
OPEN Partners:

CNR-ISTI (Italy)
Aalborg University (Denmark)

Arcadia Design (Italy)
NEC (United Kingdom)

SAP AG (Germany)
Vodafone Omnitel NV (Italy)

Clausthal University (Germany)

OPEN Project
STREP Project FP7-ICT-2007-1 N.216552

"The information in this document is provided "as is", and no guarantee or warranty is
given that the information is fit for any particular purpose. The above referenced

consortium members shall have no liability for damages of any kind including without

limitation direct, special, indirect, or consequential damages that may result from

the use of these materials subject to any liability which is mandatory due to

applicable law. Copyright 2008 by CNR."

Title of Document: Early infrastructure for migratory interfaces

Editor(s): Fabio Paternò, Carmen Santoro, Antonio Scorcia

Affiliation(s): CNR-ISTI

Contributor(s):

Affiliation(s):

Date of Document: February 20

OPEN Document: D2.1

Distribution: EU

Keyword List: Migration, User Interface, Multi-Device

Environments, Adaptation, Continuity

Version: 2.0

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

Abstract

This deliverable describes the software architecture of the prototype under

implementation for supporting user interface migration. It is a middleware

aiming to support automatically the main functionalities, adaptation and state

persistence, across multiple devices with various interaction resources.

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

Table of Contents

1 INTRODUCTION ... 3

2 PROTOTYPE DESCRIPTION .. 4

DEVICE DISCOVERY MANAGER/MIGRATION CLIENT(S) .. 6
REVERSE ENGINEERING .. 7
TRIGGER MANAGER .. 9
SEMANTIC REDESIGN .. 10
STATE MAPPER ... 11
USER INTERFACE GENERATOR .. 12
MIGRATION MANAGER ... 14

3 CONCLUSIONS .. 15

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 3

1 Introduction

This deliverable describes the early infrastructure supporting the migration of the

user interface software of an interactive application in order to allow users to

continue their activities across various devices with different interaction resources.

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 4

2 Prototype Description

Our prototype for migratory interfaces is based on a migration/proxy server and it

exploits logical descriptions of user interfaces, which include an abstract level

(platform-independent) and a concrete level (which refines the previous one by

adding concrete elements and attributes).

The prototype currently implemented at ISTI-CNR is developed using Java

version 5 (and higher), and it is based on a Migration Server (which uses Apache

Tomcat 5.5) which is aimed at coordinating the various phases of the migration. It

also exploits a Migration client for mobile devices implemented in C#. The

prototype architecture has a service-oriented architecture based on some

functionalities:

• Device Discovery Manager, which is the module in charge of discovering

the devices currently available for migration

• Trigger Manager, which decides when the migration has to be activated

• Reverse Engineering, which builds logical descriptions from the desktop

Web implementations;

• Semantic Redesign, which transforms the logical description of the source

user interface into the logical description for the target device;

• State Mapper, which associates the state of the source user interface to the

logical description for the target device;

• User Interface Generator, which generates the user interface

implementation for the target device.

• Migration Client, which runs on each device notifies its

presence/availability and provides information on the state of the user

interfaces running on its device;

• Migration Manager, which orchestrates the general behaviour of the system

Each client device has a software module running on it, which announces the

availability of the device for the migration (1-2 arrows in Figure 1) to the Device

Discovery Manager module, which in turn updates the list of available devices

(with related information) in order to keep it up-to-date, and then sends this

information to the Migration manager (3a). This communication can be used to

provide information regarding events that occur in the devices during the user

session and can be relevant for migration. When a browser on a client device (e.g.

a PDA) tries to access the desktop version of a Web page (let us call it web.html),

the request is filtered by a proxy server, which accesses the application server to

obtain it and then asks the Migration Manager to start the process for delivering

the appropriately modified page version to the PDA. This means performing the

reverse engineering of the desktop version, then the semantic redesign of the

resulting concrete description for the considered platform (the PDA in this case),

and lastly the generator produces the associated implementation. As a result of

this process, the version suitable for the PDA is delivered to the client device. This

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 5

process is iterated for each new page that is requested by the device. The

migration can be triggered either by a user request or proactively by the Trigger

Manager module, which can identify situations where it would be better for the

user to change device. At this point, the Migration Manager asks the Reverse

Engineering Module to get the (5a) Web page (Desktop version), in order to

produce the corresponding concrete description (5b). Once this logical description

is obtained, the Migration Manager asks the Semantic Redesign Module (6a) to

perform the semantic redesign of that concrete description for the target platform.

Then, the Semantic Redesign module performs such transformation to create a

logical description for the target platform (6b), whose state needs to be updated.

This is done by the State Mapper module (7a-7b). As soon as the State Mapper

has retrieved the logical presentation and has updated it with the latest state

information, the State Mapper sends the new concrete user interface for the target

device to the Migration Manager. Then, the Migration manager sends this

concrete UI to the UIGenerator module (8a-8b), which transforms this logical

description into a final user interface. The result of the process is then sent to the

target client (9) where it is rendered and made available to the user.

Events

(3b)

(4)
Trigger

Notification of presence &

platform events

 (8a)

 CUIwith State

 (8b)
 FUI – Target Platform

 FUI-Target Platform CUI-Desktop
 (6a)

 (6b)

CUI- Target Platform

 (4)
 User Trigger

 (7a) State

 (7b) CUIwith State

CUIwith State

 (8b) CUIwith State

(1)

 (3a)

 Devices info
(9)
 FUI Target Platform

UI Generator

(2)

Notification of presence &

platform events

 (5b) (5a)

 CUI desktop Web page

Migration

Client (Source)

Platform

Migration
Client (Target)

State

Mapper

Device Discovery

Manager

Migration

Manager

Reverse

Engineering

Semantic

Redesign

Trigger

Manager

Figure 1: The input/output information that is exchanged between the different

modules of the Migration.

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 6

Device Discovery Manager/Migration Client(s)

The Device Discovery Manager is a tiny program developed in C#, and, in order

to work properly, it needs .NET Framework on desktop platforms and .NET

Compact Framework on mobile devices. It has to be activated in every device that

is involved in the migration (including the Migration Server), and in the client

version the device discovery is integrated with other functionalities that allow the

user to select the migration target and trigger the migration (see Fig.2, top left

part).

Figure 2: The Migration Client (top-left part) and the Home page on the desktop

platform of the Shopping application example (right part)

First, this module has to notify the presence of the associated device to a known

multicast group. The list of the devices currently subscribed to such a group

defines the list of devices that are available and could be involved in the

migration. In order to do carry out this notification, the Device

Discovery/Migration Client module use multicast datagrams communications

using UDP/IP protocol.

After this, the behavior of the module will be different depending on whether the

device on which the software is currently running is the server or one of the other

client devices. In order to discovery its role, the software module reads a file in a

specific location: if the device is not associated with the Migration Server, the

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 7

device sends the information about itself to the server, otherwise, it will only

receive the information about/from the other devices and stores it in a specific

location. In the current implementation the Migration Client, when implemented

on mobile devices, has been empowered with a feature of DiscoveryMap [see Del

3.2].

Reverse Engineering

The Reverse Engineering is a software module whose goal is to analyse the

implementation of an existing Web application desktop version, capture the

logical design of the user interface (in terms of basic tasks supported and the ways

to appropriately structure the user interface in order to accomplish them), and then

generate a concrete description of a user interface (CUI), described according to

the specifications of a language which, in its current state, is an intermediate

version between TERESAXML and MariaXML languages. The CUI description

will then be used as the starting point for the design and generation of the

interface for the target device.

The Reverse Engineering Module reverse XHTML pages, by recursively

analysing the DOM tree of the X/HTML page. Well formed X/HTML files are

needed as input in order to properly perform this transformation. If it is not the

case, before reversing the page, the W3C Tidy parser is used for correcting

features like missing and mismatching tags and returns the DOM tree of the

corrected page, which is analysed recursively starting with the body element and

going in depth. Depending on the type of node analysed, the algorithm follows

one of the following branches:

• The X/HTML element is mapped onto a concrete interactor. This is a

recursion endpoint. The appropriate interactor element is built and inserted

into the XML-based logical description. For example, DOM nodes

corresponding to the tags (images), <a> (anchor) and <select>

(selection) cause the generation of concrete objects of type respectively

image, navigator and selection.

• The X/HTML node corresponds to a composition operator. In this case, the

proper composition element is built and the function is called recursively

on the X/HTML node subtrees which can be, in turn either elementary

interactors or composition of them. As an example of the latter case, the

node corresponding to the tag (unordered list) is reversed into a

Grouping composition operator.

• The node does not require the creation of an instance of an element in the

concrete specification (for example, if in the Web page there is the

definition of a new font, no new element is added in the concrete

description).

The component currently provides as output the CUI for the desktop platform,

including the state of the interaction techniques.

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 8

In the current implementation, further objects have been handled by this module,

which were not handled in previous versions. In addition, this module is also able

to save the information regarding the last UI element that got the focus before the

migration was activated. Indeed, when a request for migration to another device is

triggered, the environment has to extract and collect information regarding the

current state of the user interface, which is a precondition to ensure state

persistence during migration, and support task continuity across multiple devices.

Figure 3: The XHTML-desktop Shopping application Form page with some Pasta

item quantities specified (right part) and the Migration Client with the target

migration PDA platform selected (top-left part).

The process of state extraction includes the identification of the last element

accessed by the user in the source device version of the application, and it

basically depends on the user’s inputs performed till the time when the migration

is triggered. For instance, in Figure 3 (right part) the desktop page of the Shopping

Application example allowing the user to specify the pasta items that s/he want to

buy is visualised. As you can see, the user has already inserted some quantities in

correspondence with the items s/he want to buy. Moreover, it is worth pointing out

that, in order to be able to collect such data deriving from e.g. user’s interactions,

the pages have to be slightly modified before being actually used by the user.

Indeed, when the clients access the Web pages, their requests are in reality

captured by a proxy server, which downloads the pages from the application

servers, and it annotates them with scripts that support capturing the UI state.

After having performed this step the page is able to capture (and continuously

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 9

update) the current state of the UI resulting after the various user interactions and,

when the migration is activated, send such collected data to the Migration Server

(see next sections).

Figure 4: Examples of the transformations carried out by the Reverse Engineering

Module applied to the Shopping Example

In Figure 4 some examples of the (parts of the) transformations carried out by the

Reverse Engineering Module to the Shopping Application case study have been

highlighted. As you can see, a list of bullets has been reversed in a grouping of

navigators, while the information regarding each pasta item has been reversed into

another grouping (composed of a text_edit, an object element, a navigator and a

textual element).

Trigger Manager

Migration can be triggered by the user, who decides when it is the moment to

activate a migration. In this case, the user selects the device on which the UI

should migrate by interacting with a Migration Client (see Section 1.1).

In Figure 5 there is a screenshot highlighting an example of the list of devices that

are detected in the environment, together with their associated properties. Such

properties, which characterise each device, are described in a specific file

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 10

contained in each device, and specified through appropriate XML tags. Such

information is sent by the device to the server so as to enable the latter one to

analyse and appropriately manage the list of the devices currently discovered in

the environment.

Figure 5: The list of devices discovered in the environment

Semantic Redesign

This module is in charge to perform the adaptation to the target device. For this

purpose it takes the abstract elements identified by the Reverse Engineering

module and maps them into concrete elements more suitable for the target device,

(while supporting a similar set of tasks and communication goals), from which it

is possible to automatically generate the corresponding implementation. Figure 6

shows the phases of semantic redesign for a desktop-to-mobile transformation.

• Transforming the desktop logical interface into a mobile logical interface:

the concrete elements of the desktop description are substituted by

concrete elements supported by the mobile platform (for example, a radio-

button with several elements can be replaced with a pull-down menu,

which occupies less screen space, or images originally displayed in the

source (desktop) platform are resized according to the screen size of the

target (mobile) device, while keeping the same aspect ratio.

• Calculating the resulting cost in terms of resources: this transformation is

based on the number and cost of interactors and their compositions

(example of “cost” are: the font size (in pixels), number of characters in a

text, image size (in pixels),etc.). Once the cost of the presentation is

calculated, if it is under the maximum allowed cost, then the process

terminates, otherwise, the presentation is split into two or more pages and

the cost of each composition of elements is calculated: the one with the

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 11

highest cost is associated to a newly generated presentation, which is

replaced in the original presentation with a link to the new presentation.

• Splitting the logical interface into presentations that fit the cost

sustainable by the target device. Page splitting requires a change in the

navigation structure with the need for additional navigator interactors for

accessing the newly created pages.

 The cost that can be supported by the target mobile device is calculated by

identifying the capabilities of the device through the user agent information in the

HTTP protocol, which can be used to access more detailed information in a local

XML repository obtained through WURFL (wurfl.sourceforge.net/), a device

description repository containing a catalogue of mobile device information.

State Mapper

The objective of the State Mapper Module is to update the CUI for the target

device (which has been produced by the Semantic Redesign module) with latest

information regarding the state of the user interface contained in the DOM of the

source page just before migration. Therefore, the State Mapper is the module that,

once a concrete description for the target device has been obtained, it has to

associate in it the state resulting from the user interactions in the source user

Figure 6: Desktop-to-Mobile Semantic Redesign.

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 12

interface. The corresponding elements in the two files are identified thanks to the

fact that each object of the CUI has a unique identification label (ID), which is the

same of the corresponding XHTML/DOM element from which that CUI element

was generated by the reverse engineering process.

One possible complicating factor is when the semantic redesign has transformed a

specific concrete object C1 (for a specific platform) into a different concrete

object for the target platform, C2. In this case, since the same ID is maintained

among the two concrete objects C1 and C2, the association between the concrete

object and the corresponding DOM element is still straightforward (the same ID is

maintained). Nevertheless the State Mapper may require a further step, that is,

adapting the value of the DOM element to specify the new concrete object. For

instance, it might happen that, as a result of the semantic redesign process, a

radiobutton element was translated into a pulldown menu element. Therefore, the

values included in the specification of the radiobutton element (e.g.: the different

items of the radiobutton) have to be appropriately adapted and used to fill in the

specification of the pulldown menu element.

User Interface Generator

This module is in charge of building the Final User Interface (FUI) in an

implementation language suitable for the target device, starting with a concrete

description of the user interface for the platform considered (the so-called CUI or

Concrete User Interface): depending on the considered interaction platform and

the specific implementation language, a particular transformation is selected by

the UI Generator. It is worth noting that, from the earlier version of migration

infrastructure this module has been radically improved since now it is able to

dynamically generate the presentations for the target device (while in the previous

case only pre-computed presentations were selected on the target device).

The UI Generator starts with parsing (in a top-down manner) the target Concrete

User Interface description (which has a tree-like form), starting from the root node

and depending on the type of node it follows different strategies:

 In case of elementary CUI object, the UI generator will transform it in the

corresponding UI element of the implementation language considered. For

instance if we consider as target implementation language XHTML, a CUI

listbox element can be mapped onto a <select> element, which is

composed of a number of <option> elements defining the various items

within the CUI listbox. However, if we consider another implementation

language (e.g. Java, or C), for the same CUI listbox element we will

produce a different implementation.

 In case of composition CUI object (e.g. multiple elements combined by

some concrete techniques for grouping them like fieldsets, lists, ..), the

associated compositional techniques will be implemented in the final

implementation language used. For instance, if at the implementation level

we consider XHTML language, in this case when passing from the

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 13

concrete level to the implementation one, the concrete level primitives are

mapped into XHTML constructs, for instance concrete grouping

techniques can be mapped onto tag <fieldset> (group of fields in a form)

and <div> (divisions or sections in the XHTML page) (with various

attributes), which can be used as composition techniques at the XHTML

implementation level.

Figure 7: The pages of the Shopping Application example redesigned for PDA

platform after migration.

In Figure 7 you can see an example of how the UI Generator delivers the pages

for the PDA platform after the migration of the desktop version of the Shopping

application (visualised in Figure 3) has been requested. As you can note, the

initial single desktop page has been redesigned and a splitting was necessary in

order to produce an usable result on the target platform. As a consequence, four

pages have been produced and some adaptation has been carried out (e.g. the links

in the navigation bar now are aligned vertically rather than horizontally as

happened in the desktop version). In addition, the state has been preserved during

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 14

migration, as you can see from the item unit values that are still visualised in the

PDA version.

 Migration Manager

As it is shown in Figure 1, the Migration Manager is the general orchestrator

within the prototype architecture. It works as proxy server, since when clients

access the Web pages, their requests pass through it, which downloads the pages

from the application servers, and also annotates them with scripts able to capture

the UI state.

In particular, when a request for migration to another device is triggered, the

environment detects the state of the user interface as modified by the user input

(elements selected, data entered, …), and identifies the last element accessed in

the source device. For this purpose, when clients access the Web pages, their

requests pass through a proxy server, which downloads the pages from the

application servers, and also adds to them the scripts able to capture the UI state

and communicate it to the server. Such scripts through a polling-based

monitoring mechanism, implemented through an Ajax script, determine whether

or not a migration was triggered by the migration client. When the user sends a

migration request an AJAX callback function is automatically activated, which

sends the DOM (containing the state of the current page) collected through a

specific script. The information is collected in a string formatted following an

XML-based syntax and sent to the server. This mechanism was chosen because

only an application running on the browser in the client device can access the

application DOM, and the AJAX Script can transmit the data without requiring

any explicit action from the user.

Title: Early Infrastructure for

Migratory Interfaces
Id Number: D2.1

 15

3 Conclusions

This deliverable describes the current state of the prototype supporting the

migration of the user interface software.

