

reconfigured via xml files, and the whole life-cycle of components is not really

covered, hence requires a lot of user interaction at an undesirable level. Therefore

it would be useful to investigate the possibilities for extending the SCMF to work

in such frameworks, which we elaborate in the following. Furthermore, the

security part of the SCMF from MAGNET Beyond cannot directly be applied in

OPEN context particular because it is based upon the assumption of working in a

secure and trusted network environment, whereas in OPEN these assumptions

does not hold.

Title: Detailed network architecture Id Number: D3.1

 24

4 Support functions for migration

The functions required to support service migration are located in a common

middleware layer. In the following chapter, we focus on the functionalities which

are supporting the migration process in some way. The context of each function is

derived from the overall architecture presented below. The architectural diagram

lets the user assess the layer placement and cross interaction of the multiple

components.

Comm. interface

Application logic

layer

Middleware layer

Presentation layer

Core

Services

Usage

App. logic reconf/orchestration

UI Reconfiguration/Adaptation

Component repository/access

OPEN migration platformOPEN Application

S
ta

te
 p

e
rs

is
te

n
c
e
 lo

g
ic

Device discovery

Policy mgt

Context mgt.

Clock/flow synchronization

Security

Performance monitoring

Mobility support

Session mgt

Service enablers

Streaming

Presence

Location

Network

Context

provider
Service Enablers Interface

Migration orchestration Trigger mgt.

Migration ClientDevice

Comm. interface

Application logic

layer

Middleware layer

Presentation layer

Core

Services

Usage

App. logic reconf/orchestration

UI Reconfiguration/Adaptation

Component repository/access

OPEN migration platformOPEN Application

S
ta

te
 p

e
rs

is
te

n
c
e
 lo

g
ic

Device discovery

Policy mgt

Context mgt.

Clock/flow synchronization

Security

Performance monitoring

Mobility support

Session mgt

Service enablers

Streaming

Presence

Location

Network

Context

provider
Service Enablers Interface

Migration orchestration Trigger mgt.

Migration ClientDevice

Comm. interface

Application logic

layer

Middleware layer

Presentation layer

Core

Services

Usage

App. logic reconf/orchestration

UI Reconfiguration/Adaptation

Component repository/access

OPEN migration platformOPEN Application

S
ta

te
 p

e
rs

is
te

n
c
e
 lo

g
ic

Device discovery

Policy mgt

Context mgt.

Clock/flow synchronization

Security

Performance monitoring

Mobility support

Session mgt

Service enablers

Streaming

Presence

Location

Network

Context

provider
Service Enablers Interface

Migration orchestration Trigger mgt.

Migration ClientDevice

Figure 5: OPEN software architecture

The functions shown in lower part of Figure 5 are described in the following

sections.

4.1 Trigger management

4.1.1 Functionality

The Trigger Management module is responsible for prompting applications to

start a migration process. In a sense, this module behaves as a classifier that

chooses when the application state should be changed.

Such a classifier takes its decisions based on the application semantically

described characteristics, the situation of the user, and the situation of the devices

involved in the migration. In most circumstances, said information can be derived

Title: Detailed network architecture Id Number: D3.1

 25

from Context sensors, using the Context Management Framework, and from the

knowledge derived from the lower network layers.

In regard to the algorithm used to trigger the migration based on the situational

information, a modular architecture is proposed, which would allow for the

instalment of multiple reasoners of arbitrary complexity, ranging from simply rule

sets to more complex classifiers.

4.1.2 Interactions

This module primarily interacts with the migration control function or higher layer

reconfiguration functions, such as application logic reconfiguration. The

interaction is in effect bidirectional, in that while trigger management can alert

these modules when a migration is needed, the peer modules may also program

their triggers into this component; for instance for the Application Logic

Reconfiguration may add required triggers during runtime based on the rules

defined for reconfiguration.

One example for a reconfiguration rule (informally) could be: "connect required

services of component A with nearest services". Out of such a rule the

reconfiguration manager will register new triggers at the trigger management

which could informally look like: "trigger me, if new device available within

20m". Thus, the definition of the concept “nearest” will be the responsibility of

the reconfiguration manager. Further method calls to the context manager will be

used if needed to query further information about the current situation. So, for the

first version of the prototype, basic triggers should be adequate in order to realize

reconfiguration functionality.

4.1.3 Requirements/Scenarios

This component references to Requirement no 89, 13, 82, 86 and 37 in [3], and

relates to all migration scenarios.

4.1.4 Candidate systems

For simple context triggers, a context management system candidate could

provide these. For more complex triggers, systems for collecting relevant

information and inferring context or migration triggers could context reasoning

systems based on ontologies or frameworks of Bayesian Networks.

4.2 Policy/profile management

4.2.1 Functionality

The policy management function is responsible for deciding if migration is

allowed or forbidden, e.g., because it violates restrictions defined by users, service

providers or a 3
rd

 party. The function is based on contextual calculations,

Title: Detailed network architecture Id Number: D3.1

 26

functionality requirements, application context and user profile settings (e.g.

security and privacy permissions). A migration policy can contain information

relevant to allowing or denying migration of an application or parts of it.

The management part of the function concerns the ability to provide storage and

access to the different policies used during migration. This could be a user profile

or an application migration policy. Note, that these policies affect the migratory

aspects of the platform and not the internal configurations/policies specific to the

applications. These are expected to be handled internally in the applications

supporting migration.

In the centralized architecture, the policies are effectively stored on the migration

server, and updated appropriately when the user makes updates. An update could

be to allow for a new user group to migrate onto the user‟s devices.

4.2.2 Interactions

As a part of generating a migration trigger the policy management function is

consulted to accept or deny migration. If migration is allowed, policies can specify

further restrictions like the allowed destination devices and services to migrate.

This way policy management affects both trigger management and migration

orchestration.

4.2.3 Requirements/Scenarios

In requirements 49, 52, 66, 98 and 142, scenarios are referred to as demanding

policy support and management. For instance, if the user does not want the

migration to execute automatically in a certain situation, this may be specified in a

policy. This way unintended migration will occur, and the conditions governing

this restriction will be controlled by the user.

As a result, some kind of user interface is required for this function to enable the

user to make updates to the policies. This should preferably be placed as close to

the user as possible, as such updates may be decided upon rather fast and thus

access to this functionality (for using them during migration) should not be a

complex or cumbersome effort.

4.2.4 Candidate systems

A simple database located in the central migration server can provide the storage

and access (in the infrastructure scenario) for the trigger management and

migration orchestration functions. XACML is a mark up language for describing

policies which can be used. In the same time the SCMF offers storage capability

which may be used, but requires then the information to be specified accordingly,

which means some adaptation between XACML and SCMF descriptions may be

needed.

Title: Detailed network architecture Id Number: D3.1

 27

4.3 Session management

4.3.1 Functionality

Ongoing networking, security or application sessions must be respected when

performing migration to provide continuous services.

Examples of such sessions are

 application session: logged in on website, a state full server (http session

and corresponding timeout, web service), service/device registration (e.g.

from UPnP)

 security session: established security association (authentication,

authorization, credential/key exchange)

 network session: NAT connections, state full firewalls, TCP connections,

multicast group assignment

The session management function helps ensure that such sessions can continue

during and after migration.

The timing in this session notion is controlled by the migration orchestration

function and the internals needed to provide sessions and make them secure is

handled be the session management.

4.3.2 Interactions

This function primarily is triggered by migration orchestration function and then

interfaces to the application to extract the state of the application in order to

transfer it during migration.

4.3.3 Requirements/Scenarios

The component refers to Requirement no 118, 119, 126, 43, 77, 45, 54 and 64, and

is required for all scenarios.

4.3.4 Candidate systems

This can be handled by using existing session signalling frameworks such as SIP.

4.4 Performance monitoring

4.4.1 Functionality

Performance can be related to the overall migration and to the application before

and after the migration, so these are the two axes to monitor as illustrated in

Figure 6.

Title: Detailed network architecture Id Number: D3.1

 28

Figure 6: Axes to monitor during performance monitoring

Timing is the key element to realize performance monitoring; it can be evaluated

along the usual sequence of events before, during and after a migration, in order to

underline the contributions of all the other functional elements.

In order to reach a more complete approach, timing has to be coupled with other

indicators, such as failure percentages and application performance indicators.

Figure 7 presents an example of what could be inserted in the log for performance

monitoring, thus separating the different impacts on it.

Figure 7: Examples of performance indicators to monitor during migration

4.4.2 Interactions

As it can be seen from Figure 7 the Performance Monitor needs to ensure logs

from several components are present; device discovery, context manager, service

migration trigger, content adaptation, migration orchestration and clock flow.

4.4.3 Requirements/Scenarios

The functionality is not directly mentioned in the scenarios, but is required for

later system performance evaluation.

4.4.4 Candidate systems

As it is mentioned, performance metrics are based on information from different

components. There are several standard log mechanisms existing depending on

which implementation language is being used, for instance log4j. For now, we do

Title: Detailed network architecture Id Number: D3.1

 29

not fix ourselves to a specific system to use. The format of the specific logging

and the methods to process the log data are described in D6.4 [28].

4.5 Clock/flow synchronization

4.5.1 Functionality

Different streams, existing or new, need to be synchronized in order to provide

continuous service when migrating/distributing an application. An example is

enhancing an audio call with video capabilities. When establishing the video

stream, this should be synchronized to the audio stream already running.

To apply such synchronization some sort of clock synchronization must be in

effect. Also, if application state is dependent on time, synchronized time between

involved devices must be present in the migration process.

4.5.2 Interactions

The synchronization of clocks does not by itself interact with other components,

but is seen as a system to maintain a general assumption of the other function,

namely that the time on all nodes can be considered synchronized.

Flow synchronization will interact with the migration orchestration function in the

sense that migration orchestration decides when to start, stop and pause

components in order for the migration to succeed. When data is flowing between

these components, the flow synchronization component will need to know the

state of the component, i.e. when to buffer data and when to forward and

synchronize flows.

Also if flows are part of a session in an application and this application is

distributed from one device to several devices the session management component

will notify the flow synchronization component to handle this new situation. Also

if a session is governed by requirement to flow-specific parameters (such as bound

upper delay between audio and video), the flow synchronization component will

need to know these parameters in the first place, and also be notified of potential

changes during migration, again especially if the session is either distributed or

aggregated between devices.

4.5.3 Requirements/Scenarios

The component refers to Requirement no 145 and 58, and is limited to scenarios

which include multiple data streams.

4.5.4 Candidate systems

Network Time Protocol (NTP) can enable timely synchronization between nodes

within the OPEN platform. They can use either the migration server as main time

Title: Detailed network architecture Id Number: D3.1

 30

server or an external one. NTP supports different levels of servers and both

internal and external server can be used simultaneously – if available.

4.6 Device discovery

4.6.1 Functionality

The main aspect in migrating services and applications is enriching user-

experience. This is done by utilizing additional resources and/or devices available.

To use these additional entities, their presence needs to be discovered and their

capabilities established. This is handled by the device discovery function.

Discovery can be performed in several manners; locally (short-range

communication) or centrally (using a commonly accessible registry). The

objectives for discovery are also multiple:

 device discovery (network presence)

 service discovery (what services are provided by a device)

 resource discovery (which resources, e.g. battery lifetime, processing

power, storage capabilities, etc. are offered by a device).

Regarding the communications with other modules, Device discovery can interact

with the Context Management module in the following way: whenever there is a

change of device, the Device discovery module provides such information to the

Context Management module, which is in charge of updating the information

about the current context.

4.6.2 Discovery model

In the OPEN project the purpose of the device discovery function is identifying

the devices that are available to be involved in the migration process and the

device attributes that can be relevant for the migration.

We do not consider device discovery aimed to form a network, such as, for

example, an ad hoc network. Rather we assume that a network is already in place

to connect the devices, when these try to discover candidate devices for the

migration.

A list of device attributes can be the following:

 Execution environment, specifying which type of executable or

interpreted code is supported. Examples are: J2ME, J2SE, Microsoft

Windows XP, Linux, etc.

 Supported Connectivity: i.e. GSM; GPRS, UMTS, WiFi, Bluetooth,

NFC, ZigBee, etc.

 Device name, a unique device identifier

Title: Detailed network architecture Id Number: D3.1

 31

 Battery, specifying the battery level, fully charged battery and plugged-in

devices could be treated in the same way

 Device location: the granularity should be in terms of meters in order to be

able to determine a “surrounding devices area” where migration could

make sense

 Privacy, specifying whether the device is private or public

 Interaction resources, in terms of input and output resources (keyboard,

mouse, remote control, voice, etc.) and related capabilities.

Device discovery con be performed in two ways:

 Distributed: a sort of peer to peer device discovery is performed from the

device to the surroundings devices. The discovered device has to be able to

confirm its availability to receive and execute the migrated application

from the migration server.

This approach appears to best fit with the purpose of deploying an ad hoc

network than the OPEN purpose to select a migration device. The

candidate device for the migration must however be reachable by a

centralized component, the migration manager, which sends the migrating

application. Moreover, this approach implies a potentially heavier traffic

and a more complex migration node within the device.

 Centralized: every device provides its characteristics to a centralized

registry. When there is the need to discover a new device, the device in use

asks the registry for a list of devices to which the application can migrate.

The migration manager selects the best candidate device for the migration

and verifies if the it is still available for a migration.

This approach can reduce the network traffic and simplify the migration

node within the device.

Figure 8: Device discovery approaches: centralized (left), peer to peer (right)

Title: Detailed network architecture Id Number: D3.1

 32

4.6.3 Interactions

The device discovery function can be a self-contained function interacting directly

with trigger management and migration control, or it can be a provider for the

context management function and discoveries will be an output of context

management instead.

4.6.4 Requirements/Scenarios

The component relates to scenarios where changes in device number, service

availability or resources are included, and refers to Requirement no 20 and 33 in

[3].

4.6.5 Candidate systems

Given the goals of OPEN, device discovery overlaps somewhat with service

discovery and device management, hence we have enlarged our analysis to a wider

set of protocols. Moreover the candidate protocols must cover the whole set of

devices considered in OPEN scenarios, comprising: mobile phone, PDA, PC, Set-

top-box, game console, smart display.

Hereafter we summarize their main characteristics in order to evaluate them, the

list is the following:

 Technical Report 069

 Bluetooth

 OMA Device Management

 OSGi

4.6.5.1 Technical Report 069

TR-069 (short for Technical Report 069) is a Broadband Forum technical

specification entitled CPE (Customer Premises Equipment) WAN Management

Protocol (CWMP). It defines an application layer protocol for remote management

of end-user devices such as modems, routers, gateways, Set-top boxes (STB) and

VoIP-phones.

As a bidirectional SOAP/HTTP based protocol it provides the communication

between CPE and Auto Configuration Servers (ACS). It includes both a safe auto

configuration and the control of other CPE management functions within an

integrated framework.

Using TR-069 the terminals can contact the Auto Configuration Servers (ACS)

and establish their configuration automatically. Similarly, other service functions

can be provided. We propose that through these functions the basic OPEN

Title: Detailed network architecture Id Number: D3.1

 33

components, the Node Manager for instance, are downloaded, installed and

executed in the CPE.

TR-069 is the current standard for activation of terminals in the DSL (Digital

Subscriber Line) broadband market. Other fora, such as Home Gateway Initiative

(HGI) and Digital Video Broadcast (DVB), are endorsing CWMP as the protocol

for remote management of home network devices (e.g. the HGI gateway) and

terminals (e.g. the DVB IPTV STB).

4.6.5.2 Bluetooth

It is a wireless protocol utilizing short-range communications technology

facilitating data transmission over short distances from fixed and mobile devices,

creating wireless personal area networks (PANs). Bluetooth is defined as a layered

protocol architecture consisting of core protocols, cable replacement protocols,

telephony control protocols, and adopted protocols.

Among the mandatory protocols SDP (Service Discovery Protocol) is used to

allow devices to mutually discover what services each device supports, and what

parameters to use to connect to them.

Since this is a short range communication technology, not enabling the connection

with central OPEN components involved for migration, we would not consider

Bluetooth for device discovery purposes.

Bluetooth can be instead used for device connectivity during application execution

as for example in the gaming scenario where a mobile device acts as a remote

control and uses Bluetooth to connect with a set-top-box for sending commands.

4.6.5.3 OMA Device Management

It is a device management protocol specified by the Open Mobile Alliance (OMA)

Device Management Working Group and the Data Synchronization (DS) Working

Group.

OMA Device Management specification is designed for management of mobile

devices in order to support the following typical uses:

 Provisioning – Configuration of the device (including first time use),

enabling and disabling features

 Configuration of Device – Allow changes to settings and parameters of the

device

Title: Detailed network architecture Id Number: D3.1

 34

 Software Upgrades – Provide for new software and/or bug fixes to be

loaded on the device, including applications and system software.

 Fault Management – Report errors from the device, query about status of

device

Although OMA DM specifies a way to install applications and system software,

its implementations do not support this functions, so we propose to assume that

basic OPEN components, the OPEN Node Manager, are already installed and

running in the device.

4.6.5.4 OSGi

The OSGi Alliance (formerly known as the Open Services Gateway initiative) is

an open standards organization that has specified a Java-based service platform,

which is remotely manageable. The core of OSGi specifications is a framework

that defines an application life cycle management model, a service registry, an

execution environment and modules.

The Framework implementations provide APIs enabling applications or

components (coming in the form of bundles for deployment) to be remotely

installed, started, stopped, updated and uninstalled without requiring a reboot; The

service registry allows bundles to detect the addition of new services, or the

removal of services, and adapt accordingly.

OSGi specifications are organized in layers covering very well the OPEN

purposes and scenarios:

 L1: Modules, which realize the concept of modules (bundles) and controls

their dependencies.

 L2: Life Circle Management, handling the life cycle of a bundle without

the need to restart the VM.

 L3: Service Registry, providing the cooperation model for the bundles.

(For completeness we mention layer L0, Execution Environment, which specifies,

the Java environment: J2SE, CDC, CLDC, MIDP, etc.).

4.6.5.5 Other discovery protocols

Other discovery protocols that we have considered not in scope for OPEN are the

following ones:

 Service Location Protocol (SLP, srvloc) is a service discovery protocol

that allows computers and other devices to find services in a local area

network without prior configuration. It is frequently used by LAN-enabled

printers.

Title: Detailed network architecture Id Number: D3.1

 35

 Simple Service Discovery Protocol (SSDP) is an expired IETF Internet

draft. SSDP is the basis of the discovery protocol of UPnP (Universal

plug-and-play).

 Universal Plug and Play (UPnP) The UPnP architecture offers pervasive

P2P network connectivity of PCs, intelligent appliances, and wireless

devices. The UPnP Device Architecture specification provides the

protocols for a P2P network. It is a set of computer protocols which allow

devices to connect seamlessly and to simplify the implementation of

networks for simplified installation of computer components.

 Digital Living Network Alliance (DLNA) is an international, cross-

industry collaboration of consumer electronics, computing industry and

mobile device companies. DLNA is aimed to enable sharing of digital

content such as photos, music, and videos, through consumer electronics

(CE), personal computers (PCs), and mobile devices in and beyond the

home.

4.7 Service enablers

This section covers those functionalities which, while being necessary for

migration, do not fit into the core or supporting functions. Rather, these are

assumed to be services and interfaces provided by the surrounding execution

environments. Note that some of these might accessed directly by the Migration

Platform, while others might be wrapped by some of its modules, such as Location

being offered through the Context Management module.

Based on the D1.1 scenarios, the service enablers involved in the migration are:

 Presence,

 Location,

 Access layer,

 Device provisioning

 Streaming

Others service enablers that can be involved to provide a given service, SMS, chat

and similar services, for example, are not actively involved or affected by the

migration.

The respective roles of the involved service enablers are summarized here.

4.7.1 Presence server

It provides presence information related to the user. For the scenarios considered

the significant presence states are:

 The user is watching an IP based Television (IPTV)

 The user is playing (gaming scenario)

Title: Detailed network architecture Id Number: D3.1

 36

 The user is offline

 The user is chatting

The presence server notifies the presence status as context information in

accordance with the context management interfaces and notification rules. The

presence information is also used by the gaming, streaming and chat server for the

respective services. Detailed presence information are not managed by the

presence server but by the server actually involved in the delivered service, this

means that:

 the specific IPTV channel watched by the user is known by the IPTV

(streaming server)

 the detailed game parameters, (e.g. as x,y coordinates, laps to finish) are

known by the gaming server

 information, such as the chat room, is known by the chat server.

4.7.2 Location

As the migration could in certain cases need a certain amount of time, for example

when a new client has to be installed and launched in the destination device, it

could be useful to start the migration preparation before it is requested by the user

or when it is mandated by the context (when the battery goes under an attention

level but it is still above an alarm level). A location information provider could be

used to provide this kind of information, notifying the context manager when the

user enters certain areas where potentially a migration can occur. The granularity

of such localization could be the following:

 the user is at home,

 the user is in the office

 the user is close to a certain Point Of Interest (POI)

The notification from the location enabler to the context manager follows context

management rules and interfaces. It has to be evaluated if the location information

is managed through a centralized location server, interacting with the cellular

network, or if we prefer to use a distributed architecture where the mobile devices

are responsible to provide their location. A centralized solution can be potentially

tricky to integrate, but it can concentrate in one element the information regarding

user position for both mobile and fixed situations; moreover it avoids the need to

deploy and manage localization agents on the devices. A distributed approach is

simpler to integrate and provides potentially better localization but mandates the

configuration on the device of the location parameter to identify the home area.

The architecture selected has to take in consideration also scenarios where it is

significant to know that the user is close to a certain POI that cannot be a priori

know, such as the pub for the gaming scenario.

Title: Detailed network architecture Id Number: D3.1

 37

4.7.3 Access Layer

The Access Layer can be used to provide context information, in terms of:

 Application Port Number (APN) and hence type of data session, GPRS or

UMTS

 device user agent which can be used to determine the phone model and

their characteristics.

Access layer cannot provide information regarding a voice session.

4.7.4 Device Provisioning

This enabler is used to send a configuration SMS to a mobile device. The

configurations available are limited to a set of the several apn‟s used by the phone

for data connectivity such as the web apn, the MMS apn and so on. Besides this

kind of low level device provisioning there is a need for an OPEN platform

component responsible to deliver, install, activate and manage a new application

on a mobile involved as a migration destination, when this device is lacking the

application. The application provisioning mentioned before should be server side

initiated without the user being involved, or involved only to provide confirmation

for security reasons. So far this kind of delivery is part of widget dashboard

designs from some vendors such as the Nokia and Opera browsers. We are not

aware of available prototypes.

4.7.5 Streaming

In case the destination device has limited CPU power and is not able to perform

the effective 3D rendering involved in the gaming-IPTV game, a streaming server

is used to stream the live content to the destination device, e.g., the STB. The

content stream is generated by the streaming server according to the 3D model and

game parameters provided by the gaming server.

4.8 Summary

Many functions are needed to support migration. Different functions come into

play in different phases of the migration and some are specific to a scenario.

Chapter 3 and 4 captured both core functionalities but also supporting

functionalities required for an effective and reliable service migration platform. It

is the purpose that this platform will support the application logic reconfigurability

and other such functionality developed in WP2 and WP4 to enable the end goal,

service migration of different kinds as envisioned in [4].

In the next chapter we take a look at deployment scenarios of the described

function, and how components may be distributed in different network scenarios.

Title: Detailed network architecture Id Number: D3.1

 38

5 Deployment scenarios

The scenarios presented in [3] and [4] present very different settings in terms of

involved devices and network architecture. In this chapter, we describe possible

network architectures in terms of involved entities and also assumptions regarding

the providers of the architecture. Following the architecture descriptions, we argue

to focus first on scenarios where changes to the infrastructure can done to support

migration and then move afterwards to more restricted scenarios regarding

support.

5.1 Potential architectures and challenges

In this section we discuss various models for the network architecture based on

different usage scenarios. The aim of the section is to analyse how different

existing technologies can be applied for the migration support, for which the

analysis will include discussion on involved network elements, their relationships,

security, and configuration of the system.

5.1.1 General Infrastructure

The general infrastructure case assumes a networking setup in which application

servers are provided to clients. As this is a general case, there cannot be any

assumptions on special network setups and network support for the system. This

case therefore is the most general case for Internet-based services. Cases for

Enterprise scenarios, Cellular Operators, or Special Networks (like Home

Networks) can rely on better infrastructure support for migration. Figure 9 depicts

the setup.

Infrastructure

Application server

Correspondent node

Migration server/proxy

SIP

TCP/UDP

IEEE 802.11

Application

O
P

E
N

IP

SIP

TCP/UDP

IEEE 802.3

Application

O
P

E
N

IP

SIP

TCP/UDP

IEEE 802.3

O
P

E
N

IP

TCP/UDP

IEEE 802.3

O
P

E
N

IP

Application

Figure 9: A scenario utilizing a proxy in the network architecture for migration

Title: Detailed network architecture Id Number: D3.1

 39

Description of Elements:

Client Clients execute the applications. Clients and applications

executed on the clients can be Migration Platform-aware

or not aware.

Migration

Server/ Proxy

A dedicated network element that supports the migration

between clients.

Application

Server

Any type of application server that provides services to

client machines.

Relationship between Elements

As a consequence of the general infrastructure assumption, client machines need

to be configured by hand for using the migration server/proxy when accessing the

applications servers. Migration server/proxies can be provided independent of the

applications server as long as the client-proxy trust relationship allows to use

client credentials (e.g. login data) so that the migration server can sniff the needed

security information. When the migration server and the application server is in

one administrative domain, they can share the security relationship.

Security

Security is provided by the general means of the used communication system. This

is usually a one-to-one relationship between the client and the application server.

Variant of this scenario: Infrastructure gateways

This variant assumes that the migration proxy is contained in dedicated network

elements, e.g. in routers (using for example embedded operating systems like

openWRT [10] as execution platform) or in dedicated entities, e.g. a proxy that

intercepts service sessions.

5.1.2 Network Operator / Cellular networks

This scenario is characterized by a network operator that is involved in the service

delivery. Security is provided between the client and the service provider. A

distributed security and identity management system can be used for multiple

application servers. Furthermore, traditionally in this case, operators like to be

able to configure the end-users terminal for the given network. As a consequence,

the general Infrastructure model is missing some important properties for the

network operator, which may affect the configuration of the system.

Terminal and service-specific configuration can be done in various ways. For

example, in recent years, it has become popular to send Over-the-Air

configuration information to terminals, e.g. for e-mail access, for network

configuration, or for WAP access. A drawback of this solution is that users need

Title: Detailed network architecture Id Number: D3.1

 40

to actively request updated information and network operators cannot easily

change the configuration of their networks. Especially in roaming cases, this

causes also a lot of management overhead to serve the visiting nodes

Next Generation Networks (NGN) is the initiative of moving existing

telecommunication networks to IP based technologies. NGN rely on a SIP-based

signalling infrastructure, the IP Multimedia Subsystem (IMS). The main

characteristic of IMS is that terminals dynamically find their first SIP proxy (the

P-SCSF) using standardized IP means like DNS lookups or DHCP. From there on,

the network operators can handle network and services access on a session-by-

session base.

For OPEN, this has the advantage that the needed migration server/proxy can be

dynamically and network-controlled assigned based on the current network

structure and services need. Furthermore, SIP enables dynamically negotiate and

re-negotiate session parameters. This has the advantage that migrations can be

controlled by standardized SIP mechanisms. SIP/IMS has a strong security model

that seamlessly integrates with the security mechanisms of today‟s cellular

networks.

An SIP/IMS-based migration platform would re-use the existing infrastructure like

P/I/S-CSCF and HSS servers. Furthermore, this would enable also to migrate SIP-

based session (e.g. IM, Voice, Presence, etc).

Compared to the General Infrastructure Mode, the SIP-based approach has also

drawbacks. SIP-based communication is inherently asynchronous and event-

driven. For application programmers this programming model is harder to master.

Furthermore, changing all existing systems – especial Web-based applications - to

a SIP-based model is not practical.

Nevertheless, for important services like voice, SIP-based session management is

in wide use. The VCC standard (Voice Call Continuity) defines how voice session

can migrate between, e.g. the PS (packet switched) and CS (circuit switched)

domain.

Variants of the Model

SIP-based device and service configuration: A variant of this model is to use a

SIP-based approach for initial device and service configuration. This means that

operators can use the SIP-mechanism for dynamically changing configurations

(like the used Migration server/proxy). In the end-terminal, the respective SIP

signals will be mapped to configuration changes of, e.g. the browser.

OMA-based Device Management: The OMA DM standard defines ways to

dynamically configure a device.

5.1.3 Enterprise Networks

Enterprise networks are dominated by Network-OS, e.g. based on Windows

servers or on Unix (NFS/ONC) servers. Security is provided by a centralized user

Title: Detailed network architecture Id Number: D3.1

 41

management system, sometimes based on directory-servers like Active Directory/

LDAP

In this scenario, configuration and management of a migration platform can be

done with the existing mechanisms, e.g. a centralized LDAP directory or network-

OS specific mechanisms like Policy Management in Windows.

Increasingly, enterprises are also using SIP servers for their telecommunication

services. An alternative for the enterprise scenario is to base the migration

platform on the existing SIP infrastructure. Again, the problem remains that a

majority of existing applications rely on the Web platform or on proprietary

mechanisms.

5.1.4 Home Networks

Today‟s, home networks have no commonly agreed infrastructure. Nevertheless,

DLNA/UPnP is an emerging standard that allow dynamic collaboration between

home devices based on device/service discovery and a set of standardized

interaction protocols.

Security: In home networks, security and identity management is usually not

used.

Discovery: DLNA/UPnP can be used for dynamical discovery of a migration

server/proxy at home.

5.1.5 Ad-hoc/peer-to-peer networks

Ad-hoc connection

Ad-hoc connection

Ad-hoc connection

TCP/UDP

IEEE 802.11

Application

O
P

E
N

IP

TCP/UDP

IEEE 802.11

Application

O
P

E
N

IP

TCP/UDP

IEEE 802.11

Application

O
P

E
N

IP

Figure 10: An ad-hoc network illustrating capabilities of involved nodes

Contrary to the previously described cases, ad-hoc networks do not assume

migration support from the network – i.e. migration servers or proxies. Therefore,

all functionality required to perform migration must be located on the involved

Title: Detailed network architecture Id Number: D3.1

 42

devices alone. Also, in this network the provider of the application is one of the

involved devices, and not a central dedicated server.

Typical devices involved in ad-hoc networks are smaller, highly mobile devices

such as smart phones, PDAs or laptops. More static devices that connect to mobile

devices can also be involved such as a TV, a set-top-box or a gaming console.

In Figure 10 an example of an ad-hoc network is illustrated. A typical limitation is

that entities communicate directly (often with wireless technologies) with each

other and do not use intermediate communication entities such as access points or

routers. In terms of scalability such networks therefore rarely become huge as the

communication technologies for such direct communication do not support a high

amount of nodes.

To create ad-hoc networks either Bluetooth (IEEE 802.15) or the WLAN (IEEE

802.11) family can be used as communication technologies. However, both

technologies require manual interaction in order to setup the ad-hoc network. For

instance when using WLAN, the common frequency must be preset on all devices.

5.2 Summary and development plan

The plan for WP3 is to start out by investigating the challenges of performing

migration in an infrastructure-supported scenario, where entities to aid migration

are present and usable to place middleware functions on. As a solution for

infrastructure migration is developed, the challenges in performing migration in

distributed and ad-hoc networks are investigated. These are for instance where to

place middleware functions that in the first place reside on infrastructure entities.

Having access to infrastructure support in terms of centralized servers and (re-)

configuration options make it simpler to perform migration compared to fully

distributed scenarios and ad-hoc scenarios. Therefore, to develop migration

functionality for the latter cases at all, we need to investigate the challenges in

providing migration in the simplest environment possible to not also have to

address many challenges presented by the non-infrastructure scenarios. Once

migration functionality is stable, the additional – more strict – assumptions from

the distributed networks can be handled within the project.

In the following chapter, the identified middleware functions that are required to

perform migration are described based on this plan. This means that for each

function it is discussed how it will behave in an infrastructure mode and also if it

depends on a migration server or additional configuration support.

Title: Detailed network architecture Id Number: D3.1

 43

6 Detailed interactions in the Open scenarios

As mentioned in Chapter 5, there are two basic scenarios that needs to be

considered; 1) with some centralized support in terms of a migration server, and 2)

one without such a central support entity (the ad-hoc scenario). As decided within

the project planning, the first year we focus on the centralized solution, so as to

keep the focus on the core migration part, and then eventually remove the

assumption on having infrastructure to support the migration, namely the ad-hoc

scenario.

6.1 High level scenario with infrastructure support

In this section we focus on describing the external settings for scenarios,

describing which entities will interact with the OPEN platform. The architecture

scenario is depicted in Figure 11, and contains:

 A mobile phone sending through a short range network, e.g. Bluetooth, the

commands for interacting with the UI which is rendered by the set-top box

(STB) on the TV set;

 A broadband connection is used by the STB to exchange data related to the

gaming session;

 A second connection is used to send to the STB a video stream

representing the 3D rendering of the game.

 The game server provides to the streaming server the data flow to generate

the 3D rendering.

At Home gaming

scenario

IMS core

OPEN Platform

Gaming AS

Streaming

Mobile enters the

Home Area

The STB has 2 different active sessions:

-a session toward the Streaming server, which sent the game

images

-a session towards the Gaming AS used to send the user A’s

inputs

Figure 11: Infrastructure supported home gaming migration scenario

Title: Detailed network architecture Id Number: D3.1

 44

The following analysis starts from the migration described in the IPTV Gaming

Scenario between the mobile phone and the STB.

Two different architecture hypotheses have been made:

1. SIP/IMS based architecture

2. Internet based architecture

and two different migration triggers:

 the mobile phone, entering the user‟s home, detects the STB and triggers

the migration

 the Location enabler is notified that the user has entered the cell

corresponding to his/her home and triggers the migration

These scenarios are further investigated in the next section.

6.1.1 SIP/IMS based architecture

In the first scenario, shown in Figure 12, the trigger of the migration process is

initiated by the mobile phone.

Context information

Prepare to migrate

Session1

Gaming AS

OPEN Platform

IMS core

Prepare to migrate

IMS migration hypothesis-1

Presence LocationAccess Layer

Network type

gaming

Home area

Migration request

Gaming info

Streaming

Migration management

Context session

Sessions management

Session2

Session3

Ready to migrate

Migration confirmation to user

OK

Ready to migrate

Ready to migrate

Migrate

Figure 12: IMS architecture and a mobile triggered migration.

The steps shown in Figure 12 are as follows

1. In the gray box the context information exchange between the different

context providers and the OPEN platform is described. Between the

Title: Detailed network architecture Id Number: D3.1

 45

mobile and the OPEN platform a context session is opened, and is used for

context information exchange.

2. When the mobile enters the home, it triggers the migration to the STB.

3. The STB communicates to the OPEN platform the migration request.

4. The STB establish an IMS session with the OPEN platform in order to

exchange the information required during the migration process.

5. The OPEN platform uses the IMS in order to set up the 3 new different

sessions required for the migration.

a. Session 1, between STB and Streaming server, used for sending the

game images to the STB

b. Session 2, between the STB and the Gaming AS: the STB sends to

the Gaming AS the user‟s inputs

c. Session 3, between the Gaming AS and the Streaming server: the

Gaming AS sends to the Streaming server the game information

necessary for the game rendering

6. When the sessions are established, involved modules notify the OPEN

platform of the migration readiness

7. The OPEN platform sends a request for migration confirmation to the

mobile phone

8. The user confirms the migration, the mobile phone notifies the OPEN

platform

9. The OPEN platform confirms the migration to the STB, which now takes

over control of the game.

In the second scenario, it is not the mobile phone, but the OPEN platform which

initiates the trigger. The scenario is shown in Figure 13, and is described by the

following steps.

1. In the gray box the context information exchange between the different

context providers and the OPEN platform is described. Between the

mobile and the OPEN platform a context session is opened, and is used for

context information exchange.

2. When the mobile enters the home, the Location module sends to the OPEN

platform the information that the user is in his/her home area. The OPEN

platform sends a migration request to the STB.

3. An IMS session is established between the STB and the OPEN platform in

order to exchange the information required during the migration process.

4. The following steps are the same as described for the previous scenario

(points 5-9) in Figure 12.

Title: Detailed network architecture Id Number: D3.1

 46

Context information

Session1

Gaming AS

OPEN Platform

IMS core

Presence LocationAccess Layer

Network type

gaming

Home area

Migration request

Gaming info

Streaming

Migration management

Context session

Sessions management

Session2

Session3

IMS migration hypothesis-2

Ready to migrate

Migration confirmation to user

OK

Ready to migrate

Ready to migrate

Migrate

Figure 13: SIP/IMS architecture, network triggering

So in fact the two scenarios shown do not differ significantly despite the fact that

the triggering of the migration happens from different locations.

Title: Detailed network architecture Id Number: D3.1

 47

6.1.2 Internet based architecture

Context information

Prepare to migrate

Session1

Gaming AS

OPEN Platform

Prepare to migrate

Internet migration hypothesis-1

Presence LocationAccess Layer

Network type

gaming

Home area

Migration request

Gaming info

Streaming

Migration management

Context session

Session2

Session3

Open session 1-3

Open session 2

Ready to migrate

Migration confirmation to user

OK

Ready to migrate

Ready to migrate

Migrate

Figure 14: internet architecture, mobile triggering

In Figure 14 we consider an Internet based architecture with a mobile triggered

migration. The steps are as follows:

1. The first three steps are the same described in the IMS migration

hypotesis-1 scenario, describing the mobile triggered migration.

2. The STB establish a session with the OPEN platform, in order to exchange

the information required during the migration process.

3. The OPEN platform sends different messages to the Gaming AS and the

Streaming server in order to set up the 3 different sessions required for the

migration. In this scenario, the OPEN Platform manages the session

establishment, without the IMS support.

4. The following steps are the same as described for the IMS migration

hypotesis-1 scenario (points 6-9) in Figure 12.

Title: Detailed network architecture Id Number: D3.1

 48

Context information

Session1

Gaming AS

OPEN Platform

Internet migration hypothesis-2

Presence LocationAccess Layer

Network type

gaming

Home area

Migration request

Gaming info

Streaming

Migration management

Context session

Session2

Session3

Open session 1-3

Open session 2

Ready to migrate

Migration confirmation to user

OK

Ready to migrate

Ready to migrate

Migrate

Figure 15: Internet architecture, network triggering

In Figure 15, we consider an Internet based architecture, with network initiated

migration triggering mechanism.

1. The first two steps are the same described in the IMS migration hypotesis-

2 scenario, describing the network triggered migration.

2. The STB establish a session with the OPEN platform, in order to exchange

the information required during the migration process.

3. The OPEN platform sends different messages to the Gaming AS and the

Streaming server in order to set up the 3 different sessions required for the

migration. In this scenario, the OPEN Platform manages the session

establishment, without the IMS support.

4. The following steps are the same as described for the IMS migration

hypotesis-2 scenario (points 6-9) in Figure 13.

The IMS migration hypothesis differs from the Internet migration hypothesis for

the use of the IMS features for the session management.

Title: Detailed network architecture Id Number: D3.1

 49

6.2 Detailed OPEN platform interactions at component

level

In this section we now focus on how the OPEN platform and its internal

components interact in order to support the scenarios as described in Section 6.1.

6.2.1 Interfaces between OPEN platform components

Figure 16 provides an outline of interactions between the major components

involved in the migration process. Starting from the top, we have the application

clients, which interact with the application server.

Source device

Application client

Migration middleware

Target device

Application client

Migration server

Application serverApp App

start_app()

Migration middleware

Device registry UPnP/directUPnP/direct

SCMFSCMF

get_context()

Reconfiguration/adaptation logic

extract_state()

buffer()?

Migration orchestration

Migration orchestration

Trigger management

Policy mangement

Session management

Persistence logic

OPENOPEN

inject_state()

get_session()get_context()

Persistence logic

register_app()

pause()/stop()

Migration orchestration

Trigger management

Persistence logic

Context management

Mobility support Mobility supportmIP/EmIP/socket/content mobility support/SIP

connect_nodes()

Context providers

connect_nodes()

Context providers

update_context()update_context() update_context()

Device discoveryDevice discovery

Figure 16: Description of interfaces and interactions within the infrastructure using a migration

server, illustrating deployment of the different components

The application clients also interact with the persistence logic in order to transfer

the internal application state of the source device to the target device. It is the

migration middleware Persistence Logic that manages this application state

transfer under the control of the Migration Orchestration via an OPEN specific

protocol.

At the heart of everything, the migration server contains many of the core

functionalities like migration orchestration, trigger, policy and session

management to ensure that data flow and control flow between the source and

target device is happening correctly.

In the background, the context management node is operating independently,

gathering and distributing context information, so that all context information is

easily accessible for all of the above software entities on the involved devices, i.e.

source, target and migration server can easily access context information from

each other via the context management interfaces provided. This interface is

called the SCMF after the Secure Context Management Framework, which, as

explained, has been adopted by the OPEN project.

Title: Detailed network architecture Id Number: D3.1

 50

Next to this component, we have the device discovery and registry system, which

is ensuring that the migration server is aware of which devices are available for

migration and what their capabilities are. Parts of this information are also

considered context, and may be fed into the context management framework as

needed, but the discovery process itself requires a separate component as shown in

Figure 16.

Finally, we also need to consider mobility support in order to ensure that sessions

are not disrupted when the user is mobile.

6.2.2 Interaction and component activity – example scenario

In Figure 17 an activity diagram of the given scenario is shown, which illustrates

not only what information is being exchanged between entities, but also which

components are in fact active at which time.

Title: Detailed network architecture Id Number: D3.1

 51

OPEN migration server
Source device:

migration client

application server/client

Context providers:

calendar, location

Join network (DHCP request)

Lookup/discover OPEN server (DNS, UPnP, direct addressing)

Register OPEN client (Capabilities (profile), context providers, login?) with OPEN server

Address assignment (IP, hostname, gateway...)

Network services:

DHCP, DNS?,

mIP agents

Target device:

migration client

application client

Lookup/discover OPEN server

Register OPEN client with OPEN server (re-login?)

Address assignment

Update context information

Update context information Update context information

N
e

tw
o

rk
 r

e
g

is
tr

a
ti
o

n

C
o

n
te

x
t
in

fo
m

a
ti
o

n
 u

s
a

g
e

 (
c
o

n
ti
n

u
o

u
s
)

Pause application client

M
ig

ra
ti
o

n

Extract application client state

Join network

Buffer application client state changes

Insert (adapted) application client state

Start application client

Stop application client

Synchronize application clients

Send buffered client changes

Connect client devicesConnect

Use new application client

”Migration complete”

Mobility support

Flow synchronization

State persistence

Migration

orchestration

Migration orchestration

Trigger management

Device

discovery

Reconfigure

application state

(UI/logic) based

on client/context

Security

Device

discovery
Security

UI adaptation

State persistence

App. logic

reconf.

Context management

”Migrate application client to target”

Infer trigger from context Trigger management

Simple, manual trigger

Complex, automatic trigger

Policy

management

Figure 17: Detailed sequence diagram illustrating when different functions are active during

migration in the infrastructure-supported scenario

Although this is just the realisation of one scenario, it should provide more

detailed insight into how the components are working and interacting with each

other. At first network registration is required. The involved nodes need to be

assigned network addresses, locate the migration server and communicate their

capabilities to it. The Device Discovery is the main active component in this part

of the scenario, and involves obviously security measures to ensure that the

devices discovered can also be trusted.

Subsequently, after the discovery process, the Context Management can establish

connections and exchange information about what context is available on which

node. Following this exchange of information, the context manager can be seen as

a network service running in the background providing easy access to the context

information.

Title: Detailed network architecture Id Number: D3.1

 52

Finally, at some point in time, the migration process will happen. It is up to the

Trigger Management to decide when this happens, it can be done either

manually by one of the devices, or it can happen by an automatic trigger based on

context information and thus the given situation. Once it has been decided to

trigger a migration process, the Migration Orchestration component will take

over the process management, so for example to first pause the application, and

then activate the Persistence Logic for obtaining and moving the application state.

Within this phase, there might be some UI and application reconfiguration that

happens, which may also have an impact on the application state being transferred,

hence the components UI and Application reconfiguration may interact with the

Persistence Logic component at this time. These components are however treated

outside of WP3, and a clear interface here is needed. However, whether the

application state has been manipulated or not, it will eventually be transferred to

the target device, after which the Migration Orchestration can start the application

in the transferred state, i.e. the application continues from where the application

stopped at the source device.

There may be more steps involved if synchronization between the application state

is required, e.g. if there are buffered data like sound and graphics associated to the

game, which also need to be transferred and handled synchronously to the game

engine itself. Then the Mobility Manager may establish connections between the

source and target device dynamically and let the Synchronization module ensure

buffers are the same, so that the game starts exactly at the same point with relation

to game time, game state, sound and graphic

As seen it also becomes clear that the migration server is a very central point in

the process. It will take many decisions and have access to a lot of information,

and the challenge for the next part of the OPEN project is now to focus on how

these scenarios would look, if there were no central migration server, i.e. for ad

hoc scenarios, and what that would do to the components and their respective

information needs. The Context Management system could be a potential

important component in this part, since it independently can transfer relevant

information between devices, making parts of the information exchange required

by each component easier.

6.2.3 Migrating from many devices to many devices

In some of the application scenarios specified in WP5, complex migration

situations arise. Examples of these are when applications from multiple devices

are migrated onto one device, or the opposite, when an application previously run

on one device is distributed onto multiple devices. An extreme situation following

the two examples is when applications run on a set of multiple devices and then

are distributed to a different (not necessarily disjoint) set of multiple devices.

Generally we call these types of migration aggregation when migration from

multiple devices to one and distribution in the opposite direction. Migrating from

many-to-many devices can be seen as an extreme case of distribution.

Title: Detailed network architecture Id Number: D3.1

 53

The network architecture and the connectivity support may be challenged by

migration of special types of these applications.

Migration (regular, aggregation or distribution) can be handled completely within

the OPEN platform if applications are self-contained and running on the devices

before the migration without external communication.

This can be illustrated by using the WP5 example of the simulation applications

migrated to the smart wall (Figure 3-4 in D5.1 [22]). In this example, two self-

contained applications are aggregated from multiple devices onto a single device,

and the applications are either merged into one or represented as two on the single

display. In any case, the migration of the applications can already be handled by

the current functionality and the complexity in supporting this type of migration

lies in the migration orchestration and application reconfiguration functions.

If the application is distributed between multiple devices, i.e. going from the smart

wall to multiple devices, the task is similar when the applications do not

communicate.

The challenge is complex if the applications communicate with other devices –

either with devices in range or remote servers, especially if the applications have

non-OPEN-aware peers such as remote 3
rd

 party service providers. In this case, the

OPEN framework must support the complex mobility of the applications as well

as the coordination and synchronization of the data-flows going to and from the

applications.

However, as such applications do not exist in the scope of OPEN we will not

develop specific support for many-to-many migration of communicative

applications.

6.3 Detailed solutions for selected components

Obviously, there are many different components envisioned in the OPEN

platform, but due to resource limitations we will need to focus on a set of the

components at first. The selection criteria of the relevant components have been

based upon

- Investigation of the core components required by a infrastructure solution

- Those directly supporting the demos as described in Deliverable D3.2, [11]

- Those showing the most prominent concept of service migration

In the following we describe solutions for two aspects, namely Device Discovery

and Context Management.

Title: Detailed network architecture Id Number: D3.1

 54

6.3.1 Solution proposal for Device Discovery

As a result of the previous analysis we propose to use OSGi to develop some basic

device discovery functions to cover OPEN purposes.

The preferred discovery model is based on a shared registry.

We define the OPEN environment as the set of devices where an OPEN Node

Manager is in execution and has provided the device characteristics to the OPEN

registry, this means that:

 The basic connectivity is established between the device and the OPEN

platform

 An OPEN Node Manager has been successfully set up in the device; with

set up we mean that an OPEN Node Manager has been downloaded,

installed and executed in the device. The set up method changes according

to the device type:

 for a CPE we propose TR069,

 for a mobile device we propose to assume the usage of the Device

Management Solution

 for a PC we propose to assume that the user installs the OPEN Node

Manager

An OPEN Node Manager in every device should be able to perform a set of

functions here described and illustrated in Figure 18:

 Device Characteristics Notification: the OPEN Node Manager in every

device should be able to provide to the OPEN platform its characteristics

such as: Execution environment, Supported Connectivity, Device

name, Device location, Privacy, Interaction resources. The notification

should be performed when the device connects to the OPEN environment

and updated when the device characteristics change or according to certain

update policies (to verify if there are needs for this updating policy). When

the device enters the OPEN Environment the OPEN registry will provide a

unique device identifier. We have to emphasize that this function could be

part of the more general context notification process where the node

manager of every device provides context information unrelated to device

status

 Surrounding Device List: the OPEN Node Manager in every device

should be able to ask the OPEN platform for the list of surrounding

devices and their respective characteristics. This function can be invoked

when the user wants to migrate the application, or can be automatically

triggered depending on the context, for example when the device battery

level reaches a low level.

Title: Detailed network architecture Id Number: D3.1

 55

Device

Registry

Device

Node

Manager Connectivity

established

Node Manager

running

Device

Registry

Device

Node

Manager

Device

Characteristics

Notification

Unique

identifier

Device

Registry

Device

Node

Manager
Device

Entered in OPEN

Environment

Device

Out of OPEN

Environment

Figure 18: Illustration of device discovery concept

As a device entered in the OPEN environment could become unavailable for

various reasons, there is a need for the OPEN registry to verify the status of the

devices that previously were in the OPEN environment. With this function, which

we call Device Availability, the OPEN registry requests a given device to update

its characteristics using the Device Characteristics Notification function.

6.3.2 Context Management Framework

6.3.2.1 Basic entity definitions

The basis of the Context Management in OPEN is, as mentioned earlier, the

Secure Context Management Framework from MAGNET Beyond, [17]. This

means that some modifications would be required as the network assumptions are

different than in MAGNET. Specifically the SCMF in MAGNET was operating in

a secure, trusted environment with nodes organised in groups or clusters of nodes.

In OPEN the focus is different, since most devices are locally present, and the

whole overlay concept as required by the large network in MAGNET Beyond and

its Personal Network concept, is not needed for OPEN. However, the scenarios

chosen in OPEN would make use of existing terminology. Those we intend to use

and how they relate to the OPEN platform are as follows:

- Context Agent (CA): A software component that is assumed on all OPEN

enabled nodes, implementing the functionality to collect, process and

Title: Detailed network architecture Id Number: D3.1

 56

distribute context information for OPEN components and

applications/services.

- Context Management Node (CMN): A specific CA which is responsible

of knowing what context information is available and where in the

network different context information can be found.

As for now, OPEN is focusing on a centralised solution based on a service

migration server, the CMN is naturally chosen as being on the Service Migration

server, since this anyway has a central role in the whole migration process. Figure

19 shows the settings of a laptop and mobile phone, which will migrate an

application/service session via a migration server.

Laptop

Migration server

Mobile phoneCA
CA

CMN

Application server
CA

Ctx Ctx Ctx
Ctx Ctx Ctx

Ctx Ctx Ctx

Ctx Ctx Ctx

Figure 19: Service migration of an application/service session between a laptop and mobile

phone, via a migration server, and how CA‟s and the CMN are distributed on the involved devices,

collecting locally available context information (Ctx).

As shown in Figure 19, the assumption is that there is at least a CA on every node

involved. Depending on whether the application server is OPEN enabled or not,

there is also a CA on it. The CMN is always located on the migration server, since

this is anyway the central point in the whole migration process.

6.3.2.2 The Context Management Framework in infrastructure supported
scenario

Figure 20 shows the general overview of the interactions between the Context

Agents in the scenario with the infrastructure solution. In the following a

description of the scenario is given, with focus on the activities of the Context

Management Framework.

Title: Detailed network architecture Id Number: D3.1

 57

Context Agent Context Agent
Context Management

Node
Context Agent

Laptop Mobile phone Migration server Application server

Register context

Register context
Register context

Set subscription

Acknowledge

Send update(s)

Req. Ctx. information

Send value(s)

Trigger management

Provides ctx.

Subscription conditions

Trigger condition

Violated.

Service migration triggered

Req. Ctx. information

Send value(s)

Send update(s)

Do service migration

A

B

C

D

Figure 20: General message chart diagram of Context Agents interacting in infrastructure -

supported service migration solution. The application server may or may not provide context

information, depending on whether it is OPEN enabled or not.

As seen, the first step (Step A) is to have all the Context Agents on the different

devices register their local node information to the Context Management Node.

This is simply done by providing the Context Manager with context locators and

unique identifiers by which the CMN can distinguish similar context elements

from different devices.

Following this, the Trigger Manager is responsible for determining the type of

context information to be used and the conditions for the Triggering mechanism.

This information is passed on to the Context Management Node as a subscription

request to the source node for the relevant context information, as shown in Step

B. There may be more than one element, or in fact, the information subscribed to,

may require information from other nearby nodes. It is up to the Context

Management Node to find the best source of information (which for simplicity is

shown in Figure 20 as the laptop which also happens to be the source device).

Once the right information source has been located, a subscription with the desired

subscription conditions is sent to the device as a part of Step B. An

acknowledgement with subscription ID is send back. The ID is used to

differentiate subscriptions from each other, if the CMN has multiple ongoing

subscriptions. Updates are sent either regularly (periodically with a specified time

interval) or whenever an event occurs in Step C. An event or the time period of

updates is a part of the subscription conditions. When the CMN on the migration

Title: Detailed network architecture Id Number: D3.1

 58

server receives the updates, it simply forwards them to the Trigger Manager,

which, in turn, decides whether to trigger a service migration or not.

When the service migration is being triggered, the Migration server will have to

locate the best device to migrate to, which depends highly on context. But before

the Context Manager can request context information, it relies on the

Device/Service discovery to discover potential candidates. The additional step is

to ask those devices discovered in the device/service discovery process about their

individual context information. Thus the migration server (Migration Manager)

will request context information related to potential candidate targets of a service

migration (done in Step D).

Whether an application server is OPEN enabled or not, impacts the accessibility of

context information from that server. If it is OPEN enabled, the assumption of the

presence of a Context Agent on the server is valid, and therefore the CMN can

directly access context related to the application server to be used in the service

session and/or the service migration process as well. If it is not OPEN enabled,

then in order to get that information, potentially, retrievers or processing

components (see Figure 4) may be written explicitly to gain access to the relevant

information at the application server. Because retrievers operate on a native

interface and do not depend on the Context Managers own internal interface, this

may be possible. Furthermore, inferred context may be needed, since some state

information may not be directly accessible via a retriever, but may require

inference or estimation techniques to be provisioned. This is, of course, a sub-

optimal solution, but provides effective means to provide context information,

even if the source (here the application server) is not a part of the Context

Management Framework.

6.3.2.3 Scoping of context information requests

An important aspect that allows such a system to work efficiently, is to provide

the capability of scoping of the requests, e.g. it is not a good idea to blindly

provide information of battery status, if it is measured on a device that is not a

potential candidate for migration. Thus, it must be possible to directly address a

request to a specific node in the network.

Query scoping is a mechanism that allows the application to redirect or limit

queries on context information to specific nodes or groups of nodes. For

MAGNET Beyond, the scopes of interest were defined by; local node, cluster, PN

or PN-Federation. In OPEN the requirements are different, firstly because the PN

and PN-Federation concept is not used. Instead it would be necessary to redirect

queries to specific nodes or entities, so that in the example of Figure 19, the

migration server may request battery status of mobile phone. It is, of course, a

problem that the mobile phone (target device in this case) is not known a priori.

Thus the request should happen to those devices that have been found first by

Device Discovery for later selection of the appropriate device. Once Device

Title: Detailed network architecture Id Number: D3.1

 59

Discovery has discovered potential migration targets, the Service Migration

Manager, may request the Context Management System about battery status of the

potential candidates, and thereafter select the device with most battery power left

(or considering also other information in this selection process).

Hence, it is a clear requirement for the Context Management Framework to be

able to direct context queries directly to specified devices with given ID‟s such as

IP address or similar.

6.3.2.4 Bootstrapping the framework

When starting up a Context Agent, it will register the accessible context

information on its node to the CMN, from which other Context Agents, may

retrieve information of the network location of specific context information. In the

first year goal, the CMN is statically chosen as being on the Migration Server,

which makes the bootstrapping of the Context Management system fairly easy.

Static configuration of the Context Agents to inform them that the CMN is on the

service migration server is enough. Since this information is required by all other

OPEN components, it is safe to assume it is also available for all of the Context

Agents.

For later scenarios with ad-hoc networks, there is no such central entity, and

therefore the Context Management system must decide independently where to

store the context registry information. This will be addressed in the next step of

OPEN, but previously solutions from MAGNET Beyond were based on an

election mechanism, that allowed nodes in the network to compete to be the

CMN, and allowed for dynamically triggering such a contest when nodes were

arriving, leaving or not responding for a long time (failures), see e.g. [19].

6.3.2.5 Further adaptation of the SCMF into OPEN context

As a conclusive outcome of the MAGNET Beyond it was found that some service

frameworks would benefit the SCMF in deployment scenarios. In the following

we investigate, based on these aspects, different frameworks, and how the SCMF

fits into those.

6.3.2.5.1 OSGi framework

OSGi would for the SCMF be beneficial in particular to those components which

are interchangeable, i.e. retrievers and processing components. OSGi would allow

runtime installation of needed/required components, and uninstallation of no

longer needed components. Beside this, OSGi would also allow for better control

on the life cycle of the components, strengthening the framework.

Title: Detailed network architecture Id Number: D3.1

 60

Because of the way OSGi works and defines component and service interaction,

there will be required some changes to the current implementation from

MAGNET Beyond in order to make it run in an OSGi environment. Those

obviously foreseen are

 Internally, the classes or one super class would need to implement a start

and stop methods as required by the OSGi framework

 Service event listeners would potentially be needed to be implemented in

order to receive and handle service messages from the environment.

Besides an implementation effort, turning the SCMF into OSGi framework, will

obviously make it dependent to this framework.

6.3.2.5.2 Corba

Since Corba is considered being used in OPEN, it is also of potential interest to

see if the SCMF fits to this framework. However, since the interaction with the

SCMF happens through XML-RPC and the implementation is done in Java, the

interaction with Corba based components is not envisioned to be a huge problem.

6.3.2.5.3 SCMF and Web Services

Finally, as web services is an important part of OPEN, the SCMF should also be

considered in relation to web services. This we explain in the following:

 Usually, all access to the SCMF is done locally and the SCMF handles

distribution aspects. Therefore, there is no other API needed.

For reasons of uniform service composition, the SCMF API could be realized as

an Web Service. Currently the SCMF uses XML-RPC for providing an API to

applications. The reason is that XML-RPC has been available for small devices

like Windows Mobile. Furthermore, there is a Java object that hides the XML-

RPC.

6.3.3 Mobility support in central migration server

As described in section 3.2, mobility must be supported by the service migration

platform. It is the responsibility of the „mobility support‟ function to provide this

support. In the first year version of the migration platform in OPEN, a central

server is placed in the data path of communicating applications. This means that

whenever an application contacts its peer, this contact is established through the

central server – here called a migration server.

In order to define mobility, something must be moving. In OPEN, mobility means

that components of the application, providing the service to the user, moves

during the service session. In general the moving components can be located both

server-side and client-size in the communicating application, but in OPEN we

only consider client-side components in the first year version. Thus, the mobility

type to be supported in the platform is „service mobility‟, as the client-side

Title: Detailed network architecture Id Number: D3.1

 61

interaction components of the applications move between devices and thereby

represent moving the service.

As the components move between peers, the connectivity to the corresponding

peer(s) must be maintained – which is basically the requirement to the mobility

support function. If the following we describe a set of scenarios illustrating service

mobility and discuss possible mobility support solutions in the scenarios.

The scenarios are based on examples of video streaming migration from one client

to another client. The stream is served by a corresponding server outside the

domain of OPEN and the stream is displayed on a client part of the application on

the client nodes, within the OPEN domain. To have peers in the OPEN domain

basically means that some part of the OPEN functionality can be assumed

installed on the peers.

Application server

Migration server

Client 1 Client 2

a)

Application server

Migration server: proxy

Client 1 Client 2

b)

Application server

Migration server: router

Client 1 Client 2

c)

Application end-to-end path

Application data flow

Migration signalling

Figure 21: Scenarios with different use of the migration server: a) Migration is outside the

application data path (i.e. mobility support > L4), b) Migration server is in the transport path (L4

mobility support), c) Migration server is in the network path, so end-to-end connection between

client and server exists (L3 mobility support)

In Figure 21, three different scenarios are illustrated. These are described in the

following.

a) Direct client-server connection: In this scenario, the clients have direct

connectivity to the corresponding peers of the application. The migration server is

used to orchestrate migration of application components. As it is not placed in the

data path of the application, support of mobility with regards to the application

Title: Detailed network architecture Id Number: D3.1

 62

traffic cannot be handled by the server, meaning that the mobility support

functionality must be placed on the client part of the OPEN platform.

As this is not within the scope of the first year version, this scenario is only

described to illustrate service mobility support when implemented on the service

layer, i.e. directly on the peers involved in the applications. A solution for this

scenario will be described in the second year version, which is described in D3.4

[21].

b) Migration server in transport path: In this scenario, the migration server is

placed in-between the clients and the server. It is placed in such a way that all

application traffic is tunnelled through the migration server. From the client-side

the migration server takes the role of a proxy, meaning that to establish a

connection to the application server, the client requests the migration server to

take part in the establishing process.

A detailed message flow of the process of establishing a connection is illustrated

in Figure 22. The migration trigger and the migration itself are illustrated as the

handover where the second client device, after registering with the migration

server, receives the application traffic instead of the first client device. As the

migration server is placed within the data-path, it has complete control over the

connections established between the clients and the server, and can thus decide

who to receive the traffic.

The most challenging task is, when using TCP, to have the second client device

establish a new TCP connection to the migration server on which to receive the

video stream. This is handled by the application client, as this is the component

that needs to receive the data. However, for the migration server to be able to

redirect the traffic to this new socket, the port number needs to be known on

which the TCP connection is established. This is the task of the mobility support

function on the client device.

When the new socket is opened, redirection of traffic can be handled in the

migration server by use of regular proxy mechanisms such as address redirection,

network-address-translation or port-mapping.

c) Migration server in network path: In this scenario, the migration server is too

placed in-between the clients and the server, although here the clients establish

end-to-end connections with the application server. This means that the migration

server is transparent on the transport layer and only visible on the network path.

This is a more complex scenario than the previous, as traffic must correctly be

rerouted from the first to the second client device by the migration server without

direct control. The task is similar, but the means are limited to layer 3.

Here, mobile IP with filtering mechanisms [20] should be applied. The filter-

bindings extension to mobile IP lets an agent forward traffic determined by filter

that can be applied on address or even socket level. The migration server would

the take the role of a home agent, redirecting traffic to the new client device.

Title: Detailed network architecture Id Number: D3.1

 63

A detailed message flow of the process is illustrated in Figure 23. Here, the

problem of establishing the new TCP connection remains unsolved, as the

migration server is not a part of the end-to-end communication. This problem is to

be investigated in the design of the solution, if the migration server is designed as

a network layer solution. Further analysis of the problems and solutions will be

performed and used to document the final migration support solution in D3.4 [21].

Assumptions of the scenarios and the solution:

 Possible to place the migration server in the data path.

 Complete control of the network in the OPEN domain. No NAT or

firewalls prevents client-to-migration-server communication. This requires

the migration server to be located either in home- or corporate-network

types.

Streaming client 1 Migration server : proxy Streaming server (HTTP)

HTTP GET video HTTP GET video

TCP SYN TCP SYN

Port 80 open publicly

TCP SYN,ACK

TCP SYN,ACK

Proxy port 3128 open internally

TCP ACK

TCP ACK

End-to-end connection established

Client 1 registering as migration peer at the migration server

Device discovery

3128 80

80

80

3128

3128

3128 80

c1-p1 1900

TCP video contentTCP video content
ms-p2 803128

Streaming client 2

Trigger

migration

Device discovery and establish migration control connection (MCC)

Client 1 connecting to application server through migration server as proxy

Register new app socket and redirect traffic

TCP video content
3128

TCP video content
ms-p2 80

TCP SYN

TCP SYN, ACK

TCP ACK

3128

3128

3128

Prepare migration (MCC)
Open app

connection

Stop app (MCC)

Send app port (cl-lp4) (MCC)

Migration successful

c1-p2

c1-p2

c1-p2

c1-p2

c1-p2

ms-p2

ms-p2

ms-p2

ms-p2

c2-p1

c2-p1

c2-p1

c2-p1

Figure 22: Mobility support in migration proxy in a stream-hand-over scenario – the migration

proxy is directly in the transport-path

Title: Detailed network architecture Id Number: D3.1

 64

Streaming client 1 Migration server : router Streaming server (HTTP)

HTTP GET video

TCP SYN

Port 80 open publicly

TCP SYN,ACK

TCP ACK

End-to-end connection established

Client 1 registering as migration peer at the migration server

Device discovery

c1-p2 80

80c1-p2

c1-p2

80

c1-p1 1900

TCP video content
80Streaming client 2

Trigger

migration

Device discovery and establish migration control connection (MCC)

Client 1 connecting to application server through migration server as proxy

Register new app port and redirect traffic

MobileIP (with filters)

TCP video content TCP video content
80

Prepare migration (MCC)
Open app

connection

Stop app (MCC)

Migration successful

80

c1-p2

c1-p2

Migration prepared (MCC)
c2-p1

c2-p1
MIP redirect

Figure 23: Mobility support in migration server in stream-hand-over scenario – the migration

server is in the network-path and client-server communication is end-to-end.

As shown, solutions to mobility support exist on different layers of a

communication model. In the first year version of the OPEN platform, we aim at

providing basic versions of all of the functionality needed to perform migration.

There we choose to use the L4 mobility support solution, and assume that we have

the migration server in the transport path of any communicating applications. The

migration server will then be involved in the communication in the form of a

proxy, i.e. instead of connecting directly to the application server a client connects

through the migration proxy. This way the migration server has full control over

the traffic and has thus the best basis for supporting mobility when migrating.

Placing the migration server in the network paths is an interesting solution for

future version, especially as several of the mechanisms of mobile IP used to

handle mobility can be applied in the more distributed scenarios of the second

year version of the OPEN platform, which then also encompasses scenario a).

Title: Detailed network architecture Id Number: D3.1

 65

7 Security aspects of migration support

Now we turn our attention to the security part of the service migration. We focus

here on simple analysis and requirements, and provide a brief overlook of the

possibilities of existing solutions that may fit into the solution described. It should

be noticed that OPEN is not focused on security as per se, hence we do not aim to

develop new technologies, but focus on off-the-shelf solutions for the

functionalities requiring security considerations.

7.1 OPEN security requirements and selection criteria

Most of the security requirements in D1.1 [3] relate to privacy and itspreservation.

These are, for instance, requirements 15, 23, 38 and 141. As the platform

developed in OPEN is intended to be an open platform to support many different

users and many different applications, a lot of the interaction going on during

migration will use information from many sources. This means that also

information private to one user will be used for migration. Storing and accessing

this information in a secure and „private‟ way is a key challenge to the OPEN

platform. This means the establishment of trust between nodes are key important

to the OPEN security.

Furthermore, since services needs to be controlled remotely, access control is also

required in some form, as to decide which entity may have access to starting and

stopping services and applications. Access control is also a requirement as to

control which context information is being accessed, and as it will be clear in the

subsequent section, access control to context information poses a special set of

challenges.

7.2 Overview and analysis of existing security solutions

7.2.1 Secure connectivity

Several of the technologies described as state-of-the-art for connectivity support in

OPEN (see section 3.2) implement their own security model dealing with attacks

and faults that may threaten the security of the particular technology.

For instance, the binding messages of mobile IP (that enable redirection of

messages) must be authenticated and protected against replay attacks. This is

handled through registration to the home agent using IPsec [5] to create a security

association. This way keys can be exchanged between peers to allow for encrypted

communication.

In general, IPsec can handle many security issues transparently to the higher layers

as it operates independently on the networking layer using its own security

mechanisms. It has support for authentication and encryption of packets.

Title: Detailed network architecture Id Number: D3.1

 66

In general, SCTP is also able to rely on lower layer security mechanisms such as

IPsec, however, it does provide some mechanisms itself. When establishing

individual flows inside an SCTP connection, a four-way-handshake is used

between client and server for authentication.

SIP relies on secure transportation and has no built-in security mechanisms. Work

is currently ongoing to find solutions for this.

7.2.2 Security and privacy control for Context Management

Framework

The SCMF, as used in the MAGNET Beyond Project, was based upon the

assumption that it was working in a trusted network environment. This

assumption was correct, since the networking concept in this project, Personal

Networks, was exactly providing such an environment, meaning that the

interactions between Context Agents would always happen between trusted

entities. Thus, only privacy and access control was needed to meet the security and

privacy requirements.

In OPEN, however, it is not the case that devices necessarily trust each other,

hence prior to the exchange of context information these must ensure they trust

each other. This potential lack of trust puts high requirements on what information

is sent to which devices, hence access control in necessary. For context

information the requirements on access control are not necessarily the same

requirements as for other types of information or services. Normally, access

control is about either allowing or not allowing access to information or services,

but for Context Management this is different as we elaborate next.

To utilise context sensitive services, the user has to reveal context at some time,

e.g. for location based services, the location of the user has to be revealed at some

time in the service usage process, as otherwise it is not a location based service.

One aspect of access control for context management is obfuscation of context

information; so for example, the user will reveal his location to less trusted

entities but with less accuracy, or ambient temperature but using terms such as

warm or cold instead of 10 or 29 degree Celcius.

This type of access control, which includes obfuscation of data does not have any

off-the-shelf type of solution, as it will involve data manipulation on the internal

data structure of the SCMF in the first place, but needs to be included in the

existing SCMF, if at some point in time it should be deployed. It should be noted

here, that security and privacy control for context management frameworks is not

a simple matter of inventing a clever technology, but relates closely to legislation

of storing and distributing personal data. Such legislation differs from country to

country, and may pose several types of additional challenges that may well require

the focus of dedicated projects.

Title: Detailed network architecture Id Number: D3.1

 67

7.2.3 Trust establishment

As one of the important security aspects is the establishment of trust between the

involved entities, since service migration potentially includes exchange of

personal sensitive information (application data, context information, …) the user

will need to trust that such information is not transmitted to malicious devices.

Within the scenarios which rely on a centralized server, i.e. the migration server,

trust may be established on certificate exchanges between involved entities prior

to the migration process. This, however, would require additional functionality

and infrastructure enabling the platform to distribute such certificates which, for

example, can be either web-of-trust (such as done in OpenPGP, [23]) or public

key infrastructure based (PKI) e.g. SCVP [24][24]. Trust establishment can

therefore be determined and easily verified by a third party trusted entity. This,

obviously, ties the solution even more to an infrastructure based solution.

For ad-hoc scenarios, things are different, since there is not necessarily any central

entity to be trusted. This is an area of research, whereas some aspect covering the

issue of trust establishment in ad-hoc scenarios are based upon online

observations of neighbouring devices, [26], [27], others on imprinting techniques

as has been done in e.g. [25] which is a procedure similar to the Bluetooth pairing.

From a time performance point of view, the latter option appears to be a good

solution, since once the imprinting procedure has happened keys are readily

available to be used on both devices, which distribution is based on the user‟s trust

in the device, which is then used to ensure secure communication and service

migration. It requires, however, that the user has had a priori knowledge of the

devices involved, and the user has actively been doing the imprinting procedure.

In that perspective, the observation based approaches, offers simpler solution to

the user and requires not necessarily an a priori knowledge of devices.

7.3 Security solutions in OPEN

Several security issues exist in OPEN and this section identifies which solutions

are applied to address these issues. As security is not the primary focus of the

project, the solutions described are standard basic security solutions. When the

functional details of the architecture in different scenarios are known the specific

security solutions can be designed into the platform and implemented for testing

in WP6. Below is a list of security risks and appropriate solutions:

 Authenticity: During migration a high degree of trust is required as

personal information may flow between differently owned devices due to

applications being deployed on several devices. To ensure that no device is

able to spoof its identity and thereby be able to obtain personal

information, the migration server is used as an authentication server. When

a device registers its OPEN participation on the migration server, the client

is requested to authenticate towards the OPEN platform. This can be either

Title: Detailed network architecture Id Number: D3.1

 68

using passwords or by pre-authenticated private/public key infrastructure

(PKI).

 Eavesdropping: As we have wireless media in the network domains of

OPEN the risk of eavesdropping exist. Especially because trust relations

are to be established on-the-fly when device enter and leave networks

confidential information is passed back and forth using such insecure

media. To avoid this encryption using IPSec/IKEv2 is applied. IPSec is

able to use different encryption algorithms to encrypt message passed

between communicating peer using a security association. To establish this

association Internet Key Exchange v2 (IKEv2) is used. The benefit of

using v2 is that it is able to decouple the key used to establish the security

association and the keys used to encrypt the actual data sent. This

strengthens the solution as long-term keys can be deployed on the devices,

which makes the establishment phase less complex. As these keys are

difficult to update in case they are disclosed, there should be a low risk of

learning these keys from eavesdropping. Thus decoupling the keys used for

the data, the long term keys are only used in a very short time period

during the migration phases.

 Authorization: Migration authorization will be based primarily on user

acceptance. This can be manual or automatic based on previous choices or

user profiles.

 Integrity protection: Using shared keys integrity protection is

encompassed in IPSec.

 Access control: As mentioned access to context information, but also to

services is required to be controlled. The simplest approach for the context

management is to implement an access list (ACL), which based upon

requesting ID's (which contains unique ID's from devices) checks whether

access can be granted or not.

Title: Detailed network architecture Id Number: D3.1

 69

8 Conclusions and next steps

The deliverable presents the outcome and achievements for Work Package 3

which, in collaboration with the other work packages has developed relevant

scenarios [3], derived requirements [4] and from those, extracted the most relevant

and extrapolated those into a set of functional components which now entails the

OPEN platform. This work we briefly introduced in Chapter 1.

The components developed reflect different needs and requirements to the overall

service migration process, whereas some are core to the process, and some are

supporting the process, which is reflected in the deliverable structure in terms of

Chapter 3 and 4. In those chapters we elaborate on the functionalities of each

component, including interaction with other components and how the component

can be realised based on existing technologies. A set of relevant components is

included in the demos that are described in Deliverable D3.2 [11].

In Chapter 5 we put our focus on the deployment of the described functions and

components in different network scenarios. The main outcome of the chapter, is

two-fold. First, an outcome is the light cast on the possible scenarios and the

challenges and aspects that are found within the different deployment scenarios.

Second, focus of the work package was identified and properly selected on which

challenges to address at what time within the project time. For the first year, it was

thus decided to keep it simple, which meant that we aimed for an infrastructure-

based solution including a central migration server providing the core and some

supporting functionalities in the OPEN platform. This delimits the project for

problems related to e.g. locating information and functions, hence enables the

project to focus on the core part of the migration process itself. In the second year,

we will then turn our attention to the ad-hoc scenarios, for which there are no

longer assumptions on the whereabouts of e.g. certain information and functions.

In Chapter 6 we used the fact of having a migration server available to the

migration process, and described possible interactions with first external service

components and architectures, then secondly internally between OPEN

components and described their respectively interfaces. This is further elaborated

in detailed message chart diagrams for given scenarios based on the work found in

D1.2, [4]. Again, it should be mentioned that part of this work has been

demonstrated in Deliverable D3.2 as to prove different aspects, and in particular

context triggered service migration, device discovery and the support of

application reconfigurability.

Finally, in Chapter 7 we address the security issues related to OPEN and service

migration. Since this project is not focusing on security as such, the value of

Chapter 7 is mainly related to security analysis and possible solution that may fit

into the overall vision of service migration in OPEN.

Title: Detailed network architecture Id Number: D3.1

 70

In summary, at the point of writing OPEN Work Package 3 has now achieved to

describe the OPEN platform as we envision it to be, although for a final

specification the feedback from implementation and integration process still is

needed. Further, we have elaborated the functionality in different deployment

scenarios and message diagrams. To support the descriptions some

implementation and integration has also taken part in shape of three demos

shoving different aspects of the OPEN platform (see Deliverable D3.2 [11]).

In the following year of the OPEN project Work Package 3 will put focus on 1)

finalisation/refinement of component function and interfaces based on feedback

from research and implementation, 2) investigate the case of ad-hoc scenarios, i.e.

when we cannot assume a migration server being available for the migration

process and 3) continue integration of the platform to the overall OPEN system.

The latter is also closely related to an integrated demonstrator of the platform

working across the project, where collaboration with in particular Work Package 4

will be intensified. Finally, Work Package 3 will also put focus on system

performance evaluation, which will be done in close collaboration with Work

Package 6.

Title: Detailed network architecture Id Number: D3.1

 71

9 References

[1] SJ Koh, MJ Chang, M Lee, mSCTP for soft handover in transport layer,

Communications Letters, IEEE, 2004

[2] H Schulzrinne, E Wedlund, Application-layer mobility using SIP, ACM

SIGMOBILE Mobile Computing and Communications Review, 2000

[3] Requirements for OPEN service platform, EU FP7 ICT project OPEN,

deliverable D1.1, May 2008.

[4] Initial OPEN Service Platform architectural framework, EU FP7 ICT project

OPEN, deliverable D1.2, September 2008.

[5] J Arkko, V Devarapalli, F Dupont, Using IPsec to Protect Mobile IPv6

Signaling Between Mobile Nodes and Home Agents, RFC3776, June, 2004

[6] Claudia Villalonga, A Proxy based solution for the Discovery of Self

Promoting Services, Diploma thesis, March 2006

[7] Salber, D., Dey, A.K., and Abowd, G.D. The Context Toolkit:. Aiding the

development of context-enabled applications. Proceedings of CHI'99, 1999

[8] Jasper Aarts, Transparent Context Framework Interopoerability, Diploma

Thesis at University of Twente and Telematika Instituut

[9] Henricksen, K., et al., Middleware for distributed context-aware systems.

Lecture Notes in Computer Science, 2005. 3760(International Symposium on

Distributed Objects and Applications (DOA)): p. 846-863.

[10] Open Wireless RouTer, OpenWRT, http://openwrt.org/

[11] Anders Nickelsen, Rasmus Olsen (AAU), Holger Klus (ClU), Giuseppe

Ghiani (CNR), EU FP7 ICT project OPEN, Deliverable D3.2, February 2009

[12] OPEN Deliverable 4.1

[13] Fabio Paternò, Carmen Santoro, Antonio Scorcia, Architecture for migratory

user interfaces, OPEN Deliverable 2.2, February 2009

[14] Online: http://www.upnp.org/

[15] IST-027396 My Personal Adaptive Global NET and Beyond, MAGNET

Beyond, Deliverable D2.3.1, “Specification of PN networking and security

components”, December, 2007.

[16] IST-027396 My Personal Adaptive Global NET and Beyond, MAGNET

Beyond, Deliverable D2.3.2, " PN secure networking frameworks, solutions

and performance", June 2008

[17] Online: http://www.ist-magnet.org/

[18] M. Bauer, R.L.Olsen, M. Jacobsson, L. Sanchez, J. Lanza, M. Imine, N.

Prasad, “Context Management Framework for MAGNET Beyond”, 15th IST

Title: Detailed network architecture Id Number: D3.1

 72

Mobile & Wireless Summit Communications Summit, Myconos, Greece,

June 2006

[19] L. Sanchez, J. Lanza, L. Muñoz, "Cluster Head Selection and Maintenance

over Heterogeneous Mobile Wireless Personal Area Networks. An

experimental approach", 9th International Symposium on Wireless Personal

Multimedia Communications - San Diego, September 2006

[20] Kuladinithi, K. and Fikouras, NA and Könsgen, A. and Timm-Giel, A. and

Görg, C., Enhanced Terminal Mobility through the use of Filters for Mobile

IP, Proceedings of the Summit on Mobile and Wireless Communications (IST

Summit), 2003

[21] Final communication and context management solution for migratory

services, EU FP7 ICT project OPEN, deliverable D3.4, September 2008.

[22] Initial application requirements, EU FP7 ICT project OPEN, deliverable

D5.1, September 2008.

[23] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, R. Thayer, OpenPGP

Message Format, RFC4880, November 2007

[24] T. Freeman, R. Housley, A. Malpani, D. Cooper, W. Polk, RFC5055, Server-

Based Certificate Validation Protocol (SCVP), December 2007

[25] Shahab Mirzadeh, Hossam Afifi, Jordi Jaen Pallares, Jasper Goseling, Jan

Stoter, Final PN key management solution and Cryptographic techniques,

IST-027396 project MAGNET Beyond Deliverable 4.2.2, June 2008

[26] Prakash Veeraraghavan, Vikram Limaye, Trust in Mobile Ad hoc Networks,

Proceedings of the 2007 IEEE International conference on

Telecommunication and Malaysia International Conference on

Communications, 14-17 May, 2007, Penang, Malaysia

[27] Sameer Pai, Tanya Roosta, Stephen Wicker, Shankar Sastry, Using Social

Network Theory Towards Development of Wireless Ad hoc Network trust,

21
st
 International Conference on Advanced Information Networking and

Application Workshops (AINAW‟07), Vol. 1 (2007), pp. 443-450

[28] Testing and validation methodology, EU FP7 ICT project OPEN, deliverable

D6.4, January 2009.

Title: Detailed network architecture Id Number: D3.1

 73

A Glossary

ACS Auto Configuration Servers NAT Network Address Translator

ACL Abstracted Connection Layer NGN Next Generation Networks

API Application Programming Interface NFC Near Field Communication

APN Application Port Number NTP Network Time Protocol

CA Context Agent OMA Open Mobile Alliance

CALA Context Access LAnguage ONC

NFS

Open Network Computing

Network File System

CAM Context Access manager OSGi Open Services Gateway initiative

CASF Context-Awareness Supporting

Framework

OWL Web Ontology Language

CB Context Bus PACE Pervasive Autonomic Context-

aware Environments

CE Consumer Electronics PAN Personal Area Network

CMI Context Management Interface PC Personal Computer

CMN Context Manager Node PDA Personal Digital Assistant

CN Corresponding Node POI Point Of Interest

CORBA Common Object Request Broker

Architecture

PS Packet Switched

CPU Central Processing Unit P&S Processing and Storage

CPE Customer Premises Equipment PSL PERSONA Specific Layer

CS Circuit Switched RTP Real Time Protocol

CSCF Call Session Control Function RPC Remote Procedure Call

CWMP WAN Management Protocol SB Service Bus

DSAM Data Source Abstraction Manager SCMF Secure Context Management

Framework

DHCP Dynamic Host Configuration Protocol SCTP Stream Control Transport Protocol

DLNA Digital Living Network Alliance SCVP Server-based Certificate

Validation Protocol

DNS Domain Name System SDP Service Discovery Protocol

DS Data Synchronization SIP Session Initiation Protocol

DSL Digital Subscriber Line SMS Short Message Service

DVB Digital Video Broadcast SLP Service Location Protocol

GPRS General Packet Radio Service SOAP Simple Object Access Protocol

GSM Global System for Mobile

communications

SPL SodaPop Layer

Title: Detailed network architecture Id Number: D3.1

 74

HA Home Agent SSDP Simple Service Discovery Protocol

HGI Home Gateway Initiative STB Set-Top Box for gaming

application

HSS Home Subscriber Server TCP Transmission Control Protocol

HTTP Hyper Text Transfer Protocol UI User Interface

IKE Internet Key Exchange UMTS Universal Mobile

Telecommunications System

IMS IP-based Multimedia Subsystem UDP User Datagram Protocol

IP Internet Protocol UPnP Universal Plug and Play

IPTV IP based Television VCC Voice Call Continuity

KPI Key Performance Indicator VoIP Voice over IP

LAN Local Area Network WAN Wide Area Network

LDAP Lightweight Directory Access

Protocol

WLAN Wireless Local Area Network

MMS Multimedia Messaging Service XHTML Extensible Hypertext Markup

Language

MN Mobile Node XML Extensible Markup Language

MIP Mobile IP

