
Authoring Interfaces with Combined Use of Graphics and
Voice for both Stationary and Mobile Devices

Fabio Paternò, Federico Giammarino

ISTI-CNR
Via G.Moruzzi 1
56124 Pisa, Italy
+390503153066

{fabio.paternò, federico.giammarino}@isti.cnr.it

ABSTRACT
The technological evolution is making multimodal technology
available to the mass market with increased reliability.
However, developing multimodal interfaces is still difficult and
there is a lack of authoring tools for this purpose, especially
when multi-device environments are addressed. In this paper,
we present a method and a supporting tool for authoring user
interfaces with various ways to combine graphics and voice in
multi-device environments. The tool is based on the use of
logical descriptions and provides designers and developers with
support to manage the underlying complexity, make and modify
design choices, and exploit the possibilities offered by
multimodality.

Categories and Subject Descriptors
 H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Design, Human Factors, Languages.

Keywords
Multimodal Interfaces, Authoring Environments, Web,
Graphical and vocal modalities, X+V.

1. INTRODUCTION
The increasing availability of various types of interactive
devices, supporting various combination of modalities, raises a
number of issues for designers and developers of interactive
applications. The problem is how to help them to develop
various versions of their interfaces that are able to adapt to the
various interaction resources available and avoid confusing the

designer by the many details related to the various devices and
implementation languages.

To address such issues there has been renewed interest in
model-based design of user interfaces. The idea is to have some
logical descriptions close to the user’s view and then intelligent
environments able to transform them in order to obtain
interfaces adapted to the target devices. A number of XML-
based proposals in this area have been put forward (such as
TERESA [6], XIML[10], UsiXML [11], UIML [1], Pebbles
[7]). Such approaches have focused on mono-modal user
interfaces (either graphical or vocal). Thus, the main adaptation
was usually to change the presentation, content, and navigation
to suit the various possible sizes of the graphical screen or the
vocal structure.

However, this is not enough. Recent technological evolutions
are making available to the mass market various interaction
modalities (such as vocal and gestural interaction) and allow
various combined use of such modalities with the graphical one.
Developing multimodal user interfaces is still difficult. Indeed,
even if we consider the Web, most authoring tools (such as
MacroMedia Dreamware) only support graphical interfaces.
Developing multimodal interfaces in multi-device environments
is even more difficult, because identification of the most suitable
ways to combine the modalities has to take into account the
features of the hosting device and the potential contexts in
which it will likely be used.

In the paper we first introduce related work and the starting
point of this work, the previous environment for monomodal
interfaces [6]. We move on to describe how the new version for
multimodal interfaces has been designed and show the resulting
authoring environment. We then describe an example
application. Lastly, we report on first experiences by designers,
draw some conclusions and discuss future work that can exploit
the generality of the approach in order to support interfaces
involving other modalities (such as gestural and tactile
interaction).

2. RELATED WORK
Obrenovic et al. [12] have investigated the use of conceptual
models expressed in UML in order to then derive graphical,
form-based interfaces for desktop or mobile devices or vocal
devices. UML is a software engineering standard mainly
developed for designing the internal software of application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

functionalities. Thus, it seems unsuitable to capture the specific
characteristics of user interfaces and their software. The ICO
formalism for user interfaces has shown to be suitable to model
and specify multimodal interfaces mainly for analysis in safety-
critical application [2], and it has limited support for generation
of multi-modal interfaces from such specifications
One interesting effort to ease multimodal interface development
is ICARE [3]: it provides a graphical environment for a
component-based user interface exploiting various modalities
and modules that allow various compositions of such modalities.
In this paper we present a different approach: we show how we
can derive multimodal interfaces starting with logical
descriptions of tasks and user interfaces obtained through
general, platform-independent notations. We still provide the
possibility of combining the modalities in various ways, but at
different granularity levels (inside a single interaction object and
among several interaction objects). While some other work has
been carried out to apply transformations to logical descriptions
to derive multimodal interfaces [11], our work has been able to
provide an authoring environment that is able to suggest
solutions for identifying how to combine various modalities and
allows designers to easily modify them in order to tailor the
interface generation to specific needs. This result has been
obtained by extending a previously existing authoring tool [6]
that was limited to creating only graphical or vocal interfaces.

3. BACKGROUND
In the research community in model-based design of user
interfaces there is a consensus on what the useful logical
descriptions are [4][9][12]:

• The task and object level, which reflects the user view
of the interactive system in terms of logical activities
and objects that should be manipulated to accomplish
them;

• The abstract user interface, which provides a modality
independent description of the user interface;

• The concrete interface, which provides a modality
dependent but implementation language independent
description of the user interface;

• The final implementation, in an implementation
language for user interfaces.

Thus, for example we can consider the task select a work of art,
this implies the need for a selection object at the abstract level
which indicates nothing regarding the modality in which the
selection will be performed (it could be through a gesture or a
vocal command or a graphical interaction). When we move to
the concrete description then we have to assume a specific
modality, for example the graphical modality, and indicate a
specific modality-dependent interaction technique to support the
interaction in question (for example, selection could be through
a radio-button or a list or a drop-down menu), but nothing is
indicated in terms of a specific implementation language. When
we choose an implementation language we are ready to make
the last transformation from the concrete description into the
syntax of a specific user interface implementation language.

The advantage of this type of approach is that it allows
designers to focus on logical aspects and take into account the
user view right from the earliest stages of the design process. In
the case of interfaces that can be accessed through different
types of devices the approach has additional advantages. First of
all, the task and the abstract level can be described through the
same language for whatever platform we aim to address. Then,
in our approach we have a concrete interface language for each
target platform. By platform we mean a set of interaction
resources that share similar capabilities (for example the
graphical desktop, the vocal one, the cellphone, the graphical
and vocal desktop). Thus, a given platform identifies the type of
interaction environment available for the user, and this clearly
depends on the modalities supported by the platform itself.
Actually, in our approach the concrete level is a refinement of
the abstract interface depending on the associated platform. This
means that all the concrete interface languages share the same
structure and add concrete platform-dependent details on the
possible attributes for implementing the logical interaction
objects and the ways to compose them. All languages in our
approach, for any abstraction level, are defined in terms of XML
in order to make them more easily manageable and allow their
export/import in different tools.
Another advantage of this approach is that maintaining links
among the elements in the various abstraction levels allows the
possibility of linking semantic information (such as the activity
that users intend to do) and implementation levels, which can be
exploited in many ways. A further advantage is that designers of
multi-device interfaces do not have to learn the many details of
the many possible implementation languages because the
environment allows them to have full control over the design
through the logical descriptions and leave the implementation to
an automatic transformation from the concrete level to the target
implementation language. In addition, if a new implementation
language needs to be addressed, the entire structure of the
environment does not change, but only the transformation from
the associated concrete level to the new language has to be
added. This is not difficult because the concrete level is already
a detailed description of how the interface should be structured.

4. MULTIMODAL TERESA
The goal of Multimodal TERESA is to provide an authoring
environment for flexible development of multimodal interfaces
in multi-device environments. Our first multimodal target
environment provides for composition of graphical and vocal
interactions. There are many ways to compose such modalities.
The idea is to provide a structured support that aims to identify
the most suitable solutions at various granularity levels. By
default the tool provides some specific solutions that can be
modified by the designers to suit their specific needs. In terms of
target implementation languages, the first supported is X+V [13]
because it supports multimodality through the Web, which is the
most common interaction environment, it is a standard and
currently some publicly available browsers (such as Opera)
support it, thus allowing developers to immediately test the
resulting interfaces.

In this paper we focus on how the tool provides such support for
multimodal interfaces. As we introduced in the previous section,
the task and the abstract level are described by modality-
independent languages. Then, we have a concrete language for

supporting each target platform. Thus, we have a concrete
language for each platform. It is important to remember that the
concrete languages are just refinements of the abstract
languages. In the case of the graphical+vocal desktop platform
we have structured our authoring environment in three sections:
one dedicated to specifying the concrete attributes, one for the
vocal attributes and one for indicating in a logical manner how
to compose them.

As schematically described in the example in Figure 1, the
abstract user interface is structured into a number of
presentations, each of which contains instances of logical
interaction objects classified depending on their semantics
(selection, multi-selection, edit, navigator, description, …) and
instances of composition operators that indicate how to put
together the various interface elements such as grouping
(highlighting that a set of objects are logically related to each
other) or hierarchy (indicating that there are various levels of
importance for the interface elements involved). The purpose of
the navigator elements is to indicate when and how to move
from one presentation to another.

Figure 1. Example of Abstract Interface Structure.

In order to indicate how to combine the modalities we have
considered four well-known properties (CARE:
Complementarity, Assignment, Redundancy, Equivalence) [5] at
various granularity levels. We apply such properties in the
following manner:

• complementarity, the considered part of the interface
is partly supported by one modality and partly by
another one;

• assignment, the considered part of the interface is
supported by one assigned modality;

• redundancy, the considered part of the interface is
supported by both modalities;

• equivalence, the considered part of the interface is
supported by either one modality or another.

Since we want to provide a flexible environment, we support the
possibility of applying such properties in the implementation of
the various aspects characterising our logical descriptions: the
composition operators, the interaction and the only-output
elements. In addition, in order to have the possibility of
controlling multimodality at a finer level, the interaction
elements are structured into three stages:

• Prompt: represents the interface output indicating that
it is ready to receive an input.

• Input: represents how the user can actually provide the
input.

• Feedback: represents the response of the system after
the user input.

Table 1. How CARE Properties have been made available
for graphical+vocal desktop and graphical+vocal mobile..

Element
type

Interacti
on phase

CARE Property
for Desktop

CARE
Property for

PDA

Composition
Operators

Output
Graphical

Assignment
Redundancy

Graphical
Assignment
Redundancy

Grouping
Hierarchy
Ordering Feedback Vocal Assignment Vocal

Assignment

Only output
Interactors

Text
Description

Output

Graphical
Assignment
Redundancy

Complementarity

Vocal
Assignment
Redundancy

Complementa.

Interaction
Interactors

Input
Graphical

Assignment
Equivalence

Graphical
Assignment
Equivalence

Prompt
Graphical

Assignment
Redundancy

Graphical
Assignment
Redundancy

Numerical/
Text Edit
Single/

Multiple
Selection

Feedback
Graphical

Assignment
Redundancy

Graphical
Assignment
Redundancy

Input
Graphical

Assignment
Equivalence

Graphical
Assignment
Equivalence Navigator

Activator
Prompt

Graphical
Assignment
Redundancy

Graphical
Assignment
Redundancy

Thus, our environment allows the designer to decide what
multimodal support to provide for each of the different stages.

Presentation2
Hierarchy
Description

Edit

Multiple-selection
…

Presentation1
Grouping
Selection

Edit

Navigator

Connection

Presentation2
Hierarchy
Description

Edit

Multiple-selection
…

Presentation2
Hierarchy
Description

Edit

Multiple-selection

Presentation2
Hierarchy
Description

Edit

Multiple-selection
…

Presentation1
Grouping
Selection

Edit

Navigator

Presentation1
Grouping
Selection

Edit

Navigator

Connection

How such properties will be applied to such elements depends
on the modalities and platforms considered. In the following we
describe how they are applied to the vocal+graphical interfaces,
but the approach is general and can be applied to any types of
modalities.

In order to avoid confusing the designer, the environment
provides a default suggestion for each element at each level,
with the possibility to change it with other meaningful choices.
The possible choices have been identified taking into account
the features of the target platforms. Thus, in the case of the
multimodal desktop, in which the graphical resources are rich,
then we have the composition operators supported graphically.
The interaction elements are structured in such a way that the
prompt is graphical, input can be either graphical or vocal, and
feedback is in both modalities. The only-output elements are
graphical. In the multimodal PDA, in which the graphical
resources are less rich, we have the composition operators
supported both graphically and vocally, the interaction elements
are supported in such a way that the prompt is both vocal and
graphical, the input either graphical or vocal, and feedback in
both modalities. The only-output elements are either both
graphical and vocal or they use the two modalities in a
complementary way if they take a lot of resources.
 Table 1 provides details on how the CARE properties are
applied in the generation of graphical and vocal interfaces for
desktop and PDA platforms. It also shows what properties have
been deemed meaningful in the case of graphical and vocal
interfaces, and thus are supported in the authoring environment.
While they are similar for the two types of platforms, there are
differences in the default properties applied by the environment,
taking into account the richer set of graphical resources of the
desktop platform and that the mobile device can be often used
on the move. In Table 1, the first column indicates the element
of the abstract interface considered. Depending on the element
various interaction phases (input, prompt, feedback) have to be
considered. The composition operators aim to put together some
interface elements in such a way to highlight logical closeness
or hierarchy of importance or some ordering. Thus, usually there
is some output information to indicate the involved elements
(for example, it could be a graphical container or a sound at the
beginning and the end of the grouped elements) and there may
be some feedback when one of the composed elements changes
its state. The navigator allows the user to move from one point
to another of the application. This type of element usually has
no immediate feedback because the actual feedback is given by
the change of the application presentation loaded.

5. THE AUTHORING ENVIRONMENT
The resulting authoring environment allows designers and
developers to start from two possible points: the task model
description or the abstract interface description. In both cases
they have to specify the target platform (in the current tool
version either multimodal desktop or multimodal PDA). If they
start with the task model then the tool automatically generates
the corresponding abstract interface (see Figure 2 for an
example). As you can see the main area is mainly divided into
four parts: the top-left dedicated to the list of presentations
composing the user interface, the bottom-left indicating the

connections defining how it is possible to move from one
presentation to another, the top-right indicating the abstract
description of the currently selected presentation and the
bottom-right part displays the description of the possible
concrete implementation of the currently selected element in the
abstract part. In the next section we provide more detail using an
example application.
The concrete part has three tabbed panes, one for the concrete
graphical attributes, one for the concrete vocal attributes and
one to specify how to compose the multimodal attributes. Table
1 shows the list of the possible ways to compose the modalities
that have been deemed meaningful.
For example, if we consider the single selection interactor used
to indicate the time of a cinema reservation, then the tool as a
first suggestion for an implementation in a graphical+vocal
desktop interface would propose that the input be equivalent
(either graphical or vocal) and the prompt and feedback both
redundant. Then, in the vocal section there would be an
indication of the corresponding label, and the associated vocal
message and feedback, in addition to the definition of the
possible choice elements. The graphical part indicates the
interaction technique for implementation (e.g. a radio-button),
and the corresponding label and elements. The tool keeps
information in the graphical and vocal parts consistent. So, if the
designer indicates five possible choice elements in the vocal
part, then this is indicated when the graphical part is accessed as
well. Likewise, in the case of a text output, if the corresponding
multimodal property is complementarity, then different texts can
be specified for vocal and graphical rendering, while if the
multimodal attribute is redundant, then the text modified in
either part will be updated for the other one as well.

Figure 2. Our Authoring Environment.

6. EXAMPLE APPLICATION
A number of applications have been developed to test the tool.
One concerns a cinema application. When users access the home
page they can first select a town, then they can choose the
movie that they want to see, lastly they can make a reservation
indicating the preferred seat.
Figure 3 shows the tool while authoring such an application, in
particular the logical description of the interface. This can be
obtained either by editing it through direct manipulation
techniques or as a result of an automatic transformation from the
task model description.

Figure 3. The Authoring Tool with the Example Application.

In the case of automatic transformation from the task model,
then the designer still has to edit the values of the concrete
attributes in order to make the resulting user interface more
appealing. The top-left of Figure 3 shows the list of the defined
presentations. The currently selected one concerns the movie
“Madagascar”. We can see that the abstract part is structured
through some grouping operators. One groups one text and one
description element, another one groups two text and two
description elements. The last grouping refers to the two
navigational elements, indicating that they should be lined up

horizontally. The main grouping element puts together all the
groupings indicating that they should be organized vertically
(column attribute value) and using a fieldset (usually
implemented through a rectangle) to group all the involved
elements. Figure 4 shows the interface automatically generated
from the logical description in Figure 3.

The text and the description elements are obtained through the
graphical modality. The description consists in text with the
support of some images. The two navigator elements allow the
user to move to the reservation part or to the home page. The
input for selecting the next page to access can be provided
equivalently through either the vocal or graphical modality. The
prompt is given by the label of the two corresponding buttons.
In addition, for highlighting such possibilities, a redundant vocal
prompt is given (“Say book to buy seats for the movie or back
to return to the home page”).

Figure 4. The Desktop Multimodal Interface Generated.

Figure 5 shows how this type of presentation is generated for a
mobile device. In this case, while the logical structure of the
page is still the same, there are changes on how the multi-
modality is supported. The vocal modality is much better
exploited because of the limited graphical resources. Thus, some
information is provided only vocally, some is provided both
vocally and graphically and some is provided by exploiting the
two modalities in a complementary way.

Figure 5. The corresponding Mobile Interface.

Figure 6 shows the logical structure of the interface supporting
the reservation form. There is an internal grouping for the
editing of the various fields (one text edit and three single
selections), a further grouping for the two navigational elements
and an external grouping that combines it with some
introductory text and two navigator elements for moving to
other parts of the application. The currently selected element is a
single selection object and in the multimodal attributes panel, in
the right-bottom part, we can see the currently selected choices
and the possible alternatives that the designer can easily select.
Currently, input is set to equivalence (the user can make the
selection either graphically or vocally) and prompt and feedback
are set to redundancy (they are rendered both graphically and
vocally) but the designer can choose a only graphical
implementation through the associated radio-button and then the
generated pages will be immediately updated to the new choice.

Figure 7 shows the resulting interface. The introductory part is
provided complementarily by vocal and graphical modality. All
the form fields have redundant prompts and feedback and can be
entered in either the vocal or graphical modality. In order not to
overload the vocal channel the navigator elements have only
graphical prompt, but they can still be selected using either
modality.

7. THE MULTIMODAL INTERFACE
IMPLEMENTATION GENERATION
Currently the tool generates multimodal implementation in
X+V. This is a W3C standard already supported by freely
available browsers such as Opera. Thus, it is possible for all
users to access the graphical and vocal interfaces generated. In
addition, the support for other implementation languages can be

introduced with limited effort. Indeed, this would require simply
modifying the transformation from the concrete interface
description to the target implementation language. This is
mainly obtained through mappings between constructs in the
two languages.

Figure 6: The Authoring of the Multimodal Form.

The generated X+V files are divided into three parts. The
heading indicates the XML version, the DOCTYPE and the
DTD of the language. Then, the tag <html> is open to indicate
the modules used and contains the head and body. The second
part is the head, which includes all the vocal functions and
defines the page title and indicates the CSS files to use. The
vocal functions are contained in the tag <vxml:form> , which
contains all the vocal constructs corresponding to the elements
composing the concrete interface. The third part is the body,
which contains all the graphical HTML constructs
corresponding to the elements in the concrete language. In
addition, it contains a reference, in the form of event handler, to
the tag <vxml:form> which manages the vocal part.

In the generation of the vocal part, our authoring environment is
also able to take into account the designers’ specifications and
generate the grammars indicating the various possible
combinations of vocal input that the application can accept for
the vocal interactions.

Figure 7. The Resulting Multimodal Form.

8. PRELIMINARY EVALUATION
We performed a test to check whether the tool can be actually
used by people without experience in multimodal interface
programming. In a EU Research Training Network it was
organised a seminar which was attended by 5 senior and 7
young researchers with different backgrounds: formal
modelling, cognitive psychology, informatics, engineering.
None of them had previous experience in multimodal interface
programming. After a short introduction on X+V (30 minutes)
and on the authoring environment (30 minutes) they were asked
to develop a multimodal interface using the tool. It was
interesting to see that after one hour they were actually able to
obtain some multimodal interfaces. The tool at that time was
still under development and so some small bugs were identified
during the exercise but the interesting point was that all
participants were able to design some multimodal pages using
the tool. During the exercise one of the authors was available to
provide help but this was mainly limited to identify the most
suitable navigational structure of the resulting application for
supporting the desired tasks.
Further empirical tests with the authoring environment will be
carried out in the future. We will make the tool publicly
available soon for stimulating further feedback and comments
on its features.

9. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an authoring environment for
multimodal interfaces. It allows designers to work through
logical descriptions of the user interface and provides support
for choosing the most suitable combination of various
modalities at different granularity levels and for the various
parts of the user interface.

Future work will be dedicated to extending the environment in
order to provide support for additional modalities, such as tactile
and gestural interaction, in several possible combinations, still
for both stationary and mobile devices. Thus, it is possible to

obtain an universal authoring environment, based on the use of
logical device independent languages able to generate interfaces
that adapt to varying interaction modalities.

10. REFERENCES
[1] Abrams, M., Phanouriou, C., Batongbacal, A., Williams,

S., Shuster, J., 1994. UIML: An Appliance-Independent
XML User Interface Language, Proceedings of the 8th
WWW conference.

[2] Bastide, R., Navarre, D., Palanque, P., Schyn A. &
Dragicevic, P., A Model-Based Approach for Real-Time
Embedded Multimodal Systems in Military Aircrafts,
Proceedings ICMI 2004, pages 243-250, ACM Press.

[3] Bouchet, J., Nigay, L. Ganille T., ICARE software
components for rapidly developing multimodal interfaces.
Proceedings ICMI 2004, pages 251-258, ACM Press.

[4] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J. A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting
with Computers. Vol. 15, No. 3, June 2003, pp. 289-308.

[5] Coutaz J., Nigay L., Salber D.,.Blandford A, May J.,
Young R., 1995. Four Easy Pieces for Assessing the
Usability of Multmodal Interaction: the CARE properties.
Proceedings INTERACT 1995, pp.115-120.

[6] Mori, G. Paternò, F. Santoro C., Design and Development
of Multi-Device User Interfaces through Multiple Logical
Descriptions, IEEE Transactions on Software Engineering,
August 2004, Vol.30, N.8, pp.507-520, IEEE Press.

[7] Nichols, J. Myers B. A., Higgins M., Hughes J., Harris T.
K., Rosenfeld R., Pignol M., 2002. “Generating remote
control interfaces for complex appliances”. Proceedings
ACM UIST’02, pp.161-170.

[8] Obrenovic, Z., Starcevic D., Selic B., A Model-Driven
Approach to Content Repurposing, IEEE Mutimedia,
Januray March 2004, pp.62-71.

[9] Paternò, F., “Model-Based Design and Evaluation of
Interactive Application”. Springer Verlag, ISBN 1-85233-
155-0, 1999.

[10] Puerta, A., Eisenstein, XIML: A Common Representation
for Interaction Data, Proceedings ACM IUI’01, pp.214-
215.

[11] Stanciulescu A., Limbourg Q., Vanderdonckt J., Michotte
B., Montero F., A Transformational Approach for
Multimodal Web User Interfaces based on USIXML.
Proceedings ICMI 2005, pages 259-266, ACM Press.

[12] Szekely, P., 1996. Retrospective and Challenges for
Model-Based Interface Development. 2nd International
Workshop on Computer-Aided Design of User Interfaces,
Namur, Namur University Press.

[13] W3C XHTML+Voice Profile 1.0,
http://www.w3.org/TR/xhtml+voice/

