
IST PROGRAMME

Action Line: IST-2002-8.1.2

End-User Development

Empowering people to flexibly employ advanced in-
formation and communication technology

Contract Number IST-2001-37470

D1.1+D1.2

Research Agenda and Roadmap for EUD

Editors:
Fabio Paternò (ISTI-CNR),
Markus Klann (FhG-FIT),

Volker Wulf (FhG-FIT)

Summary

This document presents a roadmap and a research agenda for the end-user develop-
ment field. The goal is to identify promising action lines in this area for the EC VI
Framework and the broader scientific community.

December 2003

IST-2001-37470, EUD-Net Network of Excellence

Table of contents

Executive Summary __ 3

1. Background for Research in End-User Development__________________________ 5
1.1 Motivations__ 5
1.2 Definition ___ 8
1.3 Requirements __ 9
1.4 Dimensions for EUD ___ 11

2. Classification of Research Lines for End User Development___________________ 12

3. Promising Research Lines __ 13
3.1 Natural Development __ 13
3.2 Multimodality __ 14
3.3 Authoring Environments for Ubiquitous Computing __________________________ 15
3.4 Component-based Development ___ 17
3.5 Patterns ___ 18
3.6 Cognitive Support for End User Development________________________________ 18
3.7 Architectural Concepts for Flexible Systems _________________________________ 19
3.8 Application domains (home applications, …)_________________________________ 19
3.9 Cooperative End-User Programming _______________________________________ 21
3.10 Flexibilizing Software Development _______________________________________ 21
3.11 Tailoring Cooperation __ 22
3.12 Software Engineering for End Users_______________________________________ 22

4. Roadmap for Research in End User Development ___________________________ 24

Conclusions__ 25

Acknowledgements __ 26

References___ 27

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 2/29

IST-2001-37470, EUD-Net Network of Excellence

Executive Summary

Most European citizens have become familiar with the basic functionality and interfaces
of computers. However, while some substantial progress has been made in improving the
way users can access interactive software systems, developing applications that effectively
support users' goals still requires considerable expertise in programming that cannot be
expected from most European citizens. Thus, one fundamental challenge for the coming
years is to develop environments that allow people without particular background in pro-
gramming to develop their own applications or modify existing ones, with the ultimate
aim of empowering people to flexibly employ advanced information and communication
technologies, especially in the framework of upcoming ambient intelligence environ-
ments.

We think that over the next few years we will be moving from easy-to-use (which has yet
to be completely achieved) to easy-to-develop interactive software systems. Some studies
report that by 2005 there will be 55 million end-user developers, compared to 2.75 million
professional users [BAB00]. End-User Development (EUD) in general means the active
participation of end-users in the software development process. In this perspective, tasks
that are traditionally performed by professional software developers are transferred to the
users. Thus, the users need to be specifically supported in performing such tasks. In par-
ticular, end-user development can be defined as a set of methods, techniques, and tools
that allow users of software systems, who are acting as non-professional software devel-
opers, at some point to create or modify a software artefact.

End User Development has an impact at various levels, and future research has to address
all of them:

• Programming paradigms and languages: different approaches to programming can
have an impact on how easily end-users can access and use software. Many for-
malisms exist, which were all invented by computer scientists to serve their needs
for describing the various situations they encounter. In such activities, computer
scientists are both the providers and the users of the formalisms. All such notations
have an underlying programming paradigm, which is a model of how programs
will be interpreted and executed by the computer. Logical programming, func-
tional programming, object-oriented programming, parallel programming, spread-
sheets, script languages are examples of such paradigms, all of which need to be
revised to support EUD.

• Methods, environments and tools: they should be revised in order to allow people
with little background in programming to be able to create or modify software ar-
tefacts. This requires environments able to provide natural support for the tasks
that users intend to perform, and to effectively represent and manipulate the ob-
jects necessary to this purpose. In addition, EUD calls for a better integration of
development and documentation.

• Architectural issues: there are aspects important for end user development that can
have an impact on the underlying software architecture, for example, when ad-
dressing flexible environments supporting multiple-user cooperation.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 3/29

IST-2001-37470, EUD-Net Network of Excellence

• Interaction techniques: new techniques developed in the human-computer interac-
tion field for representing and analysing large information spaces can provide
beneficial results in creating easier to use development environments.

• Application domains: each domain has its own language and set of important con-
cepts. The domain experts would like to have environments where they can di-
rectly manipulate such concepts through familiar metaphors without having to
learn computer-oriented languages.

• Organizational and social issues: the work context can have an impact on how
people organise the development process. Users of end-user programmable and tai-
lorable systems (e.g., CAD systems, spreadsheets) will often be organised (directly
or indirectly) in help networks and local hierarchies. The goal of such organisation
is to help those who are not programmers to modify their applications or to create
new ones. Common middle-level roles in such an organisational structure are "su-
per users". These are experts in the field who are also knowledgeable about end-
user programming and tailoring. In addition, they need to be sociable and willing
to help other people to get their job done.

A number of application domains seem particularly amenable to end user development
environments. An example is given by home applications. The home has the potential to
become one of the most popular application domains for information technology. Thus, it
may be the home where the need for end user development will be particularly important.
First research contributions in this area have been put forward in order to support
downloading logical descriptions of the state and functioning of appliances and then gen-
erating the corresponding interfaces for controlling such appliances. Another particularly
interesting application domain is the design environment, usually supported by CAD sys-
tems, in manufacturing enterprises, with evident impact on improving financial/quality
aspects of their development process. In the scientific domain there is a great deal of inter-
est in end user development, for example in biology, in order to allow scientific experts to
tailor applications to their information needs. Enterprise resource planning (ERP) is one
of the most important software areas for the European industry. Recently, leader compa-
nies in the market have realised the importance of end user concepts that allow various
types of users of large ERP software to modify it in order to obtain systems more suitable
for their actual needs. Over the past years, we have seen a significant change in users’ ex-
pectations of business applications. Traditional ERP applications were very much centred
around one single functional area, and the dominant user scenarios were data entry, report-
ing, and ERP work flow. Such a simplified user model is not sufficient for modern busi-
ness solutions. In these systems, the user is an active knowledge worker who needs com-
munication and analysis tools, content management, and ad-hoc collaborative workflow
and the ability to tailor the system to her own needs. At the same time, it is important to
dramatically simplify the customisation process and enable business experts and end users
to modify the software themselves without the need for IT consultants.
In parallel, the ever-increasing introduction of new types of interactive devices poses new
challenges for developers, even end user developers, who have to create or modify appli-
cations taking into account the features of the devices that can be used to access the func-
tionality, which may range from small, handheld devices to large, wall-size, interactive
areas.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 4/29

IST-2001-37470, EUD-Net Network of Excellence

1. Background for Research in End-User Development

1.1 Motivations

The widespread penetration of interactive software systems has raised an increasing need
for better environments for building applications. Most European citizens have become
familiar with the basic functionality and interface of computers. In addition, some results
from the research in human-computer interaction and usability have started to penetrate
certain product markets, thus improving the levels of usability.

However, while some substantial progress has been made in improving the way users can
access interactive software systems, developing applications that effectively support users'
goals still requires considerable expertise in programming that cannot be expected from
most European citizens. Thus, one fundamental challenge for the coming years is to de-
velop environments that allow people without particular background in programming to
develop their own applications or modify existing applications, with the ultimate aim of
empowering people to flexibly employ advanced information and communication tech-
nologies, especially within the upcoming ambient intelligence environments.

We think that over the next few years we will be moving from easy-to-use (which has yet
to be completely achieved) to easy-to-develop interactive software systems. Some studies
report that by 2005 there will be 55 million end-user developers, compared to 2.75 million
professional users [BAB00]. This is a multidisciplinary area that needs contributions from
Human-Computer Interaction, Software Engineering, Computer Supported Cooperative
Work, Artificial Intelligence, Ethnography, Cognitive Psychology and others.

From the area of technology development, see Figure 1, we learn that, amongst other per-
formance indicators, the storage capacity and connectivity bandwidth increase rapidly. By
having more storage and high bandwidth it becomes possible to deliver large amounts of
content to a wide variety of devices. This could bring forward the situation of content
overload to consumers. In terms of storage capacity for example, we see the emergence of
high capacity optical storage media (today up to 22 Giga Byte) small enough to be inte-
grated in many devices including portable systems. Connectivity is being supported by
many different standards going from short-range wireless (low power) to full in-home
networks for streaming high quality multimedia content. In order to cope with this poten-
tial content overload, more functionality (such as different query and content management
methods) will be introduced. The danger of this approach is that users will spend more
time on operating devices than actually enjoying the content they want.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 5/29

IST-2001-37470, EUD-Net Network of Excellence

Figure 1: Moore's law for trends in storage, CPU, memory, wireless connectivity and battery technol-
ogy (see [D03]).

In order to address such issues, interactive systems should have some form of intelligence.
However, given the fundamental need of users to be in control, end-user development be-
comes important to provide users with the ability to modify or program the behaviour of
their intelligent environment. This is important for all the companies whose business is
devoted more towards the mass market, an area where programming skills are not so ex-
tended. So, in order to achieve the goal, the devices must be easy and fast to personalize,
and they must provide facilities to manage both push and pull information, such as filters.

In addition, despite advances in mobile device technology and wireless infrastructures
(e.g. UMTS, GPRS, Wireless LANs, and Bluetooth) European manufactures of the latest
mobile devices and network providers are unable to exploit consumer and business to
business opportunities. Inherent to this deficiency is the issue of application development,
which is costly, complex as well as lacking usability know-how in the technol-
ogy/application domain.

This situation is depicted in Figure 2, showing that the individual productivity to create
software increases substantially slower than the performance/cost provided by hardware
and the amount of software present in products, hence leading to a productivity gap.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 6/29

IST-2001-37470, EUD-Net Network of Excellence

1995 2000 2005 2010

1

10

100 Performance/Cost

Hard technology

Amount of Software in Products

Individual SW productivity

Productivity Gap

1995 2000 2005 2010

1

10

100 Performance/Cost

Hard technology

Amount of Software in Products

Individual SW productivity

Productivity Gap

Figure 2: Software Productivity Gap (SO 2.3.2.3 / IST)

 EUD can be a strategic solution to bridge the productivity gap by allowing end users to
directly implement some additional features important to accomplish their tasks.
Given that users’ tasks, users’ qualifications, and organizational environments are differ-
entiated and dynamically changing, there is a big need to make software flexible within its
application context. EUD will provide non-professional programmers with the tools to
adapt software within its application context. Since the European work force is well edu-
cated in comparison to most international competitors, one can assume that European
workers will be particularly able to make use of EUD tools and methods to improve their
business processes. EUD will lead to better work processes by making the software more
flexible during use and thus enabling innovative non-anticipated appropriation processes
[OH97], [PW99]. Moreover, EUD supports processes of Integrated Organization and
Technology Development where the introduction of a highly flexible software is con-
nected to processes of organizational and personnel development [WR95]. So EUD can be
seen as a key enabler for the development of innovative IT-based business processes and a
higher productivity of labour.
Moreover, EUD is important to the development of the information society on a political
level. The information society is characterized by the fact that computer networks will be-
come the leading media. Other traditional media will be integrated on these networks.
However, the creation of content and the modification of the functionality of these infra-
structures is difficult for non-professional programmers. Therefore, in many sectors of so-
ciety it is possible to find a division of labour between those who produce and those who
consume. This development has the negative social effects of exclusion and deactivation.
Gerhard Fischer calls these phenomenon “gift wrapping culture”. In dealing with this phe-
nomenon, EUD allows citizen to actively participate in the information society.

Some end-user development oriented techniques have already been adopted by software
for the mass market such as macros in MS-Word or some programming-by-example tech-
niques in MS-Excel. However, we are still quite far from their systematic adoption. The
interactive capabilities of new devices have created the potential to overcome the tradi-
tional separation between end users and software developers. New environments able to
seamlessly move between using and programming (or customizing) can be designed.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 7/29

IST-2001-37470, EUD-Net Network of Excellence

One of the goals of end-user development is to reach closeness of mapping: as Green and
Petre [GP96] said: "The closer the programming world is to the problem world, the easier
the problem-solving ought to be… Conventional textual languages are a long way from
that goal". Even graphical languages often fail to provide immediate understanding of rep-
resentations for the developers. The need for end user development is clearly emerging.

1.2 Definition

End-user development means, in its most general sense, the active participation of end-
users in the software development process. In this perspective, tasks that are traditionally
performed by professional software developers are transferred to the users. They need to
be specifically supported in performing these tasks. The range of active user participation
in the software development process can range from providing information about require-
ments, use cases and tasks, including participatory design, to end-user programming. In
other words, EUD also means to provide end-users with the possibility of creating or
modifying a software artefact when the system is already released and people are using it.
At the first EUD-Net workshop held in Pisa a definition of End User Development was
identified: “End User Development is a set of activities or techniques that allow people,
who are non-professional developers, at some point to create or modify a software arte-
fact”.

This definition has been sharpened in the network discussions by a slight but important
modification: “End User Development is a set of methods, techniques, and tools that allow
users of software systems, who are acting as non-professional software developers, at
some point to create or modify a software artefact”. The new definition aims to highlight
that we focus on users of software systems and that non-professional developer is a role
rather than a definitive classification. Thus, it can happen that the same person in different
contexts can act in some cases as professional developer and in others as a non-
professional developer.

As it has been pointed out by Costabile et al. [CFL03], two types of end-user activities can
be identified:

1. Activities that allow users, by setting some parameters, to choose among alterna-
tive behaviours (or presentations or interaction mechanisms) already available in
the application; such activities are usually called parameterisation or customisation
or personalization.

2. Activities that imply some modification through any programming paradigm, thus
creating or modifying a software artefact. Examples of programming paradigms
are: programming by demonstration, programming with examples, visual pro-
gramming, macro generation, script languages.

Mørch [M97] has discussed that the second group of activities can be further divided into
integration and extension. Integration goes beyond customisation by allowing users to add
new functionality to an application, without accessing the underlying implementation
code: users tailor an application by linking together predefined components within or
across the application. Extension refers to the case in which the application does not pro-
vide, by itself or by its components, any functionality that accomplishes a specific user

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 8/29

IST-2001-37470, EUD-Net Network of Excellence

need, thus adding a new functionality generates a radical change in the software. In the
above categorization, there are instances that cut across categorical boundaries.

Examples of activities belonging to the first type (according to Costabile et al.’s classifica-
tion) are:
- Parameterisation. It is intended as specification of unanticipated constraints in data

analysis. In this situation, observed very often, the user wishes to guide a computer
program by indicating how to handle several parts of the data in a different way; the
difference can just lie in associating specific computation parameters to specific parts
of the data, or in using different functionalities available in the program.

- Annotation. The users write comments next to data and results in order to remember
what they did, how they obtained their results, and how they could reproduce them.

Examples of activities belonging to the second type are:

- Modelling from the data. The system supporting the user derives some models from
observing interaction data.

- Programming by demonstration. Users show examples of property occurrences in the
data and the system infers from them a (visual) function.

- Indirect interaction with application objects. As opposed to direct manipulation, a
command language can be provided to script objects.

- Incremental programming. It is close to traditional programming, but limited to
changing a small part of a program, such as a method in a class. It is easier than pro-
gramming from scratch.

- Extended annotation. A new functionality is associated with the annotated data. This
functionality can be defined by any technique previously described

We believe that EUD more properly involves the second set of activities (according to
Costabile et al.’s classification) because in the first set only use of software is actually per-
formed: no real modification is made on the software when the user can just enter infor-
mation according to predefined formats.

1.3 Requirements

Software practices – including use, design, development and maintenance – seem to
change character around adaptable systems. As tailoring interfaces allows the user to
change the program, the border between use and design gets blurred. As use, tailoring, ad-
aptation, maintenance and development activities get intertwined, they have to be co-
ordinated in a different way. Traditional borders defining a project in this manner are often
too rigid. Applications must be tailorable, adaptable by their users to meet the changing
requirements. End-user development also means the adaptation and further development
of software in response to individual preferences, changing co-operative work practices as
well as developing business practices. This may in the future be reconceptualised as long-
term, evolutionary application development.

Software is more and more used in co-operative settings mediating between different work
practices and integrating a range of data sources. Especially in so-called data centred busi-
nesses – in such diverse areas as telecommunication, municipal service provision, banking
and insurance – software becomes part of a technical infrastructure intrinsically interlaced

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 9/29

IST-2001-37470, EUD-Net Network of Excellence

with the work and business practices it supports. Neither can be changed without changing
the other as well.

Model-based approaches can be useful for end-user development because they allow peo-
ple to focus on the main concepts (the abstractions) without being confused by many low-
level details. Through meaningful logical abstractions it is also possible to support partici-
pation of end-users already in the early stages of the development process. Optimally,
model-based software development is to be combined with prototype-oriented develop-
ment. Like programming, modelling requires the availability of suitable and usable lan-
guages and supporting tools to be effective. Visual modelling languages have been identi-
fied as promising candidates for defining models of the software systems to be produced.
UML and related tools such as Rationale Rose are the best known examples. They inher-
ently require notions of abstractions and should deploy concepts, metaphors, and intuitive
notations that allow professional software developers, domain experts, and users to com-
municate ideas and concepts. This requirement is of prominent importance if models are
not only to be understood, but also used and even produced by end users. Language us-
ability needs to be empirically analysed.

An important issue is the integrated description of system functionality and user interac-
tion. Fundamentally, this calls for identifying task allocation between the user and the sys-
tem and relating user and system views in an integrated design process, i.e., integrated
modelling of user interface and system functionality. Nevertheless, separation of aspects
to be addressed within the integrated model needs to be achieved by defining (role-
oriented) partial models as views of the overall model. This raises issues of consistency
management in models.

Naturally, end-user development requires that the tasks intended to be performed by end
users have to be addressed and solved beforehand on the more technical, underlying lev-
els. For example, dynamic reconfiguration of system components (e.g. customisable inter-
operability) by end users must be supported by underlying component models and system
architectures that technically enable this interoperability and component reuse. Only after
these operations have been realized on a technical level, can such tasks be effectively per-
formed by end users on a more abstract level.

The trade-off between expressiveness and usability is a general concern in the area of end-
user development. For example, there are several direct manipulation environments that
allow easy assembling of applications. Simple functionality can thus be easily constructed
using the graphical interface. However, more sophisticated functionality and complex be-
haviour that go beyond simple applications or early prototypes require the use of a script-
ing language that is typically integrated with the visual elements of the graphical user in-
terface, thus requiring specific programming skills.

End-user development has some important effects on other, more technical levels of soft-
ware. Administration of customisable systems is far more complex than dealing with
mostly standardized configurations and implementations. Component-based development
raises issues of standardized interfaces, interoperability, etc. Adaptability in general re-
quires ensuring program correctness and not invalidating other required properties. There-
fore, adequate means for defining semantics and analysing system properties in the pres-
ence of adaptation are needed to restrict possible modifications.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 10/29

IST-2001-37470, EUD-Net Network of Excellence

Tailoring interfaces have to present the flexible aspects and their manipulation in a way
that is comprehensible for their users. The design of the tailoring features should provide
the user with a gentle slope of complexity, so that on the one hand, beginners can feel safe
making simple changes, while experts or super users, on the other hand, have powerful
tools to implement their designs. Additional support comprises help systems, the possibili-
ties of documenting the results of tailoring and the domain-specific test features.

1.4 Dimensions for EUD

Sutcliffe and others [SLM03] have identified three dimensions to describe EUD environ-
ments (see Figure 3). The first dimension is the scope. Some systems are developed with
the intention of supporting users in a narrow domain of expertise. Programmable queries
on protein structures is an example in BioInformatics. Such applications are task- and do-
main-specific. On the other hand, many EUD environments are intended to be general-
purpose tools that can be applied to a wide variety of problems. In a similar manner to ex-
pert programming languages, EUD systems vary in scope from specific to general.

 Scope

 Representation

 In

itia
tive

Task or Domain
Specific

General Purpose

Abstract

Passive

Active

Concrete

Figure 3: Dimensions of end-user development

The second dimension concerns the representations used for communicating with the user.
Communication may use natural language and natural user actions; alternatively, a more
formal language may be used which the end user has to learn. The modality of communi-
cation is also involved; for instance, instructions might be given by drawing intuitively
understood marks and gestures (e.g. Palm Pilot), or manipulating a set of physical objects
(e.g. turning a set of dials to program a washing machine). More formal communication
can be achieved by symbolic text or diagrammatic languages; the formal syntax might be
spoken, although this is unlikely. This dimension may be described as a range from ab-
stract (non-natural) to concrete (natural) representations. Representations could be as-
sessed for naturalness and other properties such as changeability, comprehensibility, etc.,

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 11/29

IST-2001-37470, EUD-Net Network of Excellence

using cognitive dimensions [GP96]. The key psychological trade-off for the naturalness
dimension is the learning burden imposed on the end user by any artificial language versus
the errors in interpretation that may arise from ambiguities inherent in less formal means
of communication.

System initiative forms the third dimension for EUD. Systems might leave initiative com-
pletely with the user and just provide a means of instructing the machine. At the other ex-
treme, intelligent systems infer the user’s wishes from demonstrated actions or tracking
user behaviour, and then take the initiative to create appropriate instructions or behaviour.
In between are systems that provide users with development tools but constrain their ac-
tions so that only intelligible or appropriate instructions are given. System initiative may
also be mixed (see [KEOW03]), so in Domain Oriented Design Environments [F94], the
system is mainly passive but it does embed critics which take the initiative when the sys-
tem spots the user making a mistake. The dimensions are not completely orthogonal. For
instance, natural communication in English implies some system initiatives in interpreting
and disambiguating users’ instructions, either automatically or by a clarification dialogue.
Further dimensions may be added in the future; for instance, the concepts or subject mat-
ter represented by an EUD environment. The dimensions can be used to assess the psy-
chological implications of different EUD approaches; however, we also need to consider
the effort of development and user motivation.

2. Classification of Research Lines for End User Devel-
opment
End user development has an impact at various levels in the software development:

• Programming paradigms and languages, different approach to programming can
have an impact on how easily end-users can access and use them. Many formal-
isms exist, which were all invented by computer scientists to serve their needs for
describing the various situations they encounter, or to satisfy certain software en-
gineering properties. In that activity, computer scientists are both the providers and
the users of the formalisms. Each of these formalisms has an underlying program-
ming paradigm that is a model of how programs will be interpreted and executed
by the computer. Logical programming, functional programming, object-oriented
programming, parallel programming, spreadsheets, script languages are examples
of such paradigms.

• Methods, environments and tools, should be revised in order to allow people with
little background in programming to be able to create or modify software artefacts.
In addition, EUD calls for a better integration of development and documentation.

• Architectural issues, there are aspects important for end user development that can
have an impact on the underlying software architecture. For example, when flexi-
ble environments supporting multiple-user cooperation are addressed.

• Interaction techniques, new techniques developed in the human-computer interac-
tion field can provide beneficial results in creating easier to use environments.
Then, it would be important to define when each EUD technique can be useful.

• Application domains, each domain has its own language and set of important con-
cepts. The domain experts would like to have environments where they can di-

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 12/29

IST-2001-37470, EUD-Net Network of Excellence

rectly manipulate such concepts through familiar metaphors without having to
learn computer-oriented languages.

• Organizational factors such as the division of labour, pattern of coordination, or
reward schemes have an important impact on how end users organise the devel-
opment process. Organizations should offer sufficient resources and incentives to
end users to encourage their development activities. Important roles in encourag-
ing tailoring activities are "super users", “gardener”, or “local experts”. These ac-
tors are domain experts and also knowledgeable about end-user programming. In
addition, they need to be social and willing to help other people to get their job
done.

• Social issues, users of end-user programmable and tailorable systems (e.g., CAD
systems, spreadsheets) often belong (directly or indirectly) to help networks. These
informal social aggregates support those who are not programmers to modify their
applications or to create new ones. Cultural factors, e.g. a tailoring culture, in-
crease the likelihood for the emergence of these help networks [CH90].

3. Promising Research Lines
In the Description of Work we identified three general research areas as those able to pro-
vide the best ingredients to obtain effective end-user development environments:

 Adaptive, adaptable and innovative interaction techniques. Environments that help
users to interact with their applications by dynamically modifying their behaviour and
functionality while taking into account various aspects: user behaviour, external envi-
ronment, tasks to perform, interaction device and so on.

 Visual modelling and multimedia environments for rapid component development.
High-level environments that allow users to focus on conceptual aspects and then sup-
port rapid prototyping of corresponding user interfaces taking into account the strong
usability limitations of current visual modelling environments such as those based on
UML.

 Cooperative end user programming. Environments that help end users to support each
other in programming, to share their programs and modify shared programs.

While after the network we can confirm the importance of such areas, we are now also
able to provide a more detailed discussion of promising research lines in these areas.

3.1 Natural Development

The work in Myers’ group aims to obtain natural programming [PM96], meaning pro-
gramming through languages that work in the way that people who do not have program-
ming experience would expect. We intend to take a more comprehensive view of the de-
velopment cycle, thus not limited only to programming, but also including requirements,
designing, modifying, tailoring, … Natural development implies that people should be
able to work through familiar and immediately understandable representations that allow
them to easily express and manipulate relevant concepts, and thereby create or modify in-
teractive software artefacts. On the other hand, since a software artefact needs to be pre-
cisely specified in order to be implemented, there will still be the need for environments

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 13/29

IST-2001-37470, EUD-Net Network of Excellence

supporting transformations from intuitive and familiar representations into more precise,
but more difficult to develop, descriptions.

Often the initial model is the result of brainstorming by either a single person or a group.
Usually people start with some paper or whiteboard sketches. This seems an interesting
application area for intelligent whiteboard systems [LM01] or augmented reality tech-
niques able to detect and interpret the sketches and convert them into a format that can be
edited and analysed by desktop tools.

Most end-user development will probably benefit from the combined use of multiple rep-
resentations that can have various levels of formality. The possibility of developing
through sketching can be highly appreciated in order to capture the results of early analy-
sis or brainstorming discussions. Then, there is the issue of moving the content of such
sketching into representations that can more precisely indicate what artefact should be de-
veloped or how it should be modified.

A similar approach is followed when people try to use informal descriptions in natural
language such as scenario descriptions for obtaining more structured representations. An
example can be found in [PM99] where starting from informal scenarios it is shown how
to use the information that they contain to obtain more general task models.

Recent years have seen a large adoption of visual modelling techniques in the software
design process (example of CASE-tools supporting visual modelling languages such as
the UML are Rationale Rose, Together, Magic Draw, Enterprise Architect, Poseidon for
UML), but there are also research environments publicly available such as CTTE
[MPS02]). However, we are still far from visual representations that are easy to develop,
analyse and modify, especially when realistic case studies are considered. The application
and extension of innovative interaction techniques ([BMA01]), including those developed
in information visualization (such as semantic feedback, fisheye, two-hand interactions,
magic lens, …), can noticeably improve their effectiveness.

3.2 Multimodality

The technological evolution is also enabling a wide adoption of multimodality, even in
Web environments. To address multimodality in web-based applications the World Wide
Web Consortium’s Multimodal Interaction Working Group is currently extending and
merging existing web technologies in order to cover different interaction modalities as
well as multiple devices and dynamic device usages. The Multimodal Interaction Frame-
work [MMI-FW] defines the markup languages used in the data flow between the compo-
nents of multimodal applications as well as for the description of concrete interfaces. For
creating interfaces, the Multimodal Interaction Framework discriminates between genera-
tion of output modes, styling them and rendering them on a device. The framework pro-
poses existing standards such as XHTML, SVG and VoiceXML [VXML] as output of the
styling phase, but is not limited to them. When retrieving user input, the framework uses
EMMA [EMMA], a markup language used to represent human input to applications. It is
designed to allow multiple interpretations of the same input and to collect metadata from
input processors for later evaluation. An integration step disambiguates these interpreta-
tions in order to recognize the input in the framework.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 14/29

IST-2001-37470, EUD-Net Network of Excellence

In particular, vocal interaction can play an important role in this respect as well. Support
for vocal interaction is mature for the mass market. Its support for the Web has been stan-
dardised by W3C [A01]. The rationale for vocal interaction is that it enables the develop-
ment of applications suitable for both Internet and wireless communication, it makes prac-
tical operations more natural and faster, and it enables multi-modal applications (graphic
and/or vocal).

There are many potential applications: information retrieval (provide information about
news, sport, traffic, weather, …); e-commerce (order tracking, call centre, financial appli-
cation, …); telephone services (personal voice dialling, teleconference, …); unified
messaging (e-mail systems, personal organizers..); CAD applications, etc.

In this context, the concept of Pragmatic Web by Repenning [RS03] can provide an im-
portant contribution: instead of the traditional “click the link” browser-based interfaces,
agents capable of multi-modal communication might be very useful to provide access to
Web-based information. Agent communication methods include facial animation, speech
synthesis, and speech recognition and understanding. End users will instruct agents to
transform information in highly customised ways. Agents will work together to combine
information from multiple Web pages, access information autonomously or triggered by
voice commands, and represent synthesised information through multi-modal channels.

3.3 Authoring Environments for Ubiquitous Computing

Several years have passed since researchers started to think about ubiquitous computing.
This challenge raises many interesting issues in computer science [W99] providing the
possibility of accessing many types of devices in different environments. One important
issue is how to design and develop interactive applications that can be accessed through
different devices from various environments while preserving usability. A related question
is whether even end users can develop such types of applications.

In a paper on the future of user interface tools [MHP00], the authors indicate that the
wide platform variability encourages a return to the study of some techniques for device-
independent user interface specification, so that developers can describe the input and
output needs of their applications, so that vendors can describe the input and output ca-
pabilities of their devices, and so that users can specify their preferences. Then, the system
might choose appropriate interaction techniques taking all of these into account. The ba-
sic idea is that instead of having separate applications for each device that exchange only
basic data, there is some abstract description and then an environment that is able to sug-
gest a design for a specific device that adapts to its features and possible contexts of use.

In general, model-based approaches can be useful for end-user development because they
allow people to focus on the main concepts (the abstractions) without being confused by
many low-level details. Through meaningful logical abstractions it is also possible to sup-
port participation of end-users already in the early stages of the development process.

For this purpose, there is a need for multi-layer approaches able to map abstract functions
and concepts onto low-level programming constructs. The starting point of a development
activity can often vary. In some cases people start from scratch and have to develop some-
thing completely new, in other cases people start with an existing system (often developed
by somebody else) and need to understand the underlying conceptual design in order to

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 15/29

IST-2001-37470, EUD-Net Network of Excellence

modify it or to extend it to new contexts of use. Thus, a general development environment
should be able to support a mix of forward and reverse engineering processes. This calls
for environments that can support various transformations able to move among various
levels (code, specification, conceptual description) in both top-down and bottom-up man-
ner and to adapt to the foreseen interaction platforms (desktop, PDA, mobile phones, …)
without duplication of the development process.

The developers of UML [OMG] did not pay a lot of attention to how to support the design
of the interactive components of a software system. Thus, a number of specific approaches
have been developed to address the model-based design of interactive systems. Since one
of the basic usability principles is “focus on the users and their tasks”, it became important
to consider task models. The basic idea is to focus on the tasks that need to be supported
in order to understand their attributes and relations. Task models can be useful to provide
an integrated description of system functionality and user interaction. This calls for identi-
fying task allocation between the user and the system, and relating user and system views
in an integrated design process, i.e., integrated modelling of user interface and system
functionality. Then, the development of the corresponding interactive software should be
obtainable through environments able to identify the most effective interaction and presen-
tation techniques on the basis of a set of guidelines or design criteria.

Various solutions have been proposed for this purpose. They vary according to a number
of dimensions. For example, the automation level can be different: a completely automatic
solution can provide meaningful results only when the application domain is rather narrow
and consequently the space of the possible solutions regarding the mapping of tasks to in-
teraction techniques is limited. More general environments are based on the mixed initia-
tive principle: the tool supporting the mapping provides suggestions that the designer can
accept or modify. An example is the TERESA environment [MPS03] that provides sup-
port for the design and development of nomadic applications, which can be accessed
through different types of interaction platforms.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 16/29

IST-2001-37470, EUD-Net Network of Excellence

Figure 4: The TERESA Approach.

The TERESA tool (http://giove.cnuce.cnr.it/teresa.html) offers a valid support to the
multi-context interface realization. The development starts with an analysis of the user
task model. TERESA processes the task model to produce consistent and adapted versions
of the interface according to the features of the device at hand. The output is a fast proto-
type of the final interface for the various devices considered (see Figure 4).

3.4 Component-based Development

Environments for component-based development give another important support in this
respect. Software components and component-based design have received much attention
in the software engineering and application development communities over the past years.
Software components allow systems to be built by starting from high-level reusable build-
ing blocks instead of writing program statements in a general purpose programming lan-
guages. One of the great promises of composition is that it has the potential to be per-
formed at runtime (i.e., when the system is in use). Connecting two components only re-
quires 'glue code' (i.e., a high-level script) that records the connections between the com-
ponents. However, the integration of software components by end-users to make new ap-
plications is far from trivial.

One goal is the provision of effective, interactive, high-level environments that allow us-
ers to focus on conceptual aspects and support rapid prototyping of corresponding user
interfaces. Usability aspects are to be accounted for, and an adequate level of abstraction
should be visually represented. Component-based development e.g. reusing components
and web services (“component engineering and reuse”) and pattern-based development
should be supported by innovative techniques. Such domain-oriented environments should
support end-users in visually designing and developing applications. Design tools are to

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 17/29

IST-2001-37470, EUD-Net Network of Excellence

be complemented by tools for automatic code generation or assembly of applications from
components. Effective visual and/or diagrammatic languages are to be defined that ac-
count for both cognitive dimensions and issues of language engineering.

A critical bottleneck is that end users need to know what interface methods are defined on
the various components and how they must be called to realise the integration of two
components. Interestingly, a model for software component integration is Lego toy con-
struction. Lego provides great flexibility in how two components can be coupled together.
By keeping interfaces (connection points) general, each brick can connect to many other
bricks (of different shapes). This generality is approached in software by method inter-
faces that cater to many combinational needs. However, the cost of generality (advanta-
geous for component developers) is paid at the expense of end-user mastery because the
connection points will often not have intuitive (domain-specific) names and may require
parameters to be specified so that they can be used in many combinations.

3.5 Patterns

There is a growing interest in the possibility of using patterns [GHJV95] in user interface
design, development and evaluation. For example, they can be a good way of capturing
and communicating design solutions that can be reused in many areas [PM97]. In general
terms they can be used for both descriptive and prescriptive purposes. In the former case
they capture a recurrent aspect (it can be a recurrent behaviour or system structure or pres-
entation structure) whereas in the latter case they can be used to indicate a solution for a
recurring problem.

In the end-user development field there are many candidates for their application [ET97],
for example, embodying HCI guidelines as patterns or using patterns for process and or-
ganisation design. In particular, in the identification of high-level environments it is im-
portant to pay attention to patterns of elements that users often need in order to associate
them with high-level constructs.

3.6 Cognitive Support for End User Development

Another aspect to consider is the psychology of programming that indicates what impor-
tant psychological aspects can have an impact on this activity. Whatever formalism or
programming language is used, the underlying paradigm has a great influence on what
programmers can express and with what ease. However, there is little information avail-
able on the cognitive features of programming paradigms. As both users and designers of
those paradigms, computer scientists are usually more interested in exploring the formal
properties of paradigms and formalisms, and the related software engineering issues, than
in understanding why they prefer such or such paradigm. However, it is a fact that para-
digms are more or less easy to learn and apply depending on the task. A better understand-
ing of the underlying cognitive issues would be as important for end-user programming as
a better understanding of the properties of interaction styles is for user interface design.
The graphical programming environment that was provided with the first versions of
Lego's Robotic Invention System is a good example. Its visual language is clear and easy
to manipulate for children.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 18/29

IST-2001-37470, EUD-Net Network of Excellence

If end-user programming is to get a wide audience, it is important that the cognitive prop-
erties of programming paradigms are well known: for what situations are they better
suited? What are their limitations? Otherwise, the industry might create frustration among
users by choosing paradigms that lead them to create programs that they do not understand
well.

Once this understanding has been achieved, it would be important to create critique envi-
ronments able to analyse user support on the basis of its cognitive impact.

3.7 Architectural Concepts for Flexible Systems

The need for flexible environments has implications also at the architectural level. One
example occurs when we consider adaptivity for ubiquitous computing. Adaptive envi-
ronments help users to interact with their applications by dynamically modifying their be-
haviour and functionality while taking into account various aspects: user behaviour, exter-
nal environment, tasks to perform, interaction devices and so on. In this area it is of par-
ticular interest to design applications able to address the many possible use environments,
on-the-fly dynamic configuration of interaction devices and the rapidly increasing avail-
ability of many types of devices (ranging from small phones to large flat displays, includ-
ing embedded computers in cameras, cars...). This development will continue and com-
puters will start to vanish into the environment, and computational power and networking
capabilities will then become ubiquitous.

This engenders the need for context-dependent applications that can be supported by both
adaptive and adaptable techniques. When the system is adaptable it can be tailored (manu-
ally) by the end users to fit their needs, work practices, business goals, etc. The results will
enhance user competence and awareness of the system, allowing for personal adaptations,
with the creation of new functionalities and user interface features. An important aspect is
that adaptations should be as unobtrusive as possible (not interfering with the task itself).
Thus, more work is needed on user modelling and how it can improve efficiency and ef-
fectiveness in end-user programming.

Systems will by then be organised in intelligent environments that require new interaction
metaphors and methods of control. Well-known explicit interaction devices, such as
mouse and keyboard are not necessarily available, rendering user interfaces that rely on
them inappropriate. Beside more natural interaction techniques (e.g. speech and gesture),
mobile and static sensors will be used in intelligent environments to support implicit user
interaction.

One of the main challenges for the success of ubiquitous computing is the design of per-
sonalised user interfaces and software that supports easy access to relevant information
and that is flexible enough to handle changes in user context and availability of resources.

3.8 Application domains (home applications, …)

A number of application domains seem particularly suitable for end user development en-
vironments. An example is given by home applications. In their homes people will interact
with more and more electronic devices. This means that the house potentially can become
one of the most popular applications for information technology. Thus, it can be a domain
where the need for end user development will be particularly important. First research

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 19/29

IST-2001-37470, EUD-Net Network of Excellence

contributions in this area have been put forward. An example is PUC (Programmable Uni-
versal Controller) [NMH02]: a system that supports downloading logical descriptions of
appliances’ states and functions and then generation of the interface for controlling such
appliances. However, this approach does not allow end users to change the resulting inter-
faces.

Another particularly interesting application domain is certainly the design environment,
usually supported by CAD systems, in manufacturing enterprises with evident impact on
improving financial/quality aspects of their development process. Designers as end-users,
who have deep knowledge of their specific environment and that are not professional de-
velopers, must be supplied with visual development tools in order to formalise 'program-
matic' solutions to their needs. In the scientific domain there is a lot of interest in end user
development. For example in biology, experience acquired at the Pasteur Institute during
several years indicates that in the field of biology software there are many local develop-
ments in order to deal with daily tasks, such as managing data, analysing results, or testing
scientific ideas. Moreover, it is worth mentioning that many biologists have no or very
limited programming skills, and yet feel the need of modifying the application they use to
better fit their needs.

ERP is one of the most important software areas for the European industry. Again, leading
companies in the market have recently realised the importance of end user concepts that
allow various types of users of large ERP systems to modify the software in order to ob-
tain systems more suitable for their actual needs. Over the past years, we have seen a sig-
nificant change in the expectation of business applications. Traditional ERP applications
were very much centred around one single functional area and the dominant user scenarios
were data entry, reporting, and ERP work flow. This simplified user model is not suffi-
cient for modern business solutions like Customer Relationship Management, Human
Capital Management, Knowledge Management, and Supplier Relationship Management.
In these systems, the user is an active knowledge worker who needs communication tools,
analytics, content management, and ad-hoc collaborative workflow and the capability of
tailoring the system to her own needs. At the same time, the total cost of ownership (TCO)
of ERP software becomes the main competitive argument. TCO can only be reduced by
dramatically simplifying the customisation process and by enabling business experts and
end users to modify the software themselves without the need of hiring IT consultants or
IT-administrators. Already today, Enterprise Portals offer the personalization or creation
of custom-made web pages and reports. Last but not least, companies such as SAP see a
shift into a service-based architecture of business applications that may result in a new ap-
plication development paradigm in which traditional coding is replaced by orchestration
of existing enterprise services. Service composition including generation of User Inter-
faces may become an activity of business experts using simplified development environ-
ments with pre-packaged semantics. Considering these changes in the user model of ERP
software, such companies see an increasing relevance of End User Development within
their products.

Another application domain is that related to systems supporting data intensive businesses
like telecommunication, e-government or banking. Computer applications become inte-
grated in infrastructures connecting different work practices within and across organisa-
tional borders. The flexibility of such infrastructures is of strategic importance when de-

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 20/29

IST-2001-37470, EUD-Net Network of Excellence

veloping new services. Often the need to redevelop part of the computer support to ac-
commodate business or organisational development prohibits the development at all. Tai-
lorable systems and domain specific end user development provide a competitive advan-
tage.

A survey questionnaire administered to several parties, both from academia and industry,
also outside EUD-Net, indicated that office, home, and research are considered the most
promising application domains for EUD [CP03]. Other application domains, not listed in
the questionnaire, were also pointed out: education (indicated by most people), decision
analysis, and medical domain.

3.9 Cooperative End-User Programming

Cooperative end-user programming involves environments that help end users to support
each other in programming, to share their programs and modify shared programs. Given
the fact that users typically have very different skills and interests in tailoring or pro-
gramming, there are many different divisions of labour with regard to these activities.
Therefore, it is important to provide technical features which support cooperative end-user
programming. An important aspect of this is to develop annotation and manipulation tools
that act on partial designs, allowing users to customise software directly in individual or
cooperative working environments. In some cases it will also be important to consider that
the cooperation will occur across groups of people with various levels of expertise. There
are two types of cooperation in cooperative EUD: cooperation among end-users them-
selves and cooperation between developers and end-users. In order to perform a local ad-
aptation of some software system, local developers need to know something about its de-
sign and in that sense they have an "indirect communication" or cooperation with devel-
opers. Optimally, from an EUD perspective, a direct communication link would be pro-
vided between developers and end-users, but this is not often possible (expensive, inacces-
sible) and instead the communication becomes indirectly supported by intermediate repre-
sentations [MM00]. In systems that have undergone several versions of local adaptations
the cooperation may return to cooperation between end-users (as local developers).

3.10 Flexibilizing Software Development

End-user development and tailoring changes the temporal, personal and organisational
borders between design, development and use. The use of software systems will interlace
with adaptation and further development by both domain experts and software engineers.
Agile methods [C02] address similar issues. The agile approach focuses on delivering
business value early in the project lifetime and being able to incorporate late-breaking
changes in requirements by accentuating the use of rich, informal communication chan-
nels and frequent delivery of running, tested systems, all the while devoting due attention
to the human component of software development. Proponents of the agile approach say
that these practices lead to more satisfied customers and a superior success rate of deliver-
ing high quality software on time.

End user development can be expected to have a strong impact on software engineering as
it requires agility of development methods, that is to say methods that are more people
oriented than process oriented and emphasize flexibility and adaptability over full descrip-
tion.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 21/29

IST-2001-37470, EUD-Net Network of Excellence

3.11 Tailoring Cooperation

Tailorable systems provide users with the possibility of adapting existing system function-
ality at runtime. This is meant for non-professional IT-people, since they are the foremost
experts on their own work, in order for them to adapt computer support to fit their specific
needs and the dynamics of the workplace. Tailoring in such contexts is itself a cooperative
activity [TB94]. Changes must be deliberated before any implementation can take place,
fit with the existing software design and be accepted in the joint workplace. Tailored arte-
facts and programs are likely to be shared [HK91], but this is no panacea and requires
specific consideration by developers of tailorable systems. The technique of sharing soft-
ware artefacts has already proven itself in developer communities (e.g. open source devel-
opment). However, for this to be a success in non-professional user communities, it re-
quires the end user developers to document their contributions, such as with annotations
and design rationale. Also, mechanisms have to be provided to find and access appropriate
artefacts, such as naming and classification conventions, access rights and adequate views.
The trustworthiness of a given artefact must be accessible to users by way of e.g. learning
about the artefact’s creator or its previous history of use. The possibilities and limitations
of tailorability have to be designed and presented in a way that is comprehensible not only
for computer professionals, but also for end users [MM00], and the design of the tailoring
features of an application must be adapted not only with the system’s user interface, but
also with the use, technical and developmental contexts [DL03].

3.12 Software Engineering for End Users

The definition of end-user development is based on the differences between end users and
professional programmers and software engineers. There are differences in training, in the
scale of problems to be solved, in the processes, etc. However, there are some similarities.
Some of those similarities are to be found in the life cycle of the developed software arte-
facts. For instance, managing the successive versions of a piece of software will most
probably become a problem for end users. Version management is already a problem with
word processor documents. Reports or letters are often written in several phases: a busi-
nessman will write successive versions of a contract and has it proofread by all parties; a
home user will reuse the same letter year after year when sending his or her tax report, and
just changes the figures in the letter. Smart or appropriately educated users learn a simple
technique aimed at helping them manage the successive versions: assigning a number to
each version.

However, one cannot expect an end user to apply the techniques provided by the software
engineering field. Software engineering methods and tools require knowledge of concepts
and techniques that end users do not have. They imply the use of methods and tools that
require specific training. They probably consume more time than an end user is willing to
afford, etc. In addition, not all problems from software engineering are equally important
for end users: team development techniques are most probably beyond end users’ needs.
Consequently, an interesting line of research consists in identifying new sets of techniques
and tools that would be the counterpart of software engineering for end users: software
crafting.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 22/29

IST-2001-37470, EUD-Net Network of Excellence

The following research directions are fertile for end-user software development:

- Determining what theoretical and empirical studies of the problems addressed by soft-
ware engineering can be transposed to end user development, as well as why and how.

- Studies to identify possibly existing problems that are specific to end user develop-
ment and are thus not addressed by software engineering

- Research on methods and tools that would address the previously identified problems
in ways that are suitable to end users: "lightweight methods", tools to support them,
and appropriate user interfaces taking into account end-users tasks and activities.

For example, debugging should be made easier in end user development given that it is a
phase that requires a lot of effort. More generally, software engineering is traditionally
concerned with the creation and modification of software artefacts. End-user development
has basically the same objective but with the users being developers. Thus, the central
question of software engineering issues in EUD is how EUD relates to software engineer-
ing. This question also refers to the distinction of end-user developers on the one hand and
software engineers and professional programmers on the other hand in the definition of
end-user development coined during the network discussions. Therefore, EUD research
that is oriented towards software engineering first has to examine the interrelationships of
end-user development and software engineering. Interesting lines of future research can
then be how software engineering practices can be adapted and applied to facilitate end-
user development, and, vice versa, what impact end-user development has on the software
engineering discipline. These questions can be addressed on the levels of concepts, lan-
guages, methods, and tools.

From a software engineering perspective, end-user development in general means the ac-
tive participation of end-users in the software development lifecycle. Active end-user par-
ticipation may span across the whole software life cycle. It can range from providing in-
formation about requirements, use cases and tasks, via participatory design (e.g. based on
the use of visual modelling languages) and end-user programming (e.g. programming by
example or programming by demonstration) to adaptation, tailoring, modification, and
evolution. Tasks that are traditionally performed by professional software developers are
to be accomplished by users. Tasks that are specific to end-user development will have to
be integrated. Particular attention must be paid to post-release changes by users, their an-
ticipation and the preparation of the software and its development process to accommo-
date them, and their impact on software qualities like maintainability and interoperability.
In HCI, it is observed that using the system changes the users, and as they change they
will use the system in new ways. As a consequence, systems must be designed so that they
can evolve to accommodate those users’ needs that cannot be anticipated in the require-
ment phase or that are newly determined because of user evolution [CF03].

End-user developers need to be specifically supported in performing their tasks. It is an
ultimate goal to define the range of end-user participation in software development in
terms of generic and domain-specific, end-user oriented software development methods
and processes, and to build supporting development tools and environments.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 23/29

IST-2001-37470, EUD-Net Network of Excellence

4. Roadmap for Research in End User Development
To outline a potential roadmap for research in EUD, we focus on three intertwined lines of
research: software architectures, interfaces, and support for collaboration. Starting with
the current status of EUD, we discuss what research activities could reasonably be carried
out until 2005, what status would then be reached, and how research could continue until
2010. As for the predictions for 2010 and 2020, they are obviously rather general in nature
and do not yet include concrete recommendations for research activities. Rather, they deal
with the impact of EUD on the Information Society, state possible applications and socie-
tal aspects and make guesses on what EUD goals might realize at the corresponding time.
With regard to software architectures a number of different approaches exist in research
(e.g. agent-based, component-based, rule-based). However, empirical knowledge on suit-
ability in real-world settings is still insufficient. A mayor challenge is to refine existing
approaches and developing new architectures suitable for both system and user evolution.
The combination with conventional architectures and the adaptation with the respective
development processes have to be investigated. Moreover, one has to look into the suit-
ability of different EUD-architectures to support run-time changes with a gentle slope of
complexity. Case studies need to show the suitability of these frameworks for different
application domains. Furthermore, patterns of decomposition have been developed.
With regard to interfaces, research has been carried out on various interface techniques,
e.g. Augmented Reality, Tangible User Interfaces. Among others, interfaces need to be
designed to make end-users aware of existing EUD-functionality and allow them to per-
form safely experiments. Use of alternative interfaces for EUD is beginning to emerge.
Knowledge on cognitive suitability and design criteria is still insufficient. Therefore, em-
pirical studies on EUD-interfaces need to be conducted. New UI-techniques, e.g. supple-
menting adaptability with adaptive context-sensitive system behaviour, need to be devel-
oped. Experiences from real-world applications need to be gathered. In the near future,
research has to focus on EUD-systems which combine adaptability with adaptivity (e.g.
based on user- and context-models). Moreover, interfaces need to be developed in order to
make EUD-functionality available with a gentle slope of complexity. Innovative interfaces
should be able to check consistency and signal errors. Design guidelines should become
available for different classes of interface problems.
Collaborative aspects have been taken up in research as a key element to EUD (e.g. gar-
dening-metaphor). However, empirical knowledge on collaborative EUD is still insuffi-
cient and implementations of collaborative EUD-functionality are only in their beginning.
Therefore, concepts for collaborative EUD have to be developed. Standards for describing
EUD artefacts have to be worked out to make them exchangeable (e.g. with regard to
quality, recommendations, purpose). Based on such standards, EUD-artefacts can be de-
scribed and placed into repositories for sharing. Software agents should become able to
recommend suitable artefacts available from such repositories.
Looking towards 2010, we believe that architectural frameworks, decomposition-
techniques, patterns, interfaces, and tools for collaboration support can exist in a consoli-
dated and integrated manner. End Users are supported by tools for exploring, testing and
assessing while carrying out EUD activities. Cases of best practices have been docu-
mented to explain EUD as an activity that is embedded in social networks. Concepts to
acquire EUD-skills are integrated into educational curricula. EUD starts becoming an im-

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 24/29

IST-2001-37470, EUD-Net Network of Excellence

portant aspect of applications in most domains: education, scientific research (e.g. bioin-
formatics), business (CAD, ERP, GIS), and domestic domains.

Towards 2020, substantial adaptability has become a property of all newly developed
software systems. Adaptable software-systems have penetrated into all domains, e.g. busi-
ness, leisure, home, culture. Most people have skills in EUD. EUD has become an impor-
tant activity for most jobs and for the majority of people. A high level of adaptivity in all
devices is a big part of what is called ‘Ambient Intelligence’. While EUD has gained cen-
tral importance in the application of information technology, the users are not more aware
of these features. EUD has become an integral aspect of their appropriation of IT.

2003

2006

Decomposition,
Architecture User Interface Collaboration Support,

Socio-economic Issues

EUD enabled Knowledge Society

2020

Different
architectures

(Research) prototypes

Empirical studies

Map of application domains vs.
solutions

Different interface
paradigms

Innovative „gentle slope“
architectures

Decomposition
pattern Integration of

context-awareness and
adaptability

Recommender
systems

EUD is not „visible“ anymore

Exchange platform

-
-
-

-

IndustryBlue
ResearchGreen
AvailablePurple

DesiredBlue

Successful applications

Community support

- PlannedRed

Figure 5: The future of End-User Development.

Conclusions
Discussion of the research agenda during the lifetime of the network has been very rich
and therefore difficult to summarise. After a discussion of the motivations and require-
ments most relevant to end user development identified so far, this report outlines some
promising research lines that, if adequately supported, can provide important results in
obtaining effective end user development environments, which is one strategic goal for the
European Information Society.

As Figure 5 shows, the road to achieving an EUD enabled knowledge society is still long,
even if prototypes, mainly research ones, have already appeared. Particularly challenging
areas that will be addressed in the near future are decomposition patterns, integration of

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 25/29

IST-2001-37470, EUD-Net Network of Excellence

context-awareness and adaptivity, and recommender systems. The ultimate goal is to pro-
vide users with non-intrusive, “invisible” support for their developments.

Acknowledgements
All EUD-Net members who provided comments and suggestions are acknowledged for
their help to improve this document.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 26/29

IST-2001-37470, EUD-Net Network of Excellence

References
[A01] Ken Abbott, Voice Enabling Web Applications: VoiceXML and Beyond. ISBN:
1893115739, APress L. P., 2001
[BMA01] Beaudouin-Lafon M., Mackay E., Andersen P., at al., CPN/Tools: A Post-
WIMP Interface for Editing and Simulating Coloured Petri Nets. Proceedings ICATPN
2001. pp.71-80, Springer Verlag LNCS N. 2075.
[BAB00] Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K.
Clark, Ellis Horowitz, Ray Madachy, Donald J. Reifer, and Bert Steece, Software Cost
Estimation with COCOMO II, Prentice Hall PTR, Upper Saddle River, NJ, 2000.
[C93] A. Cypher, ed. Watch What I Do MIT Press, 1993.

[CH90] Carter, K.; Henderson, A.: Tailoring Culture, in: Hellman, R.; Ruohonen, M.;
Sorgard, P. (eds): Proceedings of the 13th IRIS, Reports on Computer Science and Mathe-
matics, No. 107, Abo Akademi University 1990, pp. 103 - 116
[C02] A. Cockburn. Agile Software Development. Addison Wesley. 2002.
[CF03] M.F. Costabile, D. Fogli, G. Fresta, P. Mussio, A. Piccinno, “Building environ-
ments for End-User Development and Tailoring”, IEEE Symposia on Human Centric
Computing Languages and Environmnets, Auckland, New Zeeland, October 28-31, 2003.
[CFL03] Costabile, M.F.; Fogli, D.; Letondal, C.; Mussio, P.; Piccinno, A.: Domain-
Expert Users and their Needs of Software Development, paper at Special Session on EUD,
UAHCII Conference, Crete, June 2003.
[CP03] M.F.Costabile and A.Piccinno, Analysis of EUD Survey Questionnaire, D4.2,
October 2003.
[D03] De Ruyter B., Challenges for End-User Development in CE devices, paper at Spe-
cial Session on EUD, UAHCII Conference, Crete, June 2003.
[DL03] Dittrich, Y., and Lindeberg, O. (2003): ‘Designing for Changing Work and Busi-
ness Practices.’ in: N. Patel (ed.) Adaptive Evolutionary Information Systems. Idea Group
Publishers, 2003.
[EMMA] http://www.w3.org/TR/emma/
[ET97] Erickson, T., Thomas, J., “Putting it all together: pattern languages for interaction
design.” Proceedings CHI97, Extended Abstracts,1997.
[F94] Fischer, G. (1994). Domain-Oriented Design Environments. Automated Software
Engineering, 1(2), 177-203.
[GHJV95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995.
[GP96] T.R.G. Green, M. Petre; Usability analysis of visual programming environments: a
'cognitive dimensions' framework, in J. Visual Languages and Computing, Vol.7, N.2,
pp.131-174, 1996.
[HK91] Henderson, A., and Kyng, M. (1991): ‘There is no place like Home: Continuing
Design in Use.’ in J. Greenbaum and M. Kyng: Design at Work, Lawrence Erlbaum As-
sociates 1991, pp. 219-240.
[Ka01] Kahler H.: Supporting Collaborative Tailoring, Ph.D.-Thesis, Roskilde University,
Denmark, Roskilde, 2001.
[KEOW03] Klann, M.; Eisenhauer, M; Oppermann, R.; Wulf, V. (2003): Shared initia-
tive: Cross-fertilisation between system adaptivity and adaptability. UAHCII’03, Crete,
June 2003.

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 27/29

IST-2001-37470, EUD-Net Network of Excellence

 [LM01] Landay J. and Myers B., "Sketching Interfaces: Toward More Human Interface
Design." In IEEE Computer, 34(3), March 2001, pp. 56-64.

[Ma90] Mackay, W.E.: Users and customizable Software: A Co-Adaptive Phenomenon,
PhD Thesis, MIT, Boston (MA), 1990
[MM00] Mørch, A.I. and Mehandjiev, N.D., Tailoring as Collaboration: The Mediating
Role of Multiple Representations and Application Units. Computer Supported Coopera-
tive Work 9(1), 75-100.
[MMI-FW] http://www.w3.org/TR/mmi-framework/
[MPS02] Mori G., Paternò F., Santoro C., CTTE: Support for Developing and Analysing
Task Models for Interactive System Design, IEEE Transactions in Software Engineering,
pp. 797-813, August 2002 (Vol. 28, No. 8), IEEE Press.
[M97] Morch. A., Three Levels of End-User Tailoring: Customization, Integration, and
Extension. In M. Kyng & L. Mathiassen (eds.), Computers and Design in Context, (51-
76). The MIT Press, Cambridge.
[MHP00] Myers, B., Hudson, S., Pausch, R. Past, Present, Future of User Interface Tools.
Transactions on Computer-Human Interaction, ACM, 7(1), March 2000, pp. 3-28.
[MPS03] Mori G., Paternò F., Santoro C., “Tool Support for Designing Nomadic Applica-
tions”, Proceedings ACM IUI’03, Miami, pp.141-148, ACM Press.

[Na93] Nardi, B. A.: A Small Matter of Programming - Perspectives on end-user comput-
ing, MIT-Press, Cambridge et al., 1993.
[NMH02] Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K., Rosenfeld, R.,
Pignol, M. “Generating Remote Control Interfaces for Complex Appliances,” in UIST
2002. Paris, France: pp. 161-170.
[OH97] Orlikowski W. J.; Hofman J. D., "An Improvisational Model for Change Man-
agement: The Case of Groupware Technologies"; in: Sloan Management Review (Winter
1997); 1997; pp. 11-21.
[OMG] OMG Unified Modeling Language Specification, Version 1.4, September 2001;
available at http://www.omg.org/technology/documents/formal/uml.htm
[PM96] Pane J. and Myers B. (1996), “Usability Issues in the Design of Novice Pro-
gramming Systems” TR# CMU-CS-96-132. Aug, 1996.
http://www.cs.cmu.edu/~pane/cmu-cs-96-132.html
[PM97] Paternò, F., Meniconi, S., “Patterns for Dialogue Representations”, Proceedings
International Workshop on Representations in Interactive Software Development, pp. 73-
81, 1997.
[PM99] Paternò F., Mancini C., Developing Task Models from Informal Scenarios, Pro-
ceedings ACM CHI’99, Late Breaking Results, pp.228-229, ACM Press, Pittsburgh, May
1999.
[PW99] Pipek V.; Wulf V.: A Groupware’s Life, in: Proceedings of the Sixth European
Conference on Computer Supported Cooperative Work (ECSCW ’99), Kluwer, Dordrecht
1999, pp. 199 – 219
[RS03] Repenning A., Sullivan J., “The Pragmatic Web: Agent-Based Multimodal Web
Interaction with no Browser in Sight”, Proceedings INTERACT 2003, IOS Press, pp.212-
219.
[SLM93] Sutcliffe A., Lee D.& Mehandjiev N., Contributions, Costs and Prospects for
End-User Development, Proceedings HCI International 2003.
[VXML] http://www.w3.org/TR/voicexml20/

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 28/29

http://www.omg.org/technology/documents/formal/uml.htm
http://www.w3.org/TR/voicexml20/

IST-2001-37470, EUD-Net Network of Excellence

D1.1+1.2 Research Agenda and Roadmap for EUD December 2003 29/29

[W99] Weiser M., Some computer science issues in ubiquitous computing, ACM Mobile
Computing and Communications Review, Volume 3, Number3.
[WR95] Wulf V.; Rohde M.: Towards an Integrated Organization and Technology Devel-
opment; in: Proceedings of the Symposium on Designing Interactive Systems, 23. -
25.8.1995, Ann Arbor (Michigan), ACM-Press, New York 1995, pp. 55 – 64.
[Wu99] Wulf V.: „Let's see your Search-Tool!” – On the Collaborative Use of Tailored
Artifacts, in: Proceedings of GROUP '99, ACM-Press, New York 1999, pp. 50 – 60.

