
User Interface Distribution in Multi-Device and Multi-User
Environments with Dynamically Migrating Engines

Luca Frosini
HIIS Laboratory – ISTI-CNR

Via G. Moruzzi, 1
56124 Pisa (Italy)

luca.frosini@isti.cnr.it
+39 050 621 2602

Fabio Paternò
HIIS Laboratory – ISTI-CNR

Via G. Moruzzi, 1
56124 Pisa (Italy)

fabio.paterno@isti.cnr.it
+39 050 621 3066

ABSTRACT
In this paper we present a framework and associated run-
time support for flexible user interface distribution in multi-
device and multi-user environments. It supports distribution
across dynamic sets of devices, and does not require the use
of a fixed server. The distribution updates are processed
taking in account device types and user roles. We also
report on three example applications and a validation of the
presented framework.

Author Keywords
Multi-device User Interfaces, Development Tools,
Distributed and Migratory User Interfaces.

ACM Classification Keywords
H.5 Information Interfaces and Presentation; H.5.2 User
Interfaces, H.5.3 Group and Organization Interfaces.

INTRODUCTION
In the last decade a wide variety of interactive devices have
penetrated the mass market, and people spend more and
more time using them. This has made it possible to create
many environments where people spend a long time
interacting with various devices sequentially or in parallel
[4].

In order to better exploit such technological offer often
people would like to better use multiple devices while
interacting with their applications, for example to
dynamically move components of their interactive
applications across different devices with various
interaction resources.

Unfortunately, the development of multi-device user
interfaces is limited by current interaction development
toolkits, which are still designed assuming to support the
development of user interfaces for single devices without
providing support for multi-device access. At the research

level some frameworks for multi-device user interfaces
have been proposed but usually their support has been
limited to specific contexts and applications, and thus their
adoption has been rather limited.

The framework we present provides developers with an API
that can be exploited both in Web and Java applications in
order to obtain more easily application user interfaces (UIs)
that can be dynamically distributed and/or migrated in
multi-device and multi-user environments. The framework
also allows dynamically creating multiple simultaneous
sessions for applications used by groups of devices where
the UI is distributed. Furthermore, it does not require a
fixed server to manage the distribution. The elements of the
UI can be distributed by specifying specific device(s),
group(s) of devices, specific user(s), and groups of users
according to roles.

In the paper, after discussion of related work we provide a
description of the architecture exploited by our framework,
the main concepts that characterize it, and the associated
possible commands. We then describe three multi-device
applications developed with it that have different
requirements and discuss its generality and performance.
Lastly, we draw some conclusions and provide indications
for future work.

RELATED WORK
Distributed User Interface (DUI) is a topic that has been
addressed from various viewpoints. The main aspects of
user interface distribution are indicated in [1]: What can be
distributed, When the elements can be distributed, Who can
distribute and Where they can be distributed. Other
important aspects of distributed user interface are
Portability, Decomposability, Simultaneity and Continuity.
These, as argued by Peñalver et al. [9], are needed
properties to be guaranteed in a DUI and our framework
aims to address them.

Furthermore, distributing user interfaces without constraints
can result in an unusable user interface as argued by Luyten
et al. [2]. A label distributed in a device and the
correspondent input field in a different one is a simple
example of unusable user interface. In order to address such
issue we provide the possibility of specifying what elements
can be distributed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
EICS 2014, June 17–20, 2014, Rome, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2725-1/14/06..$15.00

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

55

One contribution in this area provides a proposal for a peer-
to-peer solution [3]. One issue in this regard is the lack of
an explicit component able to maintain the state of the
distribution at any time. In our solution we provide such
component, which can be located and moved to any device
involved in the distribution.

Another contribution [6]proposes a collaborative
environment for the distribution of applications useful to
support some tasks. A framework to orchestrate the
spanning of a web-based UI over many different screens
has been proposed by Hartmann et al.[7]. In contrast, our
framework focuses on the distribution of user interfaces in
multi-user and multi-device contexts in such a way as to
limit the impact in the application code in order to also
easily obtain distributed user interfaces in existing single
device applications. A platform supporting distributed
application user interfaces on interactive large public and
personal mobile device screens has been proposed [8]. Our
proposal is based on a similar session concept, though it
also enables creating shared sessions amongst mobile and
fixed devices.

A catalogue of distribution primitives to orchestrate DUI
screens has been proposed [5]. In our proposal we use two
simple commands maintaining the same expressivity. This
decreases the time for developers to learn the framework
and facilitates code reusability.

Fisher et all [10] describe general challenges for P2P DUI
development in terms of design, architecture, and
implementation but they do not provide a framework for the
development of distributed user interfaces.

While previous work [11] has considered the use of model-
based languages for supporting distributed user interfaces,
in this work we have aimed to identify a solution with good
performance that can be exploited in various applications
domains. Thus, we have considered previous research [12]
and report on a novel solution that is more flexible in terms
of management of the distribution state, with the ability to
exploit dynamic sets of interactive devices, and report on a
validation in terms of applications developed, performance,
and analysis of the impact on the code.

THE ARCHITECTURE OF THE FRAMEWORK
Our framework is logically composed of a library and
runtime support. The library is used by the developers to
introduce UI distribution in their applications. The runtime
support can run on a dedicated server or in one of the
devices participating in the distribution.

Figure 1 shows the logical components of the framework
and its run-time support. There are two main blocks:
Engine side and Client side.

Figure 1. Overview of the framework architecture.

The Engine side is the runtime support and is responsible
for managing the requests of distribution changes,
processing them, and calculating the new distribution state.

The Engine is able to maintain the Current State of
Distribution, which allows devices to join a distribution
session at any time and sets their UIs in the proper state.
The distribution state is mainly based on the concept of UI
elements State. We have identified three states: Invisible
(element is not visible at all), Disabled (visible but not
reactive to user actions, e.g. a button that does not react to
the users’ clicks) and Enabled (visible and reactive to the
associated user-generated events). Thus, it is possible to
define a simple relation across the states, through which
each state adds some aspect to the previous one (disabled
adds visibility to the invisible elements; enabled adds
reactivity to the disabled elements).

The Client Side library represents the component
responsible of sending distribution change requests to the
engine, and receiving updates of changes to apply on the
managed UI. On the client side there is a UI Manager that
receives and processes the notifications of the distribution
updates arriving from the engine. The UI Manager invokes
a callback function in order to apply the received update..

The callback is triggered in response to a distribution
update received from the engine (because of a state change
or a value change of a UI element). The framework
provides some standard behavior for each change.
Moreover, the framework provides the possibility of
specifying personalized behavior to apply when a
distribution change occurs. For example, the default
callback for an ASSIGN Notification to set an element to
invisible simply makes the element no longer visible
without any additional effect. If the developer wants to use
a fading effect when this occurs, he can register a specific
callback for this purpose.

Figure 1 also shows the application part which uses the
framework client side.

Please note that the Client Side library does not make any
distribution choice, instead such changes depend on the
application. In the application any policy can be
implemented.

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

56

Authentication Process
When a device wants to take part in the distribution it has to
subscribe to the engine. The device sends its own
capabilities and credentials to the engine. Using the
supplied credentials the engine decides whether to allow the
device to take part in a session. Furthermore, according to
the supplied capabilities the engine inserts the device in one
or more groups. The groups are used in the distribution to
target devices with similar capabilities.

Once the device is allowed to take part in a session, the
engine sends information regarding what UI elements
should be shown to the user. We refer to this information as
the Distribution State (as explained in the next section).

A device (if it has proper credentials) can subscribe to a
distribution session at any time. Each device receives from
the engine the distributed UI consistent with the other
devices, and in the same situation as if it had subscribed at
the beginning of the session.

During the session life the device can send updates of the
UI distribution to the engine or receive notifications by the
engine of updates made by other devices.

Any communication made by the device to the engine is
accepted by the latter only if the device has enough rights.

Distribution State
The framework is based on the concept of distribution state,
which indicates what UI elements are associated with each
device and their state. Indeed, the framework allows
developers to assign three basic states to the user interface
elements: enabled, disabled (which means visible but not
reactive to events), and invisible. We can express the
relations: Enabled > Disabled > Invisible

At any time the distribution state of a UI is known by the
engine.

The state changes dynamically under the effect of updates
generated by clients and elaborated by the engine.

The component that knows the distribution state is not in a
fixed server but can be in any device involved in the
distribution, even in a mobile device.

When the engine receives an update it performs these main
operations:

 Validate the request;

 Calculate the new Distribution State;

 Calculate which devices have to be updated;

 Inform involved devices of changes in their UIs.

Devices categorization (Target)
The framework exploits two concepts (Type and Role) to
address the devices involved in the distribution.

Type
The type concept is associated with a set of device
capabilities. The possible types are not static but they can
vary depending on the application.

When a device subscribes to the distribution it provides its
capabilities and the engine assigns one or more types to the
devices. The Type is used by the engine and by other
devices to address a group of devices without the need to
know devices ID.

In many cases we can find that some types are a subset of
another. For example a Laptop is a sub-type of PC because
requires all the capabilities of PC plus a Battery. We can
argue that the PC type is broader (or at least equal) to the
Laptop type. All Laptop devices will also be considered PC
devices but not vice versa. In this case we can say that PC >
Laptop. Two sets are not comparable if one is not a superset
of the other.

The possibility of comparing different types is important
when the engine receives a distribution update: first of all to
calculate the new Distribution State (reducing it); secondly
to avoid sending unneeded updates to devices.

The reduction of the types enumerated in the state (when
possible) implies a more efficient calculation for managing
states.

Role
The role concept is related to the type of tasks carried out
by the user using a device in the distributed application and
is independent of the device type.

In order to exploit the distribution support the user
authenticates through an identity certificate, which contains
information regarding the user role. The details regarding
how certificates are issued, verified and implemented are
beyond the scope of this paper.

The Distribution API
The framework supports an API with two commands (from
clients to engine) to perform distribution changes. The first
(ASSIGN Command) is used to change the devices that can
display or allow manipulation by the user of a certain
element in the UI. The second (Feedback Command)
informs devices of a change in the value of an element.
Examples of the feedback that can be provided is that of the
values of an input field, the selected tabs in a tab container,
the center and the zoom values of an image which can be
panned or zoomed.

ASSIGN Command
The parameters of the ASSIGN command are:

 What: identifies an interface part, typically the ID of the
element or the container of elements that has to be
distributed.

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

57

 Target: specifies the devices that should receive it, they
are indicated by type(s), role(s) or identifier(s).

 Basic State Level: identifies the new state levels for the
elements indicated in What for the devices specified in
Target.

Feedback Command
The parameters of the Feedback command are:

 What: identifies an interface part, typically the ID of the
element or the container of elements to be considered.

 Data: indicates the new value for the element identified
by What that will be sent to all the devices with a State
Level > Invisible

These commands flow from client to engine. Once the
engine has elaborated them it will generate a corresponding
command flowing from the engine to the involved clients.
We will refer to them as Notification commands.

ASSIGN Notification
This is the engine’s ASSIGN Command response. Because
the notification is sent directly to the device, the target is
implicit and for this reason it is omitted.

 What: identifies an interface part, typically the ID of the
element or the container of elements that has to be
distributed.

 Basic State Level: identifies the new state levels for the
elements indicated in What for the devices considered.

Feedback Notification
This is the engine’s Feedback command response and has
the same content and signature:

 What: identifies an interface part, typically the ID of the
element or the container of elements to be considered.

 Data: indicates the new value for the element identified
by What that will be sent to all the devices with a Basic
State Level > Invisible.

Distribution Orchestration
The framework has been designed in order to support
different sessions for the same application. Depending on
their role users can:

 Create new sessions;

 Subscribe to an existing session;

 Leave a session;

 Subscribe to all sessions;

 Unsubscribe from all sessions;

 Send ASSIGN command to distribute an element;

 Send Feedback command to change the data value of an
element.

 Manage the devices subscribed to a session.

When a device subscribes successfully to the distribution
environment it receives the Current State of the UI. The
Current State is communicated through an array of ASSIGN
Notification and Feedback Notification containing all the
information needed by the client to update its own UI.

Figure 2. Sequence Diagram describing examples of
subscription requests (accepted and refused) and

commands sent by multiple devices.

Figure 2 shows a sequence diagram describing an example
of interactions between the engine and four different clients
that subscribe and then send distribution updates. Client D
creates a session and subscribes itself. After that client C
tries to subscribe but the request is refused by the engine
because it does not provide the necessary credentials. Client
A instead subscribes successfully and then sends an
ASSIGN command. The engine calculates the new state and
sends the corresponding notification to the involved
devices. This is repeated by client B, which after a
successful subscription sends a Feedback Command.

A device can request to be part of all the possible sessions
(if this is allowed by the configuration parameters of the
application). Only when the device with the relevant rights
activates it then it can be actually part of a specific session.
When a device is removed from a session then it gets back
in a waiting list for participating in another session.

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

58

Figure 3. Sequence Diagram describing an example
subscription and all related requests.

Figure 3 shows a sequence diagram describing an example
of subscription to all session from a client (A) and then
client (B) enables it a specific session.

A device that has subscribed to a session then receives all
the relevant UI updates. When the clients receive the
updates they apply them according to their UI element
types.

The distribution of all the standard UI elements supported
by Web and Android user interfaces is provided for through
an extension mechanism using callbacks. This is useful in
case the developers want to customize how the
corresponding state is updated, or to achieve specific effects
in updating the state (e.g. introducing a fading effect when
an image disappears).

Distribution State Representation in the Engine
For each distributable element of the UI a JSON document
is created and memorized in a document-oriented database
(CouchDB). When the Engine receives an ASSIGN
Command for a UI element, the groups indicated in the
Target parameter are compared with groups associated to
each Basic State of the element. The element states are
updated taking in account any relations existing among
groups. Let us suppose that a button is Invisible for the
Smartphone devices and an ASSIGN Command to set the
button to Disabled for Mobile devices arrives at the Engine.
If we suppose that the Mobile type includes the Smartphone
type then the Smartphone type is no longer associated with
the Invisible state, and the Mobile type is associated with
the Disabled state for the button.

Analyzing more in detail how the state is maintained, we
can see that for each user interface element there is an
indication of the corresponding targets for each of the three
possible basic states (Figure 4 shows an example). The
table contains an assigned sequential number for each
possible target. This sequential number is incremented by
the engine each time it performs a state update. Thus, these
numbers define a temporal order between the elements of
the distribution state table.

For example, by analysing the state presented in Figure 4 it
is possible to understand that for the element with TabHost
id, the Mobile devices visualize it but they cannot interact
with it since they are associated with the Disabled state
(and are associated with number 2), while all the other
devices visualize the element and can interact with it.

Furthermore, all the devices associated with users with the
Admin role visualize and can interact with TabHost even if
the device is Mobile. In fact, the number for the Admin role
(5) is higher than the Mobile one (2) and this means that the
corresponding state change occurred afterwards, and is thus
the currently dominant one.

Figure 4. Distribution State representation of a UI
element.

Moving the Engine
As we mentioned the Engine can be moved dynamically.
For this reason the framework provides an API to move the
Distribution State.

If the engine has to be moved from one device to another,
the receiver device invokes the MoveEngine Command in
the current Engine. This command contains as parameter
the URL where the new Engine will be available. If the
requester has sufficient rights to become the new Engine,
the current one serializes the Distribution State and sends it
to the requester device. The Distribution State is sent to the
new Engine in a notification called Distribution State

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

59

Notification. Please note that this is not the Current State
(which contains only the State for a Device) but the full
Distribution State.

Then, the old Engine stops processing other requests from
devices and sends an EngineMoved Notification (with the
URL of the new Engine) to the devices already subscribed
to the session. If a device wants to continue to participate in
the distribution, it must subscribe to the new Engine. The
callback associated with the client for the EngineMoved
Notification is already implemented for subscription to the
new Engine and developers need do nothing unless they
want to personalize the behavior.

APPLICATIONS
In order to verify the suitability of the framework we have
used it in the design and development of three applications
that needed distributed user interfaces in three different
contexts of use.

Museum Guide
One application aimed to improve the user experience
during a museum visit. So, we considered a single user
application able to exploit mobile devices in conjunction
with a public display in an indoor environment. The
museum has some large public displays, which allow
visitors to access relevant multimedia content. When users
are near the large screen they can use the smartphone to
select the content shown in it. For example, the visitors can
select and display some high-resolution images of artworks
that for some reasons (e.g. security, or art preservation
issues) cannot be viewed from a short distance.

Figure 5. User interface of museum Android application.
The one on the left (a) shows the artwork list and the one
on the right (b) shows the artwork picture draggable and

zoomable.

In addition, it is possible to access graphical information
regarding the available artworks, such as maps indicating
where the artwork was located before arriving at the
museum, sketches of the artwork made by the artists, when
available, and video guide introducing the opera.

When started the application on the large display side
(implemented using the web version of the framework)
immediately subscribes to all the existing sessions through
the framework.

Users can launch the application through Android devices,
which immediately create and subscribe to one session.
When they want to access the large screen they use the
smartphone’s camera to scan the QR code with the ID of
the large screen, which is used to add it to the session and
then allow interaction.

On the smartphone it is possible to access the artworks list
and select one artwork of interest through touch (Figure 5a).
The device will generate a Feedback Command containing
the URI of the image and default zoom and center for the
image.

Then the users can perform pan and zoom through their
smartphone in order to control what is visualized in the
large screen (Figure 5b).

Each time a user zooms or pans the image on the mobile a
Feedback Command with the new center and zoom level is
sent to the Engine. When the large screen receives the
Feedback Notification it will apply it. On the large screen a
personalized callback is used to correctly apply the new
zoom and center.

The data value of the Feedback Command and Notification
have the following structure:

data : {

 URI: “VALUE”,

 zoom: 0,

 center : [960.0,540.0]

}

Using the menu (Figure 5b top-right corner) is possible to
show in the large screen one of the tabs (white background
bottom center in 6a and 6b) which contains the extra
content of the artwork.

Selecting one of the menu options, an ASSIGN Command
with the id of the selected element (tab on large screen) is
generated. The Basic State Level will be Disabled and the
target will be the large screen ID. When it receives the
Feedback Notification, the large screen will show the tab.
When the user returns to the image, an ASSIGN Command
to set the tab to Invisible will be generated. The large screen
implements its own callback to perform the desired
behavior.

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

60

Figure 6. User interface of large display application. 7a
(above) shows a lower level of zoom than the 7b (below)

and a different center position.

Once the users have accessed an artwork, they can continue
the navigation to other items or release the large screen. In
any case, after some time without user interaction there is a
timeout event that allows the release of the large screen from
that session, which occurs also if the user starts to interact
with another large screen.

City Guide
The second application is a city mobile guide support for
groups of visitors. So, it is an example of a multi-user, multi-
device application for outdoor environments.

The application supports guides accompanying groups of
visitors who can have either tablets or smartphones. The
application shows information supporting the mobile visit.
The application version associated with the guide role allows
them to select the content to show in the version of the tourist
role.

Thus, the user interface elements are in the Enabled state for
the guide while they can be Disabled or even Invisible for the
tourists. The guide can interactively change the states for the
elements shown in the tourist’s user interfaces.

The guide has the rights to create and subscribe to a session
while the tourists can only subscribe to the session created by
the guide. This is achieved through the certificate mechanism
previously introduced, which allows the environment to
provide different rights depending on the user’s role.

Figure 7. User interface of Android city mobile guide.
The image above (a) is the guide version and the one

below (b) is the tourist version.

Figure 8a shows the city guide application. The guide can
select the different images to be shown to tourists. The big
image (element with id FeaturedImage) is visible to tourists
and enabled to guide. The thumbnails block is enabled to
guide and invisible to tourist. Tapping the thumbnail the
guide change the FeaturedImage. Thus, a Feedback
Command is sent to the Engine containing the URI of the
image to be shown.

Crossword Game
The last application is a crossword game that allows
multiple users to participate in solving a puzzle with the
support of a PC or a WebTV.

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

61

Users subscribe to the session through their mobile devices
and are thereby able to enter words in the crosswords. Each
time that a user enters a word then it is shown on all the
other users’ devices.

When a user insert a word a FeedbackCommand is
generated so all the other involved devices will be updated
about the solved word.

Figure 8. User interface of Android crossword
application.

Each question is considered an element of the interface and
FeedbackCommand is used intensively when:

 A user enter a solution;

 The entered solution conflicts with an intersecting word;

 A user suggests a solution to other participant.

The data value has the following structure.

data : {

 value: “VALUE”,

 proposed: [proposed1, proposed2],

 discarded : [discarded1, discarded2]

}

Every time a user enters a solution the typed value is
inserted in value field. When a user is not sure about a
solution but wants to try to suggest it to other users the
proposed word is inserted in proposed field and a
FeedbackCommand is sent.

Furthermore, the user has the possibility to discard a value
or a proposed solution. In the default modality all the users
have all words elements to be solved in in enable mode.

The device which creates the session is the only one which
can distribute the elements using ASSING Command. All
the others can only send Feedback Command.

Figure 9. User interface of Android crossword
application with hidden questions.

This allows the session creator to switch from default to a
version where each user only sees a set of random
questions. The creator can redistribute parts to each player
with two options:

 with timeout

 manually

In the timeout version the questions are redistributed each
time the configurable timeout is triggered. This is
performed by the session creator client sending a list of
ASSIGN Command to the Engine. In the second one, it is
the user who creates the session that manually triggers the
event, the distribution logic of the random questions is
completely in the application, no choice is made by the
Engine.

Figure 8 shows a screenshot of crossword application where
all the questions are available to all users. Figure 9 shows
instead a screenshot were only 1, 8, 9, 10 and 10 across
words and 1, 2, 3 down words are enabled and all the rest
are invisible.

To implement this game we used personalized versions of
callback both for ASSIGN Notification and Feedback
Notification associated to question elements.

IMPACT FOR DEVELOPERS
In this section we provide a concrete description of the
support provided by the framework for the developers,
showing how it requires limited number of code
instructions.

Indeed, if developers want to start using the framework in
order to include a device in the distribution environment
using the standard callback functions they just need to write
about 40 lines of code. The Android version is shown in
Figure 10. With such code the corresponding device will
receive all the relevant distribution change notifications.

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

62

Figure 10. Example of Java code for Android used to
subscribe a device to a session.

In Figure 10 the Android code to subscribe to a session is
shown. In the first two rows the identified of application
and the session is set. A Distribution Client Manager (the
Java class wich coordinates all the distribution operations)
is instantiated. The client register itself to the istance of
DistributionClientManager, with name, id and the list of the
capabilities (Feature class) thata the Engine will use to
associate one or more Type to the Device.

The invocation of sucription is made using the
distribution.subscribe(); instruction.

The client is using a WebSocket to send command to the
Engine and viceversa for the Engine to send Notification,
for this reason we can recognized
WebSocketEngineConnetor and
WebSocketClientConnector. This is an implementation
issue out of the scope of this paper

Furthermore, with just 10 more rows of code they can
manage the user actions that generate a distribution update
to send to the engine. Figure 11 shows an example of code
written in JavaScript for the management of Web tabs. The
code shows an example of callbacks for ASSIGN
(tabHostUIUpdate) and Feedback (tabHostFeedback)
Notifications. These callbacks have to be registered with the
UIManager.

Figure 11. Example of JavaScript code of callback used to
manage a TabHost.

VALIDATION

Expressivity
In some interviews developers unfamiliar with distributed
UI stated a preference for a limited number of commands
for managing distribution. Thus, this was an initial design
requirement for our framework. Despite the simplification
we aimed to preserve the command expressivity in such a
way to be able to provide the same possibilities as presented
in previous work [5]. For example, the DISPLAY operation
in [5] can be achieved with the ASSIGN command of state
level > Invisible; conversely, an UNDISPLAY can be
obtained with a state level = Invisible. The MOVE
operation can be achieved using an ASSIGN command of
state level to Invisible for the elements in the source device
and an ASSIGN command of state level to Enabled in the
target device.

The REPLACE operation can be achieved by the
composition of an ASSIGN Command of state level =
Invisible to the element to be replaced and with an ASSIGN
Command of state level to Enabled to the replacing
element.

The MERGE command can be achieved using an ASSIGN
Command of state level to Enabled to the device where we
want to merge.

The SEPARATE command can be obtained by using an
ASSIGN Command of state level to Invisible for the
elements in the device where the UI is being separated and
an ASSIGN Command of state level to Enabled in the
device the element is going to appear on.

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

63

Performance
In order to assess the performance of our environment we
have focused on the engine performance, and we have
measured on average the number of commands it received
from the clients during a session, and the minimum,
maximum, average, and variance of the time taken to
process them. In the processing time we included both that
required to calculate the new distribution state but also that
required to notify the involved devices of the distribution
change.

The results were calculated considering 18 sessions of the
city guide application involving three devices gathered
during a user test. This application mainly uses the
Feedback command because it mainly supports a kind of
co-browsing across multiple devices. The average number
of commands per session was 287. The minimum amount
of time to elaborate a request was 236 msec and the
maximum was 661 msec. The average time was 296.46
msec and the standard deviation is 50.11.

With the applications and their informal use we have learnt
that the framework processing time is sufficiently short to
avoid creating particular usability issues.

CONCLUSIONS AND FUTURE WORK
We have presented a framework and run-time support for
enabling cross-device interaction. The client side part is
currently available for Android and Web-based
applications, and we plan to provide a version for iOS as
well.

A number of multi-device user interface applications have
been designed and developed through it. We have also
shown how the impact of the framework in the application
code is limited. In terms of performance we have reported
the results of a first study, which are encouraging.

The three applications show that the framework can be used
in different domains and in different environments: single
or multi-user applications; indoor or outdoor environments;
mobile and stationary devices.

Future work will be dedicated to introducing more flexible
mechanisms for selecting user interface elements, security,
and dynamic device allocation across multiple sessions.

ACKNOWLEDGMENTS
We thank the IUDSM (Distributed User Interfaces and
Mobile Security) Project (funded by Regione Toscana,
CNR-ISTI and IIT, and Softec)1 for supporting this work,
and Zeno Amerini (Softect) for useful discussions on the
topics of the paper.

1 http://hiis.isti.cnr.it/IUDSM/index_en.html

REFERENCES
1. Demeure, A., Sottet, J.-S., Calvary, G., Coutaz, J.,

Ganneau, V. and Vanderdonckt, J. The 4C Reference
Model for Distributed User Interfaces. ICAS (2008), 1-
10.

2. Luyten, K., Van den Bergh, J., Vandervelpen, C. and
Coninx, K. Designing distributed user interfaces for
ambient intelligent environments using models and
simulations. Computers & Graphics (2006), 702-713.

3. Melchior, J., Grolaux, D., Vanderdonckt, J. and Van
Roy, P. A toolkit for peer-to-peer distributed user
interfaces: concepts, implementation, and applications.
In Proc. EICS 2009, 69-78.

4. Google. The new multi-screen world: Understanding
cross-platform consumer behavior. Technical report,
August 2012. http://www.google.com/think/research-
studies/the-new-multi-screen-world-study.html

5. Melchior, J., Grolaux, D., Vanderdonckt, J. and Van
Roy, P. A model-based approach for distributed user
interfaces. In Proc. EICS 2011, 11-20.

6. Bardram, J., Gueddana, S., Houben, S. and Nielsen, S.
ReticularSpaces: activity-based computing support for
physically distributed and collaborative smart spaces. In
Proc. CHI 2012, 2845-2854.

7. Hartmann, B., Beaudouin-Lafon, M. and Mackay, W. E.
HydraScope: creating multi-surface meta-applications
through view synchronization and input multiplexing. In
Proc. PerDis 2013, 43-48.

8. Hosio, S., Jurmu, M., Kukka, H., Riekki, J. and Ojala, T.
Supporting distributed private and public user interfaces
in urban environments. In Proc. HotMobile 2010, 25-30.

9. A. Peñalver, E. Lazcorreta, J. J. López, F. Botella, and J.
A. Gallud. 2012. Schema driven distributed user
interface generation. In Proc. Interacción 2012.

10. Fisher, E.R., Badam, S. K. and Elmqvist, N. Designing
peer-to-peer distributed user interfaces: Case studies on
building distributed applications. International Journal
of Human-Computer Studies. 2013.

11. M. Manca, F. Paternò: Extending MARIA to Support
Distributed User Interfaces. Distributed User Interfaces
2011: 33-40

12. L. Frosini, M. Manca, F. Paternò: A framework for the
development of distributed interactive applications.
EICS 2013: 249-254

Frameworks for Cross-device Interaction EICS'14, June 17–20, 2014, Rome, Italy

64

