
OPEN Partners:
CNR-ISTI (Italy)

Aalborg University (Denmark)
Arcadia Design (Italy)

NEC (United Kingdom)
SAP AG (Germany)

Vodafone Omnitel NV (Italy)
Clausthal University (Germany)

OPEN Project
STREP Project FP7-ICT-2007-1 N.216552

"The information in this document is provided "as is", and no
guarantee or warranty is given that the information is fit for any
particular purpose. The above referenced consortium members shall
have no liability for damages of any kind including without
limitation direct, special, indirect, or consequential damages that
may result from the use of these materials subject to any liability
which is mandatory due to applicable law. Copyright 2008 by All OPEN
Partners."

1

1

Title of Document: Initial OPEN Service Platform architectural
framework

Editor(s): F.Paternò, C.Santoro,

Affiliation(s): CNR-ISTI

Contributor(s): S.Bigi, G.Ghiani, A.Nickelsen, H.Klus, E.Kovacs,
A.Jahanpanah, S. Marzorati, R.Olsen, F.Paternò,
C.Santoro, A.Scorcia, H. Schwefel

Affiliation(s): Aalborg University, Arcadia, Clausthal University, CNR-ISTI,
NEC, Vodafone Italy

Date of Document: 31 October 2008

OPEN Document: D1.2

Distribution:

Keyword List: Migratory Interactive Services, Architectural
Framework, Platform for Supporting Migration

Version:

Title: Initial OPEN Service
Platform architectural framework

Id Number: D1.2

Abstract

The purpose of this deliverable is to present the initial OPEN Service Platform
architectural framework. For this purpose it indicates the main phases of the
migration process, and the high level description of the possible associated
components, with a discussion of advantages and disadvantages for the various
design options. It will result in the description of the overall architecture of the
Migration Service Platform (MSP), which will provide a high level design of the
basic components and the interfaces between them. The overall goal is to create a
common vocabulary, identify the main parts of the OPEN architecture and discuss
how they can interact with each other. More detail on the various parts of the
OPEN platform will be provided in a number of deliverables planned for M12
(D2.2, D3.1, D4.2).

Title: Initial OPEN Service
Platform architectural framework

Id Number: D1.2

 1

Table of Contents

1 INTRODUCTION... 3
1.1 THE MIGRATION PROCESS ... 5
1.2 ADAPTATION - WHAT CAN BE ADAPTED.. 6

2 MIGRATION LOGICAL DIMENSIONS .. 8
2.1 MIGRATION TYPES... 8
2.2 TRIGGER TYPES AND TARGET DEVICE SELECTION .. 9
2.3 CONTEXT OF USE ... 9

3 ARCHITECTURAL FRAMEWORK... 11
4 THE USER INTERFACE MIDDLEWARE LAYER IN THE ARCHITECTURAL
FRAMEWORK... 14

4.1 ADAPTATION STRATEGIES ... 14
4.2 WHERE ADAPTATION CAN TAKE PLACE.. 15
4.3 STATE PERSISTENCE AND ASSOCIATED SUPPORT .. 16
4.4 USER INTERFACE MIGRATION.. 17
4.5 AN EXAMPLE OF TARGET PLATFORM: THE MULTICORE UI TOOLKIT.. 18

5 SUPPORTING APPLICATION LOGIC RECONFIGURATION IN THE
ARCHITECTURAL FRAMEWORK .. 22

5.1 APPLICATION LOGIC RECONFIGURATION OF SERVICE-BASED DYNAMIC ADAPTIVE SYSTEMS .. 22
5.2 INTERPLAY OF APPLICATION MIGRATION AND APPLICATION RECONFIGURATION..................... 25

6 COMMUNICATIONS AND CONTEXT MANAGEMENT MIDDLEWARE PART
OF THE ARCHITECTURAL FRAMEWORK .. 28

6.1 CONTEXT MANAGEMENT.. 28
6.2 MIGRATION ORCHESTRATION .. 29
6.3 TRIGGER MANAGEMENT... 29
6.4 SESSION MANAGEMENT.. 30
6.5 POLICY MANAGEMENT ... 30
6.6 SECURITY... 30
6.7 PERFORMANCE MONITORING ... 30
6.8 CLOCK/FLOW SYNCHRONIZATION .. 31
6.9 MOBILITY SUPPORT.. 31
6.10 DEVICE DISCOVERY ... 31
6.11 SERVICE ENABLERS INTERFACE ... 32

7 INTRODUCTION TO A FEW SCENARIO REALIZATIONS..................................... 33
7.1 CONTEXT CHANGE ... 33
7.2 PERFORMING MIGRATION... 34
7.3 PERFORMING ADAPTATION AND RECONFIGURATION.. 34
7.4 EXAMPLE OF A SERVER-SUPPORTED MIGRATION SCENARIO ... 36

8 CONCLUSIONS AND FUTURE WORK... 38
9 REFERENCES.. 39

2

3

1 Introduction
One important aspect of ubiquitous environments is to provide users with the
possibility to freely move about and continue the interaction with the available
applications through a variety of interactive devices (including cell phones, PDAs,
desktop computers, digital television sets, intelligent watches). In such
environments one big potential source of frustration is that people have to start their
session over again from the beginning at each interaction device change.

Migratory interactive services can overcome this limitation and support continuous
task performance. This implies that interactive applications are able to follow users
and adapt to the changing context of use while preserving their state. Namely the
knowledge of context, being any information that can be used to characterize a
situation of an entity, [Dey00], is useful to ensure that services are migrated at the
right time and place. This implies that the system would need not only to consider
to migrate the service, but also under which circumstances it happens, e.g.
migration of a video stream service to a laptop that is running out of battery, may
not be an appropriate option, while a nearby tv screen may be a better option. To
summarise:

Migration = Device Change + Adaptation + Continuity.

As we will describe in the following sections, in order to have a real ‘migration’, all
such aspects have to be included: no proper ‘migration’ occurs if there is a change
of device and an adaptation of the application features to the new device, but there
is no continuity in the resulting user activity because, for instance, the user has to
restart from the beginning when the new configuration is activated. Likewise, a
situation in which there has been a device change and also the state of the
application has been saved cannot be properly called ‘migration’ if an opportune
step of adaptation is not performed as well.

Therefore, migration encompasses all the three aspects related with: device change,
then there is the issue of how such devices are discovered; adaptation, then there is
the problem of how the characteristics of the context is taken into account and
handled when adapting the application to the characteristic of the new context; and
continuity, then there is the issue of how to guarantee continuity in task
performance and issues like techniques for maintaining state persistence have to be
addressed.

Thus, the OPEN project provides integrated solutions able to address three aspects:
device change, state persistence and content adaptation. This is obtained through the
Migration service Platform (see Figure 1), a middleware able to consider and
integrate various aspects: adapt and preserve the state of the software application
parts dedicated to interacting with end users; support mechanisms for application
logic reconfiguration; and identify suitably flexible mechanisms available in the
underlying network layers. The resulting middleware should be able to interoperate
with existing technologies. Ideally, the migration platform should be able to take all
existing applications and make them migratory. However, this is clearly too
ambitious for a single project, thus we will focus on classes of applications (Web
applications and distributed applications in the game and business domains). In

4

addition, it is likely that such applications should be developed according to some
guidelines in order to ease the support given by the migration platform.

Examples of how the migration capabilities could be used in practice for improving
e.g. the user experience can be found in Deliverable 1.1 (Requirements for OPEN
Service Platform, see [OPEN D1.1]). In other cases, the need and opportunity for
triggering a migration can be aimed at other objectives (for instance, a better use of
the device resources and/or network capabilities available, etc.). To this respect, in
[OPEN D1.1] several scenarios and related requirements have been identified as of
interest for the project. For instance, one scenario is a gaming scenario in which
migration capabilities are used for making the gaming experience being shared by
an additional user, without the need of stopping the game which was already
running and being played by another user. Indeed, in this scenario, at some point an
additional player wants to join a Pacman game, and such a new player takes the
control of a ghost (whose control is in this way shifted from the application to a
human player). The new player can seamlessly join the game by using a device
currently available, which is equipped with the needed functionalities and user
interface for controlling the game without the need of stopping the game. In this
case, the Migration Platform should recognise the availability of a new device and,
depending on the specific context and device characteristics, migrates the needed
services and the related user interface parts on the new device, also taking care of
saving the current state of the game and render the new user interface adapted to the
new device. In this way, on the one hand the join of the new user is completely
transparent for the player(s) who already were playing Pacman (e.g.: there is no
need of stopping the game for enabling another user to join), and, on the other hand,
the burden needed for suitably modifying the current configuration of the
application, in order to match the new requirements (e.g.: saving the state of the
game, make all the needed controls available on the device of the new user and
adapted to the new device, etc.) is handled by the Migration Platform.

Figure 1. The Migration Service Platform.

5

1.1 The Migration Process
The migration process can be seen as composed of a number of phases, which can
be implemented in various ways. Such phases are specific aspects that characterise
the migration process and the migration platform should explicitly support:

• Device Discovery. Its purpose is to identify the devices that are available to
be involved in the migration process and their attributes that can be relevant
for migration (private or public device, their connectivity, their interaction
resources, …).

• When to Migrate. The Migration Trigger indicates when to migrate. This
event can be generated by the user or the system, or through a mixed
initiative process (the system proposes migration and the user can decide
whether to accept it). Users can request migration when they feel it
necessary, while the system can trigger it when specific events are detected
(such as the device is getting out of power).

• Where to Migrate. Once migration is triggered, it is important to identify
the target device for the migration process. Such target should be one of the
devices available for this purpose and it should be detected on the basis of
its features and how well fit in the new context of use.

• What to Migrate. An interactive migratory service is composed of two
main parts: the user interface and the application logic. The former is the
software dedicated to the interaction with the user while the latter is the
functional core independent of how user interaction takes place.

• How to Migrate. Since the device to access the application changes after
migration, some level of adaptation of the migratory service should be
performed, in particular of its interactive part, in order to better exploit the
new resources available while preserving usability.

• State persistence. One of the main reasons for migration is to continue a
session through different devices. This means that the changes made by the
user in the source device should not be lost when moving to the new one.
Thus, it is important to carry out source state extraction and associate it to
the target version.

• Activation in the target device. In order to obtain continuity, it is important
that the application on the target device is activated not at its usual starting
point but at the point in which it was left off on the source device.

• Optional termination of the source version, in general after migration the
source version should be terminated but there are case in which it can be
useful to allow access to the migratory application from both the source and
the target device after the migration.

6

1.2 Adaptation - What can be Adapted
Adaptation can take place at various levels of granularity. For example, Aura
[GSS+02] provides support for migration but the solution adopted has a different
granularity. In Aura, for each possible application service, various applications are
available and the choice of the application depends on the interaction resources
available. Thus, for example for word processing, if a desktop is available then an
application such as MS-Word can be activated, whereas in the case of a mobile
platform a lighter editing application is used. Thus, Aura aims to provide a similar
support but this is obtained mainly by changing the application depending on the
resources available in the device in question, while we want to have control on
various parts of the same interactive application that adapt to the interaction
resources available. Indeed, various parts of an interactive migratory service can
be adapted:

The User Interface, which is composed of the presentation (the choice of the
modality, layout, graphical attributes, …), the dynamic behaviour (the choice of
the navigation model, the dynamic activation and deactivation of interaction
techniques), and content (what information is actually presented). Each of them
can adapt according to a change of context. The User Interface can adapt
according to different strategies:

• Conserving (keep the arrangement/presentation of UI objects)

• Rearrangement (UI objects kept during migration but they are rearranged
according to some techniques, e.g.: different layout)

• Increase (target device can provide more UI features)

• Reduction (less UI features)

• Simplification (UI objects kept, but with simplified representations, e.g.:
images with lower resolutions)

• Magnification (opposite of simplification).

The Application Logic can be adapted by reconfiguring the access to the
functionalities in order to access different implementations of some of them or
increase/decrease such functionalities because of the change of device or the
change of the connectivity. For example, an access to a data base to retrieve a
large amount of data can be performed if the application is using a good
connectivity, while the same access should be avoided if the connectivity is too
poor to provide results in a reasonable amount of time. In this case, it could be
necessary to perform the data base access in a separate phase or in separate
application, hence affecting not only the business logic of the migrating
application but also the overall procedure the migrating application belongs to.

The Content, which is stored in the functional core of the application. The
adaptation can also cover aspects related with content. There are two possible
alternatives: one possibility is that different representations of the same content
can be statically maintained and, depending on i.e. the resources of the device at
hand, the most suitable content will be selected. Another possibility is that the

7

adapted content can be dynamically generated from the content that is already
available. For instance, it is the case when an image can be derived from a video,
by capturing just the first frame.

The Network support, since the connectivity can change, then the network
protocol and their quality of service may have to change. We should emphasise
that network aspects can cover two different issues. On the one hand, the network
can adapt in order to offer better QoS. In this case, the network properties will be
adjusted in order to fulfil some requirements. In other cases, the network can be
considered itself as an additional contextual aspect (e.g.: it can be considered as
an aspect of the physical environment): depending on the current network
capability, other aspects of the system (e.g.: the user interface presented on
device, ...) can be adapted.

8

2 Migration Logical Dimensions

2.1 Migration Types
Various types of migration can be identified, depending on the number of source
and target devices involved in it:

Total, change from one device to another;

Partial, migration of only a part of the interactive migratory service, e.g.: partial
control migration (see Figure 2);

Distributing, the interactive migratory service is totally distributed over two or
more target devices;

Aggregating, the interactive migratory service distributed over multiple source
devices is then grouped into a single target device;

Multiple, both source and target are multiple devices.

Figure 2. Example of Partial Migration

9

2.2 Trigger Types and Target Device Selection
The trigger event defines when migration should occur. It should then be
accompanied by the indication of the target device(s) for migration. In order to
allow for a good choice of the target device, the migration platform should
retrieve and store information about the devices that are automatically discovered
in the environment. The collected information mainly concerns device
identification and their capabilities. On the one hand, such information allows
users to choose a target migration device with more accurate and coherent
information on the available target devices and, on the other hand, it allows the
system to suggest or automatically trigger migrations when the conditions for one
arise. Thus, both the system and the user have the possibility to trigger the
migration process, depending on the surrounding context conditions. Users can
have various ways of issuing migration requests. One example is to graphically
select the desired target device in their migration client. Users should have the
possibility of choosing those devices that they are allowed to use and are currently
available for migration.

Migration can also be initiated by the system skipping explicit user intervention in
critical situations when the user session could accidentally be interrupted by
external factors. For example, we can foresee the likelihood of having a user
interacting with a mobile device that is shutting down because its battery power is
getting too low. Such situations can be recognised by the system and a migration
is automatically started to allow the user to continue the task from a different
device, avoiding potential data loss. Alternatively, the migration platform can
provide users with migration suggestions in order to improve the overall user
experience. This happens when the system detects that in the current environment
there are other devices that can better support the task being performed by the
user. For example, if the user is watching a video on a PDA and a wide wall-
mounted screen is detected and available in the same room, the system will
prompt the user to migrate to that device, as it could improve her/his performance.
However, the user can continue to work with the current device and refuse the
migration. Since receiving undesired migration suggestions can be annoying for
the user, users who want to receive such suggestions when better devices are
available must explicitly subscribe in order to allow for this mixed-initiative
migration service. In any case, once a migration has taken place, nothing prevents
the user or the system from performing a new migration to another available
device.

2.3 Context of Use
Context information refers to all information that is relevant to describe a given
situation for a given object, and as a general definition we use is the one given by
[Dey00]:

Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and application themselves. [Dey00]

10

Knowing context information may be a useful asset for an application, service or
other networking components in order to adapt to the current situation.

The definition is wide and implies that context may be any general type of
information. The key is, as indicated, that it is relevant information that falls
under the definition of context. Thus in OPEN we need first to define what is
relevant information for service migration. Various parts of the context of use can
be relevant in the migration process. A change in a single contextual dimension
(which, in turn, results in a more general ‘context change’) might represent a
condition to be analysed for activating a possible migration. The context of use
can be seen as composed of four main aspects:

– Device, its resources for interaction and processing, and its
connectivity. A device change is a common example of a context
change. A device change can affect different aspects in a migrating
application, not only from a user interface point of view (because
the new device might offer different interaction capabilities with
respect to the old one), but also e.g. from a performance point of
view (the new device can support more concurrency in task
execution and therefore the module handling the application logic
reconfiguration can benefit of this adequately), etc.

– User, the preferences, the tasks, and the associated goals. The
knowledge of user preferences, tasks and goals can enable the
activation of an opportune migration as soon as some conditions
occur in the current context.

– Physical Environment, example attributes are noise, light.

– Social Environment, relations among the users that can affect the
interaction.

The information may be measured directly, e.g. information about the physical
environment like light or noise may be measured by sensors locally or remote.
Other types of relevant information, e.g. with respect to user activity may need to
be inferred or derived from existing context information, as such information may
not necessarily be directly measurable. Thus, a context management framework
for OPEN would need to support not only collecting, and distribution of context
information, but also online processing capabilities for inferred context
information in order to ensure best triggering mechanism for service migration.

11

3 Architectural Framework
This section introduces the architectural framework of the OPEN migration
platform, which will be detailed in the following sections. The OPEN platform
should be able to provide support and transformations at various layers: the user
interface, the application logic, and the underlying middleware oriented to manage
the context of use, including the network support.

In Figure 3, the different architectural modules at a very high level are visualised.
Basically, our architecture foresees a number of devices which communicate with
the OPEN Platform. The OPEN Platform provides support for a number of
services (user interface migration, application logic migration, etc.) enabling
migration. For each device involved in the migration, two main parts can be
considered: an Application module (covering UI and application logic
functionalities) and another module (called OPEN Client), which is the module
that allows for the connection with the OPEN platform server and for gathering
information regarding the current state from the application.

The OPEN platform has a service-oriented architecture. The first version will be
based on a server supporting it but the possibility of a distributed peer-to-peer
(P2P) architecture may be explored in the future (“future P2P?” bullet).

Fig 3: General Overview of the system

12

The next figure (Figure 4) provides a more detailed indication of the overall
architecture of the OPEN Platform. While the figure still shows that we consider
applications interacting with users, it provides some more indications on the
functionality of the platform. For example the user interface migration is detailed
into user interface adaptation + user interface state persistence. Likewise, the
application logic migration is refined. The middleware is refined into a number of
functionality (device discovery, mobility support, context management, ..). The
device(s) involved in migration is expected to include, in addition to the
application itself, another piece of software (Migration Client), through which the
user can see the available device(s) and select to which device(s) trigger the
migration.

In the multi-layer architecture proposed, the lower layers basically provide
functionalities to the higher layers, and OSGI framework is currently-considered
as a common glue for enabling communication among the various modules.

As we already mentioned in Section 3, different types of adaptation can be
handled by the OPEN Platform. For instance, the module “UI reconf/adaptation”
in Figure 4 is aimed at adapting the user interface part of an interactive migrating
application and, likewise, the module “Appl. logic reconfiguration/orchestration”
handles the adaptation of the application logic.

Figure 4. OPEN architectural framework

This architecture has been derived through a mixture of top-down from the
application scenarios and requirements, and bottom up by identification of
relevant functions from experience of the partners. It will be revised in the second
year depending on the project evolution.

13

In the next sections we will provide more detailed descriptions of the three main
parts composing the OPEN Platform middleware identified by the three main
aspects that are handled: user interface, application logic, and network and context
management.

14

4 The User Interface Middleware Layer in the
architectural framework
WP2 concerns middleware for supporting user interface migration. Its main
components, according to Figure 4, are user interface adaptation and state
persistence.

The main requirements that we plan to consider in this part are:

• Avoid manual solutions, in which developers directly create migratory
versions of an application because they give full control on the results but
they lack of generality and would be too expensive when applying to
various applications;

• Existing Web desktop Applications, while we would like to make all
existing applications migratory, this can be too ambitious for this project.
Thus we decided to focus on existing web desktop applications. These are
applications that can be accessed through a Web browser. The reasons for
this choice is that this type of application is the most common (there exist
millions of Web desktop applications). In addition, we can manipulate and
transform the content of such user interfaces for obtaining versions suitable
for various types of devices;

• Targeting a wide variety of interaction platforms, we want to be able to
dynamically create migratory user interfaces adapted for various types of
devices and implementation languages (even non Web languages, which are
languages that allow to express specifications that can be interpreted by
Web browsers) starting with existing desktop Web applications.

4.1 Adaptation Strategies
The adapted version of the application for the target device of the migration can
be obtained in various ways:

Pre-computed, in this case it has been defined beforehand the migration process
by an ad-hoc development. Usually this implies more control on the resulting
version. However, this solution requires considerable development effort (the
development of a version for each type of target device for each application
considered, consequently it has a limited applicability. Such pre-computed version
can be either preinstalled in the target device or loaded on-demand when
migration occurs.

Dynamically generated, in this case the application version for the target device
does not exist beforehand and it is automatically generated when migration
occurs. The new version is obtained by applying some transformation rules coded
in the adaptation engine starting with the information of the application version in
the source device. This solution requires limited effort (it only requires the
activation of the automatic adaptation engine). However, there is less control on
the resulting version and it is difficult to find a set of rules that provide optimal
solutions in a wide set of cases. One example of strategy implementing this

15

approach is based on three main phases: reverse engineering for creating a logical
description of the interactive application from the existing implementation,
semantic redesign to adapt the logical description to the target platform, adapted
implementation generation. This is the solution for adapting the user interface of a
migrating web application which is currently followed by ISTI-CNR, and it has
been implemented in a prototype implemented in Java under further development.
In this prototype, the design of the considered application is represented by a
XML-based logical description, is dynamically adapted according to the
characteristics of the target device, and then it is used to generate the final user
interface for the considered platform. Further details of this approach will be
better explained in D2.2.

Mix between pre-computed and automated, in this case various levels of
automation are considered but starting with some aspects pre-computed. This
ranges from developing the source application according to some guidelines that
make it more suitable for adaptation to having the structure of the adapted version
pre-defined with some aspects that are dynamically filled in it. In some cases there
is one generic version of the application with annotations for obtaining adapted
versions to different types of devices.

In general, there is no a priori ‘best’ solution to be selected among such strategies,
although on the one hand a pre-computed solution will emphasise the full control
by the designers in obtaining the adapted version, but it requires a big effort for
addressing various applications and target devices because each application
version should be manually created. On the other hand, a completely dynamically
generated solution requires less effort but it may generate not optimal solutions in
terms of usability because the underlying rules driving the generation may not be
sufficiently able to address the specific usability requirements of each application.
In any case, in the OPEN Project we will aim to identify the best solution
depending on the devices and the applications at hand. In particular, we are
working on an automatic generation solution but we will consider the possibility
to modify the rules driving adaptation and provide guidelines for designing and
implementing the interactive application in order to make it more easily
manageable for our platform.

4.2 Where Adaptation Can Take Place
Adaptation can take place at least in three types of hosts:

The Application Server, which recognises the type of target device and activates
an adaptation accordingly. The drawback of this solution is that the adaptation
engine should be duplicated in all the potential application servers.

Intermediate server, in this case the adaptation engine is located into a single
server that acts also as a proxy server monitoring the requests from the target
client device and adapting the results according its resources. Potential issues for
this architectural approach are congestion or lack of scalability. An example will
be better explained in Section 7.4, where we describe the various steps of the

16

approach which is under development at ISTI-CNR in a prototypal environment
for supporting migration.

Client device, in this option the adaptation engine is installed into the target client
device and is applied when migration has been triggered. The local installation
guarantees that there is full access to information on the local device capabilities.
However, with some device with limited capabilities (such as some types of
mobile devices) there can be problems in supporting the processing requested by
adaptation.

Every architectural approach has also impacts on the business ecosystem to put in
place:

• If the adaptation takes place at application server level, the focus will be for
the specification and promotion towards the developers community of a
framework for a specifying guidelines and development constraints.

• If the adaptation is based on the intermediate server, the effort related to the
complexity and computational resources for the user interface adaptation
should be put towards ISP or telco operator who should provide the
intermediate server.

• If the adaptation takes place in the client device, this could impose some form
of device manufacturers endorsement, in order to ensure that the adaptation
engine can exploit at its best the capabilities offered by the device.

In addition, it is worth pointing out that the aspects that are related with where
adaptation should occur have an impact on issues related with adaptation
strategies (how to adapt) described in the previous section. Indeed, for instance, a
heavy adaptation strategy like the dynamically generated one is difficult to be
combined with an adaptation that takes place in the client device, when the client
platform is a thin device with limited performance capabilities.

4.3 State Persistence and Associated Support
One of the main components of the migration platform is the support for task
continuity. The goal is to allow the users to change the device and continue the task
at hand from the point they left off in the source device. This implies the ability to
take the state of the of the source application and to apply it to the version that is
going to be activated in the target device.

The state of the interactive application can be seen as logically composed of the
state of the user interface (which is defined by the information entered or selected
by the user) and the state of the application logic.

In a Web application, we have identified at least eight aspects that can be relevant
for de-fining the state of Web user interfaces and that can have an impact on the
overall user experience. The first element is associated with the user input. People
make selections, enter text and modify the state of various input controls during a
session, and such modifications should not be lost when moving to a new device if

17

we want to maintain continuity. An associated element is client-side variables
associated with small functionalities (e.g. Javascript variables).

Another component that can be dynamically modified is the content of a Web
application. While this can be easily managed with dynamic Web sites using PHP,
JSP and similar languages because whenever a new request is performed then a
different page is uploaded, with Ajax scripts this aspect becomes more problematic.
Indeed, in this case the content of the page can vary without requiring the loading of
a new page. Thus, it becomes more complex to detect what is actually composing
the currently displayed page.

Cookies are more and more used and they allow an application to provide small
pieces of information to the client in such a way that whenever the client accesses
the application, then the client identifiers are inserted in the HTTP protocol. It is
important that if and when a user changes device, then the current application pre-
serves the same cookies in order to be recognised by the application server. A
related technique is the session: it is a server-side mechanism, which stores
information related to the user session, which is in turn associated with a specific
identifier.

Another important aspect is the history of user accesses, which is maintained by the
Web browser and drives the behaviour of the frequently used browser back button.
Since the user is still the same, even if she has changed device, then she would
appreciate still being able to easily return to recently accessed pages, even if
through a different device. It is clear that the pages accessed through the new device
may be adapted to the currently available interaction resources. In some cases (e.g.
migration from desktop to mobile), it may even happen that the original desktop
page is split into multiple mobile pages, thus accessing all its content may require
further navigation.

Bookmarks are another interesting aspect that can be considered part of the user
interface state. Users often use them to quickly find and access favourite pages. In
migration, the devices change but not the user, who still has the same interests and
may appreciate the possibility to find in the current bookmarks including the pages
that were bookmarked in the previous device. Another element that has similar
characteristics is the browser home page: in some cases users may be interested to
migrate it to different platforms as well.

A last element that can be considered part of the state is the query string included in
a URL after the “?” symbol. It is usually used to specify parameters for a dynamic
site, which define some data that are presented in the associated page. By modifying
the query string we will access the same Web site but since the parameters vary,
then the corresponding page varies in terms of content.

In D2.2 we will discuss how the OPEN platform addresses the rich user interface
information state discussed in this section.

4.4 User Interface Migration
Figure 5 shows how the migration of the user interface works at run-time. It
assumes the existence of a desktop web implementation of the interactive
application.

18

A reverse engineering process builds the corresponding logical descriptions. The
logical descriptions and how they are represented in XML will be described in a
next WP2 deliverable. This is the starting point for the adaptation part, which
creates a logical description tailored for the target platform. Then the state
resulting from the user interactions with the source version (selected elements,
text entered, …) is associated with the target concrete description, which is finally
used to generate the implementation for the target device.

Figure 5. UI Migration Server

4.5 An Example of Target Platform: The Multicore UI Toolkit
In this section we describe a specific target implementation platform that is going
to be developed within the OPEN project, the multicore UI framework.

This is a library of classes that enable application programmers to implement
visually appealing graphical user interfaces similar in look and feel to existing UIs
on mobile devices (e.g. Apple iPhone), game consoles (e.g. Xbox Live! Arcade
UI, Playstation™ Store) or set-top boxes (e.g. Channels list, program guides, etc.).

The framework is mainly targeted at multimedia applications and in particular
will provide a 3D compositing layer allowing for features such as rotated and
scaled windows, transparency and animated widgets.

To achieve these effects and to provide best possible performance the library uses
multiple threads internally to leverage multicore CPUs.

19

The innovative adaptive load-balancing implementation always utilizes the full
processing performance provided by the CPU.

Especially the system automatically adapts to changing numbers of available
cores at runtime which is a key advantage with respect to application migration.

It also supports disabling of CPU cores at runtime, without interruption of the
running application and with no special requirements on the programmer’s side.
This behaviour is especially useful for mobile and embedded devices as
application performance can be adapted with respect to power consumption and
battery life.

This is the most important distinguishing point of the toolkit as none of the
existing GUI libraries on the market are designed from the ground up to support
multicore rendering on CPUs to this extend (Apple and Microsoft focus on GPU
acceleration for example).

The second important aspect is ease of adaptation and migration of GUI layouts to
different devices: For example, all relevant coordinates, regions and parameters
are specified in normalized floating point coordinates which enables GUIs to be
resolution independent. Memory footprint and run-time resource requirements are
very low in order to ensure smooth interaction on mobile and embedded devices.

The GUI framework is a software development kit similar to e.g. Trolltech Qt /
Qtopia (see http://trolltech.com/) or wxWidgets.

Viewed from a higher level it provides the following functions:
• Widget implementations (for windows, buttons, lists, etc.)
• handling state and updates, messaging logic and event handling

o E.g. when the user moves the mouse, clicks a button, scrolls a
window, etc. the corresponding event is stored in a message queue

o On update, widgets get their events from the queue and react to
these events, i.e. change their state

• rendering and compositing
• transformation (rotation, scaling)

A Renderer component could provide lower-level graphics tasks such as drawing
of graphical primitives like diagrams, charts, etc.

The Compositor sub-system performs several functions, including
• control of display update
• management of the active windows and update of their transformations
• interaction with the rendering and multicore sub-systems to draw the final

layout

The following figure (Figure 6) gives a brief higher-level overview of how
various components interact in the generation of the user interface for a multi-core

20

platform. The ouput of the adaptation part is an XML concrete user interface
description, which is used as a starting point for the generation of a user interface
exploting the multi-core library.

Figure 6. Overview of how various components interact

Besides instantiating new GUI widgets and handling events, applications will also
to some extent have to interface with the framework’s Renderer and Compositor
sub-systems in order to control display update and possibly perform lower-level
graphics tasks.

4.5.1 Dependencies
An application creates its GUI elements and layout using the toolkit classes based
on the XML description provided by an UI adaptation service. Although some
tasks regarding management of state and logic are already provided by the GUI
framework, typically large parts of these tasks also have to be implemented on the
application side. This results in tight intertwining of GUI and application logic
code. However, the GUI library will not perform migration of data and state
information stored inside GUI widgets – it is the responsibility of an external
entity to get these values from the respective widgets and hand them to the OPEN
platform.

To maximize integration and interoperability with various other OPEN
components and systems, the toolkit will be implemented in the Java
programming language. Additional C++ code is also used in order to gain
maximum performance for multimedia applications. E.g. the UI library will use

21

NLE-IT’s C++ Task Programming Interface (TPI) to distribute workload over all
available CPU cores.

22

5 Supporting Application Logic Reconfiguration in
the architectural framework
In the first section we will introduce which types of adaptation we will consider
and how they fit into the basic modules shown in Figure 4 (OPEN Architectural
Framework). Afterwards we will give a rough overview of the interplay between
migration and application logic reconfiguration.

5.1 Application Logic Reconfiguration of Service-based
Dynamic Adaptive Systems
We consider dynamic-adaptive systems as systems built from a set of services that
work together to perform some kind of tasks that are useful for application users.
In addition, to established component-based applications, the behaviour of
dynamic-adaptive applications adapts during runtime to the needs of the current
user and his environment.

Components are software entities that realize specific services that are described
by and accessed through interfaces. Other components can define dependencies to
provided services by defining them as required. Provided and required services
have to be linked together in order to enable for example method calls from one
component to another. The Figure 7 shows a set of component instances running
on a PC that offer and require different services, described by interfaces. Required
services are depicted as semi-circles, while provided services are depicted as
circles. That notion follows the UML 2 standard [UML]. In order to run the
application, according provided and required services have to be connected. The
decision of which services to connect will be made in the middleware.

:PC

IfD
:B

:C
IfC

:A

IfC
:C

IfC

IfB
:D

IfDIfB

IfA1

IfA2

Figure 7. Component instances running on a PC ready for wiring and interacting together. If a
component instance holds all required references to service implementations, it becomes runnable
and will provide the given services to other components.

Therefore, the task of the middleware is to ensure that the wiring of component
instances always fits to the user’s needs on the one hand, and to the usage context
on the other hand. The wiring can be changed during runtime based on context
information, user preferences, or currently available component instances. The
rewiring of components is one aspect of considered reconfiguration types.

23

Currently we distinguish three types of reconfiguration [NKA+07]. The first one
we call Service Implementation Adaptation, where the behaviour of a single
service changes by replacement of the implementation during runtime based on
any available context information. One example is that a speech recognition
service adapts its recognition algorithm based on the stress of the user. This could
be useful because the speech of a relaxed person is very different than that of a
stressed person and therefore there would be a lack of reliability in changing
situations. That type of adaptation could be triggered by the middleware and
performed by the application component itself. The second type of adaptation we
call Service Usage Adaptation which is depicted in Figure 8.

:PC

IfD
:B

:C
IfC

:A

IfC
:C

IfC

IfB
:D

IfDIfB

Decisionwhich
instance to use based
on context information

IfA1

IfA2

Figure 8. This figure illustrates the Service Usage Adaptation. If two implementations of the same
service are available, the middleware has to decide which one to use in the current situation.

In this type of adaptation an application component instance, which is currently in
use is replaced by another application component instance, which is more
appropriate in the current context. A very powerful but resource-intensive
component instance could for example be exchanged by a less comprehensive but
more energy-saving component instance if the battery of the device is getting low.
This type of adaptation is performed by the middleware. The third type of
reconfiguration we call Component Configuration Adaptation which is illustrated
in the next figure (Figure 9).

24

:PC

IfD
:B

:C
IfC

:A

IfC
:C

IfC

IfB
:D

IfDIfB

Decisionwhich configuration
to use based on context
information and available

interfaces

IfA1

IfA2

Figure 9. The figure illustrates the component configuration adaptation. If interfaces IfC and IfD
are available, component A provides IfA1 to other components, if only IfC is available, component
A will provide IfA2. The active configuration is tagged with a green check mark. Depending on
which application component configuration is active, the behaviour of that component may be
different.

Therefore, a component can consist of several configurations as shown in
component A in Figure 9. Each configuration is a mapping between provided and
required services. If all required services of a configuration are available, this
configuration will get activated and the provided services of that configuration
will be available to other components in the system. In addition, the behaviour
may change depending on which configuration is currently active. The active
configuration is tagged with a green check mark. That means that during
reconfiguration the functionality of the application can change due to the
instantiation of new components with new services.

In the first version of the middleware provided in WP4 these types of adaptation
will be realized. The main trigger for adaptation will be the migration of
application components, and the change of context information. To do this, the
WP4 will interact with several building blocks from the OPEN architectural
framework shown in Figure 4. In the following we will shortly describe how the
middleware cooperates with these building blocks.

• Access to the Component Repository
Each component instance within an OPEN system has to be published at
the Component Repository. In order to decide which of the three types of
adaptation can be used, the application logic reconfiguration unit has to
access the component repository in order to decide which instance is the
best in the current situation. The application reconfiguration unit is also
interested in the information if new component instances, and therefore
new services, get available or other component instances disappear.
Therefore, it will register for these kinds of events at the component
repository.

25

• Interaction with the Trigger Management
A trigger is an event which tells the system that a migration has to be
performed. Therefore, it will also be used to initiate the adaptation of the
application. To do this, specific trigger definitions will be stored at the
trigger management, that is conditions when to trigger migration and
adaptation. A trigger could for example define that the application or parts
of it have to be adapted if the battery power is below 50%, below 30%,
and below 10%.

• Interaction with the Context Management
The Context Management will be used to obtain high-level context
information in order to decide how to adapt the application, that is, to
decide which type of adaptation to apply and how to realize it. If the
battery power for example is between 50% and 30%, Service
Implementation Adaptation could be applied. If the battery power is
between 30% and 10%, maybe Service Usage Adaptation will be useful.

• Interaction with the Policy Management
The policy management is accessed by application logic reconfiguration in
order to obtain specific guidelines or preferences for adaptation. Maybe
the user for example wishes to slow down the application in case of low
battery instead of limiting the functionality.

The first version of application logic reconfiguration will deal with services
implemented in Java running on Windows or Linux. Since the addressed
applications are distributed applications, where services may run on different
devices, an appropriate middleware for supporting those kinds of applications will
be used, like CORBA (Common Object Request Broker Architecture) or OSGi
(Open Services Gateway initiative). Those existing middleware systems will be
used as a basis for realizing the communication between all required architectural
building blocks used for application logic reconfiguration and application
components. Components, which originally were not designed to communicate
over a specific middleware, can be integrated through simple wrappers.

In order to perform reconfiguration, each application component will have to
implement specific interfaces through which the application reconfiguration unit
can control the lifecycle of each component and initiate reconfiguration tasks. The
concrete methods will be described in deliverable D4.1.

Application logic reconfiguration is only one part of work to be done in WP4. The
second part considers the migration of single or all components of an application.
In the next section we will therefore introduce the Migration Control and
Management unit depicted in Figure 3 (OPEN Architectural Framework).

5.2 Interplay of Application Migration and Application
Reconfiguration
The second task of WP4 is to integrate work of WP2, WP3, and Application
Logic Reconfiguration of WP4 into a common OPEN migration service platform.
Therefore, the Migration Control and Management unit will interact with other

26

modules shown in Figure 4 (OPEN Architectural Framework) using specific
interfaces. In order to realize the migration functionality, solutions developed in
WP3 will be applied concerning migration handling, context management, policy
management, trigger management, and device discovery. Solutions for user
interface migration and adaptation come from WP2 and will be integrated
together with application logic reconfiguration concerned in WP4.

The following figure (Figure 10) shows one example of how application
migration and application logic reconfiguration could interplay. There is for
example a running application on the PC which the user wants to migrate to his
PDA. Among other actions, the middleware has to transfer the state and in some
cases the code of each component to the PDA and start these components with
their states on the target device. This part is basically performed by the migration
manager. The application logic reconfiguration will then try to adapt the
application to the user’s needs and the available resources.

:PC

:PDA

IfD
:B

:C
IfC

:A

IfC
:C

IfC

IfB
:D

IfDIfB

IfA1

IfA2

IfD
:B

:C
IfC

:A

IfC
:C

IfC

IfB
:D

IfDIfB

IfA1

IfA2

Migration and adaptation
of the application from
PC to PDA

Figure 10. The figure shows the interplay between migration and application logic reconfiguration
as described in the section before. In this case Service Usage Adaptation and Component
Configuration Adaptation are performed.

27

This is only one example of how migration and reconfiguration work together.
Many other scenarios are possible. One example is that only parts of the
application migrate from one device to another while other components stay at
their source device. A more detailed discussion of further migration/adaptation
scenarios and middleware solutions will follow in deliverables D4.1 (Solutions for
application logic reconfiguration) and D4.2 (Migration service platform design).

Dependencies of the Migration Control and Management unit are the same as
described in the previous section. However, the reasons for them are slightly
different. The migration control unit is notified by the Trigger Management unit,
if migration is required. For migration control and management, the location of
specific component instances becomes important. Therefore, information about
that has to be managed and stored for example at the component repository.
Furthermore, a component, which has to be migrated, has to be stopped, their state
has to be stored, their code has to be transferred to the target device, and the
component has to be started again.

The communication infrastructure and supported platforms are basically the same
as described in the previous section. In addition, the middleware has to initiate
and perform migration of services and their code. Some middleware systems like
CORBA or OSGi for instance support some kind of mobile code. Such a
middleware could be used as basis for realizing the migration of whole services
from one device to another. Since we will use Java, there has to be a running
virtual machine on the target and source device in order to perform migration. The
communication between application components and middleware components
could be realized similar as described in the previous section.

28

6 Communications and Context management
Middleware part of the architectural framework
The goal of WP3 is to design and evaluate the detailed communications and
context management solutions for migratory services. The communication
relations thereby include the message exchange between the devices participating
in the UI/application migration, as well as to remote migration-unaware
communication end-points (correspondent nodes) participating in the distributed
application. From Figure 4 the following functions are described in this document:

• Context management

• Migration orchestration

• Trigger management

• Session management

• Policy management

• Security

• Performance monitoring

• Clock/flow synchronization

• Mobility support

• Device discovery

• Service Enablers Interface

In the following an overall description of each function in the middleware is
presented. The description contains; a brief functional specification, an
introduction to which other functions a function interacts with and concerning
what information, a consideration on what requirements and scenarios are specific
for the function and finally potential candidate solutions for the function.

The descriptions in the following are first high-level functional descriptions based
on the functional requirements derived in [OPEN D1.1]. In section 7, examples
are given of how the functions interact on an overall level. The function details
(e.g. interfaces, requirements, candidate systems, specific interactions) for the
communication and context management middleware are highly dependent on
which scenario and network architecture they run in. For this reason, a detailed
analysis is described [OPEN D3.1] of networking scenarios and consequences of
using these migration support functions in the scenarios.

6.1 Context management
The context management system generally handles information distributed in the
network and provides easy access for services, application and networking
components to their needed information. Thus it is responsible for collecting,
storing, processing and delivering relevant information from different sources of

29

context to functions in need information. As described earlier, context refers both
to raw sensor data, or higher level, processed context. Context providers can cover
anything from environment changes (the user is standing in front of the device) to
very device specific information, such as the remaining battery life. In OPEN
context it is used for many purposes as envisioned and required in Appendix of
[D1.1]. For example, it is used in the trigger management function that is capable
of issuing a migration trigger based on a context change (e.g. once the battery
capacity is below a certain threshold). In addition, application logic
reconfiguration, UI migration and mobility (see e.g. requirement no. 35 in [D1.1])
functional modules also require use of context and thus access to it.

The context management function must be capable of collecting information from
a wide range of sources, both on terminal devices and sensors and in the network
(e.g. the user’s presence status, or information collected from social networks
such as Facebook, Twitter, etc.). To accommodate this, the context management
function should support distributed collection of information and either distributed
or centralized processing of the information.

Context source look up and data retrieval is achieved using a semantic query
language, supported by a context broker function and the rest of the management
framework.

At present existing solution related to context management have been researched
for some time, and in particular a solution originating from the MAGNET Beyond
project is under investigation as a possible basis for the OPEN project. The
framework here is denoted Secure Context Management Framework (SCMF) and
is presented in [MBD2.3.1], [Bauer06], [Sanchez06] and [MBD2.3.2].

Referencing to Requirement no. 65, 89, 135, 136, 34 and 59

6.2 Migration orchestration
Migration orchestration controls the migration process – from received trigger to
successful use of the migrated service. This may entail pre-planning of what
application parts to migrate where, how and when in the migration process this
happens. An example of migration orchestration is when migrating a user
interface: then various migration services need to be accessed: the reverse
engineering for building the logical description; the adaptation service; the state
mapper, which maps the state of the source user interface in the target one; the
user interface generator for the target device; and the target device itself for
uploading the migrated user interface.

References to Requirement no 6, 13, 82, 30, 48, 51, 79, 80, 139 and 126,

6.3 Trigger management
This module analyses contextual information changes and decides whether or not
a migration should be activated through issuing triggers. Simple triggers can be
provided by the context management function itself. Here, simple thresholds on
context information values can be used or even fusion of different pieces of
context information may apply.

30

Even more complex triggers, e.g. based on inferred knowledge from available
context information, network information or based on user-input, may be
generated and handled by this function.

References to Requirement no 89, 13, 82, 86 and 37.

6.4 Session management
Ongoing networking, security or application sessions must be respected when
performing migration to provide continuous services.

Examples of such sessions are

• application session: logged in on website, a stateful server (http session
and corresponding timeout), service/device registration (e.g. from UPnP)

• security session: established security association (authentication,
authorization, credential/key exchange)

• network session: NAT connections, stateful firewalls, TCP connections,
multicast group assignment

The session management function helps ensure that sessions can continue during
migration. This functionality would apply to e.g.

References to Requirement no 118, 119, 126, 43, 77, 45, 54 and 64.

6.5 Policy management
A policy management function handles that in some cases migration is not
allowed due to requirements (from user or provider or 3rd party), or conversely
that a migration must be effectuated in a given situation. This is typically based on
contextual calculations, based on functionality requirements, application context,
user context and profile, security parameters, etc.

References to Requirement no 142, 66, 49, 52 and 98.

6.6 Security
In several scenarios, security issues arise. Problem such as ensuring privacy
protection, prohibiting eavesdropping on wireless transmissions or preventing
malicious interactions during the migration process must be addressed. The
security function handles support for secure communication by managing keys
and ensuring authenticity of participating entities.

If the application uses encrypted channels for communication, the existence of
these must also be assured during migration, so that secure service is not
interrupted unintended.

References to Requirement no 38, 15, 23 and 118.

6.7 Performance monitoring
This module is aimed at monitoring the performance of entities that are involved
in the migration environment, because such performance could possibly affect the
migration process. Indeed, as network performance, device performance and

31

similar could potentially be important context metrics for migration triggers,
performance monitoring functions are needed as context providers for the context
management system. Therefore, this module provides input to the Context
Management module,

Lower-level system performance such as efficiency of multi-core utilization high-
level application QoS metrics are also potential inputs for a performance monitor.

References to Requirement no 21, 18, 32 and 102.

6.8 Clock/flow synchronization
Different streams, existing or new, need to be synchronized in order to provide
continuous service when migrating/distributing an application. An example is
enhancing an audio call with video capabilities. When establishing the video
stream, this should be synchronized to the audio stream already running.

To apply such synchronization some sort of clock synchronization must be in
effect. Also, if application state is dependent on time, synchronized time between
involved devices must be present in the migration process.

References to Requirement no 145 and 58.

6.9 Mobility support
Mobility support is required in the middleware to handle user mobility so that
corresponding nodes do not need to be aware of and handle mobility.
Correspondent nodes are application node(s) in remote networks. As these could
be non-OPEN-aware application peers, such as regular web- and application
servers which are relevant in web-service scenarios and applications, it is not
feasible to expect that they can handle user mobility themselves. Thus to support
users moving around, e.g. from one network to another or from a fixed
infrastructure network to an ad-hoc network, the functionality must be embedded
in the OPEN platform and it must provide transparent mobility support to non-
OPEN service providers.

References to Requirement no 104, 35 and 91.

6.10 Device discovery
The main aspect in migrating services and applications is enriching user-
experience. This is done by utilizing additional resources and/or devices available.
To use these additional entities, their presence need to be discovered and their
capabilities established. This is handled by the device discovery function.

Discovery can be performed in several manners; locally (short-range
communication) or centrally (using a commonly accessible registry). The
objectives for discovery are also multiple:

• device discovery (network presence)

• service discovery (what services are provided by a device)

• resource discovery (which resources, e.g. battery lifetime, processing
power, storage capabilities, etc. are offered by a device).

32

References to Requirement no 20 and 33.

Regarding the communications with other modules, the Device discovery can
interact with Context Management module in the following way: whenever there
is a change of device, the Device discovery module provides such information to
the Context Management module, which is in charge of maintaining updated the
information about the current context.

6.11 Service Enablers interface
OPEN Platform and migratory applications access network capabilities through a
Service Enablers Interface. This interface provides several adapters for every
network elements type that has to be accessed. The network architecture and the
low level interface are hidden abstracting the underlying layer and providing
common functionalities to OPEN middleware and to all the applications that use
the middleware.

Service Enablers can be resources external to the OPEN platform providing some
network capabilities that can be accessed by the OPEN platform using the Service
Enablers Interface component. Such resources might be:

• Presence system where customers and services or applications can publish
their presence status or verify presence status of their buddies

• Location through which location information of SIM cards are accessed

• Network Context and access layer information such as:

o type of network in use (in terms of GSM, GPRS, UMTS, WLAN,
Bluetooth, …),

o type of service in use

o information regarding the URL accessed by the customer.

Service Enabler Interface performs privacy related functionalities enabling or
denying access according to general privacy rules, customers preferences and
profile.

References to Requirements are indirectly through many other subsystems, since
e.g. location is most often provided through such an interface.

33

7 Introduction to a few Scenario Realizations
Figure 11, Figure 12 and Figure 13 illustrate the anticipated action flows between
middleware functions when context changes and a trigger is generated (Figure 11)
and when a trigger is issued and the migration is performed (Figure 12).

7.1 Context change
Figure 11 illustrates the relations between the described middleware components
during a context change and a subsequent issue of a migration trigger.
The sequence leads to a migration trigger. The scenario includes the situation in
which the user is moving around. The user part considers not only the actual user
behaviour but also how it is detected through some technology, e.g. a user
localization infrastructure (through GPS or RFIDs or something else). The user
movement has an impact on the devices available for migration because such
devices should be nearby the current user location. Thus, the user movement event
should be sent to the device discovery, which will update the current list of
devices and services available for migration and send such information to the
context management, which can then send the event of context change to the
trigger manager.

 Thus, the user mobility implies a change in the set of devices available for
migration. This change is detected by the device discovery, a kind of context
provider, which is continuously active, communicating with the context manager,
which is the entity that generates high-level events for the trigger management,
continuously calculating if the context change will result in a migration trigger, as
it happens in the figure.

In general, some context changes may go about unnoticed by the user, and others
may results in a migration trigger. In addition, the trigger management may be
complex, depending on various combinations of events.

Figure 11: Example interactions between middleware functions on context change and
migration trigger

34

7.2 Performing migration
The second example, depicted in Figure 12, illustrates interaction between
middleware components during the actual migration, i.e. reaction to a migration
trigger. This trigger may be automatically inferred by the system or manually
issued by the user, as previously described.

The sequence is initiated upon the migration control function receiving a
migration trigger from the trigger management function. The migration control
function uses a set of support functions to carry out the migration. In this example
the function handling migration policies, security, sessions and network are used
during the migration to allow for the application flows to be migrated. As a later
step in the migration, several communication/message flows of a running
application might be in need of synchronization. This is illustrated by the Sync
function referring to the clock and flow synchronization functions. Descriptions of
all of the applied functions can be found in section 6.

7.3 Performing adaptation and reconfiguration
In addition to migration, a trigger can also initiate adaptation of the application
logic to the target device. That includes adaptation to available resources, user’s
needs and other aspects. Figure 13 illustrates the interaction between involved
middleware components during the adaptation and reconfiguration phase.
Depending on the application, different kinds of trigger are needed. Therefore, the
reconfiguration control unit registers for specific events at the trigger management
component specific for each running application. The reconfiguration control also
has to be aware of available component instances which can be used for
reconfiguration, e.g. for deciding which of two instances of a component to use in
the current situation. Therefore, it registers for according events at the component
repository. These events can also initiate reconfiguration and adaptation of the
application. The use of both types of adaptation triggers is shown in Figure 13. In
both cases, the reconfiguration control (see Section 5) may change connections
between component instances, replace instances by other more appropriate
instances in the current situation or reconfigure single component instances by
adapting their behaviour to the current usage context. The gathering of context is
done by accessing the context manager during the reconfiguration and adaptation
phase. This context information is then used to find the best configuration and
adaptation actions in the current situation.

35

Figure 12: Example interaction between middleware functions during migration

Figure 13: Example of interaction between reconfiguration components and the trigger

management for triggering logic/application reconfiguration

36

7.4 Example of a Server-Supported Migration Scenario
In this section we analyze a scenario in which a user is interacting with a Web
application through a browser on a computer (PC). Differently from the first
example, in this case we consider a migration triggered on explicit request of the
user.

In this scenario realisation the application is migrated from the PC to a PDA
through the use of a migration server, which is one of the possible solutions for
the OPEN Platform (as it has been highlighted in Figure 3) and the one currently
implemented in the migration prototype developed at ISTI. However, further
developments of the prototype could also foresee other solutions, different from
the server-based one. In any case, it is worth pointing out that, since this is an
example of a networking-based migration scenario, further networking scenarios
will be further elaborated in next D3.1.

At first, there is a device discovery phase, which allows the migration
environment to identify the devices available for migration. If we consider the
access to a web application from a desktop system, such an access could go
through an intermediate server, which also has proxy capabilities. Before passing
the requested Web page to the client, the server includes, within the page
retrieved from the Application Server, a JavaScript excerpt whose purpose is
accessing the state of the page at migration time, so that such a state can be
preserved for being used afterwards. In order to be migration-enabled, the devices
should run a migration client, which is used for supporting the device discovery
phase (through such a thin client the devices announce their presence to the
others) and allow the user to select the target device from the list of devices
currently available and then trigger migration. When the migration is triggered,
the script inserted sends the state of the Web application, which depends on the
user interactions to the migration server. Then, the migration server creates an
adapted version for the target device (a PDA in our scenario), associates the state
to the corresponding elements of the target version, generates the corresponding
implementation and activates it at the point the user left off in the source device.

In the sequence diagram shown in Figure 14 we depict the communication flows
occurring between various migration components during a Desktop to PDA
Migration. The process has been divided into different phases, distinguished into
”Service Use” (which refers to a normal use of the service by the user), ”Pre
Migration” (which are all the operations that have to be carried out for preparing
the actual migration), ”Migration” (the step in which the migration is actually
carried out), ”Post-Migration” (all the actions that might be done just after
migration, before coming back to a normal use of the service).

The scenario starts with a user who is currently using a service through a desktop
platform. The module dedicated to discovery the devices available in the current
environment and to update the list of devices accordingly together with
information regarding their characteristics (the ”Discovery mgt” in Figure 14),
discovers in this case a desktop and a PDA. At a certain point the user asks for
migration, then a migration trigger is sent by the currently used platform (desktop)

37

to the ”Migration Mgt” module. Then, the currently saved state is sent to the
migration server, which also asks to the Discovery module information about the
capabilities of the target device involved in the migration. Afterwards, the
reconfiguration of the application logic, the adaptation of the user interface to the
new device and the association of the state to the adapted interactive application
are carried out, and the reconfigured result is sent to the target device (the PDA in
this case) for being loaded. Then, in the Post Migration phase there is a step in
which the application device currently running in the source device is terminated,
so that the user can continue the interaction with the service through the new
device.

Figure 14. Sequence diagram describing the interaction between middleware migration
functions for device discovery, migration triggering, state preservation and application
logic reconfiguration

38

8 Conclusions and Future Work
In this deliverable we presented our first proposal for the OPEN Service Platform
architectural framework. After describing the main concepts and phases involved in
the migration process, we specified the overall architectural framework of the
Migration Service Platform (MSP), with a high level design of the basic
components and the interfaces between them. Finally, we outlook some scenario
realisations in order to better describe how the middleware functions work together
in more concrete examples.

The architecture described in this deliverable is a first draft and it will be subject
to change in the continuation of the project. More in detail, further modifications
to the various architectural parts will be elaborated and documented in a number
of planned deliverables: D2.1 (“Early infrastructure for migratory interfaces”),
D2.2 (“Document about architecture for migratory user interfaces “), D3.1
(“Detailed Network Architecture”), D4.1 (“Solutions for application logic
reconfiguration”) and D4.2 (“Migration service platform design”). Such
modifications will also be taken into account for elaborating a revised version of
Deliverable D1.2, which has been planned for Year 2.

39

9 References

[GSS+02] Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P. Project Aura:
Toward Distraction-Free Pervasive Computing. IEEE Pervasive
Computing, Vol 21, No 2 (April-June 2002), 22-31.

[PSS08] F. Paternò, C. Santoro, and A. Scorcia, Preserving Rich User
Interface State in Web Applications Across Various Platforms,
Proceedings EIS’08, Springer Verlag.

[Dey00] A. K. Dey, “Providing Architectural Support for Building Context-
Aware Applications”, PhD thesis, Georgia Inst. Tech., USA, Nov.
2000.

[OPEN D1.1] Requirements for OPEN Service Platform, OPEN Consortium, June
2008, Faatz, A. and Goertz, M. (eds.)

[OPEN D3.1] Detailed network architecture, OPEN consortium, Feb 2009

[MBD2.3.1] Martin Jacobsen, et.al., Specification of PN networking and
security components, Deliverable 2.3.1, December 2006,
MAGNET Beyond, IST-027396

[MBD2.3.2] Martin Jacobsen, et.al., PN secure networking frameworks,
solutions and performance, Deliverable 2.3.2, June 2008,
MAGNET Beyond, IST-027396

[NKA+07] D. Niebuhr, H. Klus, M. Anastasopoulos, J. Koch, O. Weiß, A.
Rausch. “DAiSI – Dynamic Adaptive System Infrastructure”.
IESE-Report No. 051.07/E, Fraunhofer Institut für Experimentelles
Software Engineering, 2007

[Bauer06] M. Bauer, R.L.Olsen, M. Jacobssen L. Sanchez, J. Lanza, M.
Imine, N. Prasad, Context Management Framework for MAGNET
Beyond, IST Summit 2006, Mykonos, Greece, 2006

[Sanchez06] L. Sanchez, J. Lanza, M. Bauer, R. Olsen, M. Girod-Genet, "A
Generic Context Management Framework for Personal Networking
Environments", Proceedings from 1st Workshop on Personalized
Networks, San Jose (CA), July 2006

[UML] Object Management Group. UML 2.1 Superstructure and
Infrastructure Specifications. November 2007.

