
OPEN Partners:

CNR-ISTI (Italy)
Aalborg University (Denmark)

Arcadia Design (Italy)
NEC (United Kingdom)

SAP AG (Germany)
Vodafone Omnitel NV (Italy)

Clausthal University (Germany)

OPEN Project
STREP Project FP7-ICT-2007-1 N.216552

"The information in this document is provided "as is", and no guarantee or warranty is

given that the information is fit for any particular purpose. The above referenced

consortium members shall have no liability for damages of any kind including without

limitation direct, special, indirect, or consequential damages that may result from

the use of these materials subject to any liability which is mandatory due to

applicable law. Copyright 2008 by CNR, NEC and Vodafone."

Title of Document: Document about Architecture for migratory user

interfaces

Editor(s): Fabio Paternò, Carmen Santoro, Antonio Scorcia,

Giuseppe Ghiani,

Affiliation(s): CNR-ISTI

Contributor(s): Armin Jahanpanah, Stefano Marzorati

Affiliation(s): NEC, Vodafone

Date of Document: February 20

OPEN Document: D2.2

Distribution: EU

Keyword List: Migration, User Interface, Multi-Device

Environments, Adaptation, Continuity

Version: 3.0

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

Abstract

This deliverable describes the software architecture of a solution for supporting

user interface migration. It is a middleware aiming to support automatically the

main functionalities of migration (adaptation and state persistence) across

multiple devices with various interaction resources.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

Table of Contents

1 INTRODUCTION ... 3

2 INDUSTRIAL PRACTISE IN CONTENT ADAPTATION ... 4

2.1 CONTENT ADAPTATION REFERENCE ARCHITECTURE .. 5
2.1.1 Content adaptation engine .. 5
2.1.2 Device manager .. 6
2.1.3 Adaptation rule manager .. 6
2.1.4 Customization manager .. 7
2.1.5 Personalization manager .. 7

3 OVERALL ARCHITECTURE ... 8

4 REVERSE ENGINEERING FOR OBTAINING A LOGICAL UI DESCRIPTION 10

5 MIGRATION TRIGGER AND EXTRACTING THE STATE OF THE UI......................... 12

6 SEMANTIC REDESIGN FROM SOURCE TO TARGET LOGICAL DESCRIPTION ... 13

7 STATE MAPPING TO THE TARGET CONCRETE DESCRIPTION 17

8 FINAL UI GENERATION FROM TARGET CONCRETE DESCRIPTION TO TARGET

IMPLEMENTATION LANGUAGE ... 19

9 MULTI-CORE PLATFORM: THE NAMUCO UI TOOLKIT ... 21

9.1 OVERVIEW .. 21
9.2 ARCHITECTURE ... 21
9.3 MULTICORE .. 23
9.4 INTEGRATION IN THE OPEN PLATFORM .. 24

CONCLUSIONS ... 26

10 REFERENCES .. 27

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 3

1 Introduction

This deliverable describes the software architecture supporting the migration of the

user interface of an interactive application in order to allow users to continue their

activities across various devices with different interaction resources. A

corresponding prototype is under development.

The first version will address migration of Web applications among desktop and

mobile systems. In the following we plan to address other platforms: IPhone (which

differs because of the accelerometer and multi- touch screen), multi-media, and

digital TV. The reasons for this choice is that the Web is the most common user

interface. There are currently hundreds of millions of Web sites and it is

increasingly rare to find someone who has never used a Web application. In the

meantime, Web technologies have evolved in many directions: the Web 2.0, Rich

Interactive Applications, Multimodal Interfaces, … Another important technological

trend is the increasing availability in the mass market of many types of interactive

devices, in particular mobile devices, which has enabled the possibility of

ubiquitous applications. In such environments migratory interfaces are particularly

interesting. They allow users to move about freely, change device and still continue

the interaction from the point where they left off. Thus, in order to obtain usable

migration two aspects are important: preserving the user interface state across

multiple devices and adaptation to the changing interaction resources. In the

following, we will describe the various software modules of our architecture

supporting such two aspects.

We start with a section describing an existing solution (at industrial level) regarding

the problem of content adaptation. Then, we move on to present the approach

developed in the project: Section 3 provides an overview of the proposed

architecture, Sections 4-8 detail its modules, while Section 9 focuses on a multi-

core support included in the architecture in order to better address the specific issues

raised by devices with multicore capabilities. Lastly, we draw some conclusions in

the last Section.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 4

2 Industrial Practise in Content Adaptation

One important aspect of migration is adaptation. For this aspect, there are already

some existing solutions at industrial level. In this section, we briefly describe a

reference architecture for such solutions, which do not address other aspects

related to user interface migration, such as state persistence across various types

of devices.

Advances in the capabilities of small, mobile devices, such as mobile phone and

PDA (Personal Digital Assistant) have led to an explosion in the number of types

of device that can now access the web. Here we refer to the Web that can be

accessed from mobile devices as the mobile web.

The sheer number and variety of Web-enabled devices poses significant

challenges for authors of Web sites who want to support access from mobile

devices. Huge literature is available on this topic, the W3C Device Independent

Working Group described many of the issues in a dedicated report.

One approach is to perform a series of optimization aimed to accelerate the

browsing experience and to reduce the payload on the network. In this case no

change is performed on the look and feel and layout of the content, no change in

the user experience can be perceived except browsing speed.

Some protocol optimizations are:

 TCP/IP Optimization

 HTTP Optimization

Some content optimizations are:

 Document Compression/GZIP

 Image Processing/Image Quality

 Intelligent Caching

 Multiparting

Another approach to solving the problem is based around the concept of Content

Adaptation. Rather than requiring authors to create pages explicitly for each type

of device, content adaptation transforms an author's materials automatically. For

example, content might be converted from a device-independent markup

language, into a form suitable for the device, such as XHTML (eXtensible

HyperText Markup Language) Basic or WML (Wireless Markup Language).

Similarly a suitable device-specific CSS (Cascading Style Sheet) style sheet or a

set of in-line styles might be generated from abstract style definitions. Once

created, the device-specific materials form the response returned to the device

from which the request was made. Other examples of content adaptations are:

 Re-format and re-render any webpage to achieve optimized content, best

usability and ease of navigation

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 5

 Process Complex HTML Content, Markup Transcoding (html->xhtml)

 Support Frames (IFRAMES, Nested Frames)

 Support Javascript and CSS

 Image conversion, reformatting and resizing of the image according to the

screen size)

 Content Segmentation and Prioritization for a better navigation and to

solve handset memory limitation

Hereafter we focus on content adaptation approach providing a reference

architecture of a content adaptation solution.

2.1 Content adaptation reference architecture

The reference architecture for a content adaptation platform in an industrial

setting can be composed by the following functional components:

 Content adaptation engine

 Device manager

 Adaptation rule manager

 Customization manager

 Personalization manager

 Report system

 Call Center and provisioning interface

 Billing interface

Some of these components are not core of the final purpose of the adaptation but

are however necessary so that the final solution can be deployed in a real and

commercial environment.

In the following we will describe the most relevant ones.

2.1.1 Content adaptation engine

This component performs the adaptation and format transformation of the web

page. Its main purposes are:

 to reduce the downloading and rendering time of a web page on the device

 to adapt the presentation of the page to the actual device display

dimensions and characteristics.

During the adaptation the engine performs some modifications of the page

presentation, according to the rendering capabilities of the target device.

The rearrangement of the page can also imply the segmentation of the original

page in several subpages so the that sizes of the adapted subpages do not exceed

the phone memory in order to have a more responsive rendering because the

browser needs to handle only a portion of the original page. In case of

segmentation it is essential that the elements of the page are correctly determined

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 6

and managed so that for example the main section of a page is presented in the

first subpage rendered.

This engine is hence responsible to recognize particular elements of the page,

such as the logo, the main section of the web page, the navigation bar and the

advertisements items.

The content adaptation engine perform also some adaptation of page elements that

are not supported natively by the browser, some examples are: flash support,

HTTPS handling, session management, Java script and ASP support.

2.1.2 Device manager

This component manages the database of the handsets supported in terms of user

agent, display size, memory, browser type, character set supported, multimedia

capabilities etc.

The component is also responsible to manage the general testing process of a new

handset that is configured in the solution.

The need for having such dedicated handsets database is the limited reliability of

WURFL (Wireless Universal Resource File) and UAProf (User Agent Profile)

resources.

The WURFL is an XML configuration file which contains information about

device capabilities and features for a variety of mobile devices. Device

information is contributed by developers around the world and the WURFL is

updated frequently but not always and without quality verification reflecting new

wireless devices coming on the market. WURFL is part of a FOSS (Free and

Open Source Software) community effort focused on the problem of presenting

content on the wide variety of wireless devices.

Drawbacks to relying solely on UAProf are:

1. Not all devices have UAProfs

2. Not all advertised UAProfs are available (about 20% of links supplied by

handsets are unavailable, according to figures from UAProfile.com)

3. UAProf can contain schema or data errors which can cause parsing to fail

4. There is no industry-wide data quality standard for the data within each

field in an UAProf.

5. The UAProf document itself does not contain the user agents of the

devices it might apply to in the schema.

6. UAProf headers can often be plain wrong. (i.e. for a completely different

device)

2.1.3 Adaptation rule manager

This is a tool used to organize rules to apply to a whole web site that might be

requested to be adapted in an optimized and predefined way.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 7

2.1.4 Customization manager

This is a component responsible to perform some customization to the original

web page, it may be used for example to add particular header or footer to the

adapted page containing navigation or help links.

2.1.5 Personalization manager

It performs end user personalization, such as storing on the content adaptation

platform bookmarks or the user history.

Call Center Interface, provisioning interface, billing interface and reporting

system are additional components whose purpose does not need to be clarified.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 8

3 Overall Architecture

Our architecture for migratory interfaces is based on a migration/proxy server.

The advantage of this choice with respect to installing the necessary

functionalities on the application servers is that we can concentrate them in a

single server without the need for replication in the servers supporting the various

possible applications. Indeed, we want to apply the migration support to a wide

set of applications, and we do not want to force the application developers to use

any specific authoring environment or to apply specific annotations to ease the

migration process. In general, we consider that a wide set of Web applications for

desktop systems already exist and they can be the target for a migration

infrastructure.

Our migration infrastructure exploits logical descriptions of user interfaces,

specified using XML-based languages. In such descriptions there is an abstract

level, which is platform-independent and a concrete level, which refines the

previous one by adding platform-dependent elements and attributes. The

environment has a service-oriented architecture based on four main

functionalities:

• Reverse Engineering, takes the existing Web pages for desktop systems

and builds the corresponding logical descriptions;

• Semantic Redesign, this module is in charge to perform the adaptation to

the target device. For this purpose it takes the abstract elements identified

by the reverse engineering module and maps them into concrete elements

more suitable for the target device. It also splits the source presentations

into multiple presentations if they are too expensive for the interaction

resources of such target device.

• State Mapper, once a concrete description for the target device has been

obtained then the state resulting from the user interactions in the source

use interface is associated with it. The abstract elements are used to

identify which concrete elements in the source interface correspond to the

concrete elements in the target interface.

• User Interface Generator, this module generates the user interface in some

implementation language. One concrete description for a given platform,

for example a graphical form-based interface, can be associated with

various implementation languages (such as Java, XHTML, C#). The

generated user interface is then uploaded on the target device.

In addition, when the host acting as a migration/proxy server passes the Web

pages to the client, it adds to such pages Ajax scripts, which are used to

communicate to the server the interface state accessed through DOM (Document

Object Model) when the migration is triggered. The server also modifies the links

and the “action” attribute of the form elements so that any reference contained in

the page, when selected, is forced to pass through it.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 9

Figure 1: Architecture of the Support for Migratory User Interfaces.

All the devices that are involved in the migration should run a tiny application,

called Migration Client, which is used for two purposes:

 in the device discovery (phase (1), in Figure 1), when the devices

interested in migration are identified and provide information about

themselves,

 to trigger migration.

When the user accesses a page (2) the request goes through the proxy/migration

server (3, 4, 5, 6), which also inserts in the page some Java script that will be used

to get the state of the user interaction at migration time. Users can trigger

migration (6) through an interface separated from the application interface, which

shows the list of available devices from which the user can select the target one.

Then, the state of the current page is sent to the server, which will perform content

adaption, applies the state to the newly generated version and uploads it onto the

target device (8).

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 10

4 Reverse Engineering for Obtaining a Logical UI
Description

The main purpose of the reverse engineering part is to analyse the implementation

of the existing Web application desktop version, capture the logical design of the

user interface (in terms of basic tasks supported and the ways to appropriately

structure the user interface in order to accomplish them), which will then be used

as the starting point for the design and generation of the interface for the target

device. Some work in this area has been carried out previously. For example,

WebRevEnge [1] automatically builds the task model associated with a Web

application, whereas Vaquita [2] and its evolutions build the concrete (namely:

platform-dependent) description associated with a Web page.

The reverse engineering module can reverse both single XHTML pages and whole

Web sites. When a Web page is reversed into a presentation, its elements are

reversed into different types of concrete interactors and combination of them by

recursively analysing the DOM tree of the X/HTML page. In order to perform

this transformation, well formed X/HTML files are needed. However, since many

of the pages available on the Web do not satisfy this requirement, before reversing

the page, the W3C Tidy (http://tidy.sourceforge.net/) parser is used for correcting

features like missing and mismatching tags and returns the DOM tree of the

corrected page, which is analysed recursively starting with the body element and

going in depth. Depending on the type of node analysed, the algorithm of the

reverse engineering follows one of the following branches:

• The X/HTML element is mapped onto a concrete elementary interactor.

This is a recursion endpoint. The appropriate interactor element is built

and inserted into the logical description. For example, DOM nodes

corresponding to the X/HTML tags (image), <a> (anchor) and

<select> (selection) cause the generation of concrete objects of type

respectively image, navigator and selection. The properties of the objects

in the Web implementation are also used to fill in the attributes of the

corresponding concrete user interface elements, so that this information

can be elaborated for producing an appropriate element in the target

device, out of the peculiarities used in the source Web page. For instance,

the italic attribute of a text concrete element is set to true although in the

X/HTML implementation it might appear as either <i> (italic text style) or

 (emphasysed text), which are two different manners for highlighting

an element.

• The X/HTML node corresponds to a concrete composition operator. In

this case, the proper composition element is built and the function is called

recursively on the X/HTML node subtrees. The subtree analysis can return

both elementary interactors and composition of them. In both cases the

resulting nodes are appended to the composition element from which the

analysis started. For example the node corresponding to the tag <form> is

reversed into a Relation composition operator and (unordered list)

into a Grouping. Depending on the considered node to be reversed,

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 11

appropriate attributes are also stored in the resulting element at the

concrete level (e.g. typical X/HTML desktop lists will be mapped at

the concrete level in a grouping expression using bullets listed following a

vertical positioning).

• The node does not require the creation of an instance of interaction in the

concrete specification (for example, if in the Web page there is the

definition of a new font, no new element is added in the concrete

description). If the node has no children, no action is taken and we have a

recursion endpoint (this can happen for example with line separators such

as
 tags). If the node has children, each child subtree is recursively

reversed and the resulting nodes are collected into a grouping composition

which is in turn added to the result.

In the reverse process, the environment first builds the concrete description and

then the abstract one. In TERESA XML [3] the concrete descriptions are a

refinement of the abstract one, which means that they add a number of attributes

to the higher level elements defined in the abstract descriptions. Thus, the process

for reversing a concrete description into the corresponding abstract one consists in

removing the lower level details from the interactor and composition operators

specification, while the structure of the presentations and the connections among

presentations remain unchanged. In practice, there is a many-to-one relation

between the elements of the concrete user interface and the abstract user interface

(both for the interaction objects and the composition operators): the concrete user

interface indicates several ways to refine and abstract element for the platform

under consideration. Therefore, it is easy to derive the abstract logical objects

corresponding to the different concrete interaction objects. For instance,

considering the desktop platform, we can have at the concrete level a text_link, an

image_link and a button, which are all possible refinement options for a navigator

interactor. However, since all such elements share the same objective, which is

navigating between different parts of the user interface, the result of reversing

each of these concrete elements will be an abstract navigator object.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 12

5 Migration Trigger and Extracting the State of the
UI

Migration can be triggered by the user, alternatively it can be automatically

triggered by the smart environment when some events (such as very low

battery/connectivity) are detected, or even a mixed solution can be envisaged, in

which the environment suggests possible migrations based on the devices

available and then the user decides which migration actually trigger.

In case of user migration trigger, the user selects the device on which the UI

should migrate by interacting with a Migration Client, a thin application on the

client device which provides information regarding the device characteristics and

therefore allows the user to select the target device.

In case of automatic migration trigger, it is supposed that the Trigger Manager can

identify situations where it would be better for the user to change device. This can

be decided according to a number of rules that could consider the device

descriptions (which include for example an indication whether the device is

personal or it can be used by some/all members of a group), the state of the device

(for example, if it is a single user device and it has been already taken by another

user then it cannot be considered available for migration), information regarding

where the device is located (in the case of stationary devices it is the

corresponding room).

In both cases (user or automatic trigger) when a request for migration to another

device is triggered, the environment has to extract and collect information

regarding the current state of the user interface: this is a precondition to ensure

state persistence during migration, necessary to support task continuity across

multiple devices. The process of state extraction includes the identification of the

last element accessed by the user in the source device version of the application,

and it basically depends on the user’s inputs performed till the time when the

migration is triggered. More in detail, the state refers to the information entered

by the user (e.g. fields which have been already filled by the user), but also other

pieces of information can be important for maintaining the information associated

to the user session (e.g. the history of the pages the user has already visited,

cookies, ..). It is worth pointing out that, in order to be able to collect such data

deriving from e.g. user’s interactions, the pages have to be slightly modified

before being actually used by the user. Indeed, when the clients access the Web

pages, their requests are in reality captured by a proxy server, which downloads

the pages from the application servers, and it annotates them with scripts that

support capturing the UI state. After having performed this step the page is able to

capture (and continuously update) the current state of the UI resulting after the

various user interactions and, when the migration is activated, send such collected

data to the Migration Server.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 13

6 Semantic redesign from source to target logical
description

The semantic redesign transformation changes the logical description of a user

interface for a given platform into a logical description for a different platform.

The aim is to support a similar set of tasks and communication goals but provide

input for obtaining an implementation that adapts to the interaction resources

available.

Figure 2: Architecture of the Adaptation Part for the Digital TV.

In particular, the redesign module analyses the input from the desktop logical

descriptions and generates an abstract and concrete description for the target

platform, from which it is possible to automatically generate the corresponding

implementation. Figure 2 shows the process in the case of adaptation from

desktop to digital TV.

Figure 3 shows the various phases of semantic redesign in the case of desktop-to-

mobile transformations. After having parsed the CUI (Concrete User Interface) for

desktop platform (see “Parsing CUI” rectangle in Figure 3) there are three main

steps:

 transforming the desktop logical interface into a mobile logical interface

while preserving the semantics of the various activities,

 calculating the resulting cost in terms of resources,

 Possible splitting of the logical interface into presentations that fit the cost

sustainable by the target device. This phase can occur or not, depending on

the characteristics of the device at hand.

The “Generator CUI” rectangle in Figure 3 refers to the phase in which the

obtained CUI is transformed into a Final User Interface, by using the constructs of

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 14

the particular implementation language considered (this phase will be better

detailed in Section 8).

In the first transformation the concrete elements of the desktop description are

substituted by concrete elements supported by the mobile platform (for example, a

radio-button with several elements can be replaced with a pull-down menu, which

occupies less screen space). In this transformation, further rules are applied to

adapt the elements of the user interface to the characteristics of the new platform

even when the transformation from the source platform to the target platform does

not change the type of interactor. For instance, images originally displayed in the

source (desktop) platform are resized according to the screen size of the target

(mobile) device, while keeping the same aspect ratio. In some cases they may not

be rendered at all because the resulting resized image would be too small or the

mobile device does not support them. Text and labels can be transformed as well,

since they may be too long for mobile devices. In converting labels, we use

conversion tables to identify shorter synonyms or abbreviations.

Figure 3: Desktop-to-Mobile Semantic Redesign.

In order to automatically redesign a desktop presentation for a mobile device, we

need to consider semantic information and the available resource limitations. If

we only consider the physical limitations, we may end up dividing large pages

into smaller ones that are not meaningful, since they result from considering only

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 15

some aspects, e.g. the available space in the screen of the target device. To

overcome this problem, we also consider the composition operators indicated in

the logical descriptions. Indeed, our algorithm tries to maintain in the same

presentation interactors that are collected together through some composition

operators. For instance, suppose that a user has to specify her personal

information for receiving updates/news from a low cost airline newsletter: in this

case all the user interface objects supporting the editing/showing of the user’s

personal information are logically grouped together. Such a logical grouping

should be reflected into an adequate presentation in the final user interface in such

a way to convey the semantic relationship that exists among the various objects

also through opportune visualisations so that the user can easily understand that

they altogether contribute to achieve the same specific (sub-)goal and they are all

grouped together (e.g.: on GUI a typical technique is using a graphical fieldset for

grouping together all the grouped fields). Thus, the environment aims to preserve

the communication goals of the designers and obtain interfaces that are easy to

use because each presentation is composed of objects that are semantically related

to each other in that they all contribute to achieve a specific goal (or subgoal). In

addition, the division of pages according to the logical completion of a task (or a

subtask) also allows for maintaining the consistency of user interfaces through

different devices, which is especially convenient for users who interact with the

same application through different devices (as happens with migratory user

interfaces). Page splitting requires a change in the navigation structure with the

need for additional navigator interactors for accessing the newly created pages.

More specifically, the algorithm for calculating the costs and splitting the

presentations accordingly is based on the number and cost of interactors and their

compositions. The cost is related to some device resources that are needed in

order to support a specific interactor within a presentation. For instance, in

Graphical User Interfaces a meaningful dimension to be taken into account for

any user interface object is the number of pixels that are needed for displaying the

object itself, for a textual label a relevant dimension can be the font size used, etc..

After the initial transformation, which replaces the desktop concrete elements

with mobile concrete elements (for example, a text area for the desktop platform

could be transformed into a simpler text edit on the mobile platform), the cost of

each presentation is calculated. If such a cost fits the cost sustainable by the target

device, then no further processing is required. This means evaluating whether in a

graphical presentation the screen area occupied by a set of user interface elements

can still be appropriate (in terms of usability) when displayed on the new device.

The optimal case is when the user interface displayed in the new target device

does not require any scrolling (neither horizontal nor vertical in order to be

shown). Otherwise (namely: if the set of UI objects in the new target device forces

the user to use scrolling movements beyond a certain tolerance threshold), the

presentation is split into two or more pages following this approach: the cost of

each composition of elements is calculated. The one with the highest cost is

associated to a newly generated presentation and is replaced in the original

presentation with a link to the new presentation. Thus, if the cost of the original

presentation after this modification is under the maximum allowed cost, then the

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 16

process terminates, otherwise it is recursively applied to the remaining

compositions of elements. In the case of a complex composition of interface

elements, which might not be entirely included in a single presentation because of

its high cost for the target device, the algorithm aims to distribute the interactors

equally amongst presentations of the mobile device, by creating multiple

presentations in which UI objects are distributed by following the sequence in

which they appear in the original presentation (from left to right and from top to

bottom).

If a certain element is not supported by the new platform, the algorithm tries to

substitute the interactor with a simpler one which is supported by the platform (for

instance if a device does not support videos, the engine could try to provide e.g.

first frame of the video) otherwise the element is removed.

The cost that can be supported by the target mobile device is calculated by

identifying the characteristics of the device through the user agent information in

the HTTP protocol, which can be used to access more detailed information in a

local XML repository with device descriptions obtained through WURFL

(wurfl.sourceforge.net/), a device description repository containing a catalogue of

mobile device information. Initially, we considered UAProfiles but sometimes

such descriptions are not available or are wrong and they require an additional

access to another server where they are stored. As already mentioned, examples of

elements that determine the cost of interactors are the font size (in pixels) and

number of characters in a text, and image size (in pixels), if present. One example

of the costs associated with composition operators is the minimum additional

space (in pixels) needed to contain all its interactors in a readable layout. This

additional value depends on the way the composition operator is implemented (for

example, if a grouping is implemented with a fieldset or with bullets the costs are

associated with the space taken by the surrounding rectangle or the bullets).

Another example is the minimum and maximum interspace (in pixels) between

the composed interactors. However, it is worth pointing out that, in order to

manage some possible splitting issues, we decided to have some tolerance

threshold within the algorithm. This has to be done in order to avoid some

awkward situations such as having a presentation with only one element which

occupies a small portion of the presentation itself: in this case this element will be

included into another presentation, even if this means going beyond the supposed

cost of such a presentation.

The semantic redesign module can take into account the different features of the

modalities that can be supported. For example, in vocal interfaces, it is important

that the system always provides feedback when it correctly interprets a vocal input

and it is also useful to provide meaningful error messages in the event of poor

recognition of the user’s vocal input. At any time, users should be able to interrupt

the system with vocal keywords (for example “menu”) to access other vocal

sections/presentations or to activate particular features (such as the system reading

a long text).

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 17

7 State mapping to the target concrete description

The state refers to the information entered by the user, but also other pieces of

information that can be important for the user session (such as the cookies). State

persistence is necessary to support task continuity across multiple devices. In

particular, when a request for migration to another device is triggered, the

environment detects the state of the user interface as modified by the user input

(elements selected, data entered, …), and identifies the last element accessed in

the source device. For this purpose, when clients access the Web pages, their

requests pass through a proxy server, which downloads the pages from the

application servers, and also adds to them the scripts able to capture the UI state

and communicate it to the server. Such scripts through a polling-based

monitoring mechanism, implemented through an Ajax script, determine whether

or not a migration was triggered by the migration client. When the user sends a

migration request an AJAX callback function is automatically activated, which

sends the DOM (containing the state of the current page) collected through a

specific script. The information is collected in a string formatted following an

XML-based syntax and sent to the server. This mechanism was chosen because

only an application running on the browser in the client device can access the

application DOM, and the AJAX Script can transmit the data without requiring

any explicit action from the user.

As already mentioned, the Migration Client should be running in the source

device in order to let the user select the migration target and trigger the migration.

When the migration is triggered, the migration client sends the IP of the source

and target devices to the migration server.

Then, the migration platform will first associate the content state of the page on

the source device to the concrete description of the version for the target device.

This is obtained through the State Mapper module, whose purpose is to update the

CUI for the target device (which has been produced by the Semantic Redesign

module) with latest information regarding the state of the user interface contained

in the DOM of the source page just before migration. The corresponding elements

in the two logical descriptions are easy to identify because each object of the CUI

has a unique identification label (ID), which is the same of the corresponding

XHTML/DOM element from which that CUI element was generated by the

reverse engineering process. One possible complicating factor is when the

semantic redesign has transformed a specific concrete object C1 (for a specific

platform) into a different concrete object for the target platform, C2. In this case,

since the same ID is maintained among the two concrete objects C1 and C2, the

association between the concrete object and the corresponding DOM element is

still straightforward (the same ID is maintained). Nevertheless the State Mapper

may require a further step, that is, adapting the value of the DOM element to

specify the new concrete object. For instance, it might happen that, as a result of

the semantic redesign process, a radiobutton element was translated into a pull-

down menu element. Therefore, the values included in the specification of the

radiobutton element (e.g.: the different items of the radiobutton) have to be

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 18

appropriately adapted and used to fill in the specification of the pull-down menu

element.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 19

8 Final UI Generation from Target Concrete
Description to Target Implementation Language

This phase is in charge of building the Final User Interface (FUI) in an

implementation language suitable for the target device, starting with a concrete

description of the user interface for the platform considered (the so-called CUI or

Concrete User Interface): depending on the considered interaction platform and

the specific implementation language, a particular transformation is selected by

the UI Generator.

More in detail, the algorithm underneath the UI (User Interface) Generator starts

with parsing the target Concrete User Interface description which has a tree-like

form, therefore the starting point is represented by the root node. Such a root node

is generally a CUI “presentation” element which roughly will correspond in the

final implementation language to the “container” of the various final UI objects.

Therefore, the first step is to create the transformation between the root CUI node

onto a construct of the final UI of the target device, and using the primitives of the

final implementation language considered. For instance, if XHTML language is

considered as target language, the CUI presentation node will be translated onto a

<html> container node. After creating this, the next step will be to progressively

populate such container by appending UI elements to it. In order to do this, UI

Generator has to recursively call a procedure that analyses the type of CUI

element that is encountered as a child (elementary CUI object or composed

expression of CUI objects), transforms it onto a construct of the Final

implementation language used, and adds such resulting construct to the final UI

that will be incrementally created in this way.

As we said, two types of elements can be analysed by the UI Generator during the

visit of the tree-shape CUI:

 In case of elementary CUI object, the UI generator will carry out a

transformation of such a CUI object in the corresponding UI element of

the implementation language considered (e.g. Java, XHTML, C#, ..). For

instance if we consider as target implementation language XHTML, a CUI

listbox element can be mapped onto a <select> element, which is

composed of a number of <option> elements defining the various items

within the listbox. However, if we consider another implementation

language (e.g. Java, or C), for the same CUI listbox element we will

produce a different implementation.

 In case of composition node (e.g. multiple elements combined by some

concrete techniques for grouping them like fieldsets, lists, ..), the

associated compositional techniques will be implemented in the final

implementation language used. For instance, if at the implementation level

we consider XHTML language, in this case when passing from the

concrete level to the implementation one, the concrete level primitives are

mapped into XHTML constructs, for instance concrete grouping

techniques can be mapped onto tag <fieldset> (which identifies a group of

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 20

form elements as being logically related) and <div> (with various

attributes, which defines a division or a section in a XHTML document),

which can be used as composition techniques at the XHTML

implementation level.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 21

9 Multi-Core Platform: The NaMuCo UI Toolkit

9.1 Overview

Namuco (Native Multicore UI Toolkit) is a library of Java and C++ classes that

enable application programmers to implement graphical user interfaces while

sensibly exploiting multicore capabilities of the different devices that participate

in the migration environment.

The goal is to provide simple, but good-looking UI elements which allow

developers to build UIs similar in look and feel to existing interfaces on mobile

devices (e.g. Apple iPhone), game consoles (e.g. Xbox™ Live! Arcade UI,

Playstation™ Store) or set-top boxes (e.g., Channel lists, program guides) and to

distribute the workload of computationally intensive UI functions evenly on to the

respective number of CPU cores on the different devices.

The framework is well-suited for multimedia applications and will provide

particularly a compositing and effect layer allowing for features such as rotated

and scaled windows, transparency and animated widgets.

To achieve these effects and to provide best possible performance, the library will

use multiple threads internally to leverage multicore CPUs.The innovative

adaptive load-balancing implementation always utilizes the full processing

performance and automatically adapts to changing numbers of available cores at

runtime. These features are a key advantage with respect to application migration.

The second important aspect is ease of adaptation and migration of GUI layouts to

different devices: For example, it is planned that Namuco provides layout

manager classes which make it possible to adapt the GUI layout to different

screen resolutions in a convenient and flexible way.

Memory footprint and run-time resource requirements are targeted to be very low

in order to ensure smooth interaction also on mobile and embedded devices.

9.2 Architecture

To maximize integration and interoperability with various other OPEN

components and systems, the toolkit is implemented in the Java programming

language. Additional C++ code is also used in order to gain maximum

performance for multimedia applications. E.g. the UI library will use NLE-IT’s

C++ Task Programming Interface (TPI) to distribute workload over all available

CPU cores. To integrate the native C++ functions into the Java code, we use the

Java Native Interface (JNI).

Namuco will be based on existing Java GUI toolkits: We will build a prototype for

the review meeting based on Java’s Abstract Window Toolkit (AWT).

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 22

Currently, we evaluate if a later switch to the Standard Widget Toolkit (SWT)

would be beneficial as SWT already utilizes JNI to call native C++ functions for

drawing of widgets. Thus, we expect to be able to hook-in multicore extensions

there.

The extension of AWT will be done via wrapper classes and the delegation

concept, which also makes it possible to reuse and extend the existing event

handling functionality to allow for event handlers in native code etc. There will

also be Java classes for handling of animations and transitions of GUI elements.

Namuco consists of several parts (see diagram in Figure 4) :

 The Java interface that is used by application developers to create and

manage the UI elements of their application.

 The native C++ side (a dynamic library, “DLL”) providing performance-

critical functions using multicore implementations. For this, it will utilize

our TPI multicore programming library internally. Most likely all higher-

end drawing functions (like crossfading/blending, animations, etc.) will be

implemented here.

 The JNI “glue” code that is located between the above layers and

propagates the Java interface calls down to the native C++ side

 A graphics display subsystem (“Renderer”) that draws lines, boxes,

bitmaps, text, etc. This is used to draw the UI widgets like Buttons,

Checkboxes, etc. This part can either be implemented using native OS

functions or by a custom cross-platform graphics library based on memory

buffers. Currently we use X11.

Viewed from a higher level, Namuco provides the following functions:

 Widget implementations (for windows, buttons, lists, etc.)

 handling state and updates, messaging logic, and event handling

o E.g. when the user moves the mouse, clicks a button, scrolls a

window, etc., the corresponding event is stored in a message queue

o On update, widgets get their events from the queue and react to

these events, i.e. change their state

 interaction of events, widgets, and animations

 rendering and compositing

 transformation (rotation, scaling)

The framework is built as a class hierarchy. In order to allow application

programmers the object-oriented creation of user interface elements, the UI toolkit

provides a set of classes like

 Common types and objects (Point, Rectangle, Color, Image, …)

 Windows and Widgets (Button, List, Scrollbar, ...)

 Event Listener interfaces

 Renderer and Compositor

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 23

Figure 4: The Namuco Architecture

9.3 MultiCore

In order to provide the best possible performance, Namuco will use multiple

threads internally to leverage multicore CPUs. For this, we plan to use NLE-IT’s

Task Programming Interface (TPI), which provides an innovative adaptive load-

balancing implementation that enables applications to always utilize the full

processing performance provided by the CPU.

Especially the system automatically adapts to changing numbers of available

cores at runtime, which is a key advantage with respect to application migration.

It also supports disabling of CPU cores at runtime, without interruption of the

running application and with no special requirements on the programmer’s side.

This behaviour is especially useful for mobile and embedded devices as

application performance can be adapted with respect to power consumption and

battery life.

In the first instance we will use this multicore system to accelerate rendering of

GUI transitions and animation of certain elements, for example crossfading of

bitmaps (alpha blending) using multiple CPU cores.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 24

For this, bitmaps and screen regions are split into tiles which are processed in

parallel on multiple CPU cores using TPI.

9.4 Integration in the OPEN Platform

As CNR-ISTI's adaptation tool provides an XML description of the concrete UI

layout for the target device as output after the UI migration process (as it has been

described in previous sections), a Java application that uses Namuco can use this

XML description to build the GUI layout on the fly (when the application starts

up or at runtime).

CNR-ISTI already has a UI Generator that could be extended to support this

functionality for Namuco. In this case, the UI Generator (called “XML parser” in

Figure 4 and Figure 5) creates the Java Namuco GUI elements and layout based

on the XML description for the target application. To allow this, the UI Generator

has to be integrated into the Java application by the application programmer, i.e.

there needs to be a Java interface for the UI Generator.

After this step, attaching the application logic to the created UI widgets can be

realized in several ways:

For example, the UI Generator could provide the application with a DOM
1
-like

tree or a hash table that contains references to the created UI widgets. The

application can then use a certain widget by looking up the corresponding

reference.

1
 Document Object Model: A hierarchical representation of document elements like text fields,

buttons, or images

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 25

Figure 5: Integration of Namuco within OPEN

We are also analyzing how to integrate the Namuco GUI library with the other

contributions in the project following a different approach based on the use of

component-based Java applications. In this scenario, applications are composed of

modules that can interact using a special middleware layer that also could

facilitate dynamic reconfiguration. In general, one should keep in mind, that

although a few tasks regarding management of state and logic are supported when

using Namuco, the major part of these tasks has to be implemented on the

application side.

However, since the GUI library’s knowledge about the application state is very

limited, it cannot perform migration of data and state information stored inside

GUI widgets reliably. Therefore, it is the responsibility of the application to get

the state values from the respective widgets and hand them to the OPEN platform.

There are several possibilities to implement transfer of state information in a Java

application: for example, one could use a relational database system to store the

necessary state information for migration in a central (network) place, which is

also accessible by the target application.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 26

Conclusions

This deliverable has described the first version of the software architecture for

supporting user interface migration. The solution proposed assumes the existence

of an initial Web desktop version of the user interface considered, and it is then

able to dynamically create a version for a different platform, with the user

interface state updated with the results of the user interactions with source

version. We have described how the desktop version can be adapted to a mobile

version, obtaining a version which has interaction techniques requiring less space

and with original large pages split into more manageable pages. This solution can

generate user interface implementations in languages, which are not web

languages, such as Java. We plan to address this possibility in the second year, if

there is interest in the OPEN consortium. In addition, we plan to consider its

extension to support also multi-user Web applications.

Title: Document about

Architecture for migratory user

interfaces

Id Number: D2.2

 27

10 References

[1] Paganelli, L. and Paternò, F. (2003) A Tool for Creating Design Models from

Web Site Code. International Journal of Software Engineering and

Knowledge Engineering, World Scientific Publishing 13, 2, 169-189.

[2] Bouillon, L. and Vanderdonckt, J. (2002) Retargeting Web Pages to other

Computing Platforms. Proceedings of WCRE'2002, Richmond, Virginia, 29

October-1 November, pp. ~339-348, IEEE Computer Society Press, Los

Alamitos.

[3] Mori, G., Paternò, F., Santoro, C., Design and Development of Multidevice

User Interfaces through Multiple Logical Descriptions. IEEE Transactions

on Software Engineering (August 2004, 30,8, pp.507-520)

[4] Wagner, J., Jahanpanah, A., and Träff, J. L. 2008. User-Land Work Stealing

Schedulers: Towards a Standard. In Proceedings of the 2008 international

Conference on Complex, intelligent and Software intensive Systems - Volume

00 (March 04 - 07, 2008). CISIS. IEEE Computer Society, Washington, DC,

811-816

[5] Wagner, J., and Jahanpanah, A. 2007. Implementing a Work-Stealing task

scheduler on the ARM11 MPCore. In ARM Developers Conference 2007

