
Tools for Task Modelling:
Where we are, Where we are headed

Fabio Paternò
C.N.R. - CNUCE
Via G.Moruzzi, 1

56100 Pisa
+39 050 3153066

fabio.paterno@cnuce.cnr.it

ABSTRACT
Task models represent the intersection between user
interface design and more systematic approaches by
providing designers with the means to represent and
manipulate abstractions of goal-oriented activities.

While task modelling and task-based design have long been
considered, their adoption has been limited by the lack of
tools supporting the development, interactive analysis and
use of task models.

This paper discusses what support can be actually useful
for designers and provides a taxonomy useful to compare
tools for task modelling based on the experience
accumulated with the CTTE tool. Some promising future
developments will also be considered.

Keywords: Tools for Task Modelling, Interactive
Simulation, Task Analysis.

INTRODUCTION AND MOTIVATION
One of the most important design principles to obtain
usable interactive systems is “Focus on the users and their
tasks”. Indeed, of the relevant models in the human-
computer interaction field, task models play an important
role because they represent the logical activities that should
support users in reaching their goals. Thus, knowing the
tasks necessary to goal attainment is fundamental to the
design process.

The need for modelling is most acutely felt when the
design aims to support system implementation as well. If
we gave developers only informal representations (such as
scenarios or paper mock-ups), they would have to make
many design decisions on their own, likely without the
necessary background, to obtain a complete interactive
system.

Task models describe the set of tasks supported by an

interactive system and their relationships. Numerous task
model formalisms and methodologies have been developed,
including GOMS [9], UAN [12]; CTT [20], MAD [24],
GTA [27], TKS [28]. However, one of the main problems
in task modelling is that it is a time-consuming, sometimes
discouraging process. To overcome such a limitation,
interest has been increasing in the use of tool support.
Indeed, tools developed for task models have been rather
rudimentary, mainly research tools used only by the groups
that developed them (see for example, Adept [28], IMAD*
[10], DUKAS1). These tools where not mature enough to
be used by other groups (even in research environments)
and offered very limited features for task model analysis.
More systematically engineered tool support is required in
order to ease the development and analysis of task models
and make them acceptable to a large number of designers.
Some of the features needed include task modelling of
cooperative and multi-user applications, which are on the
rise, and the analysis of such models’ contents, which can
be complex in the case of many real applications.

This paper will provide a discussion of a set of
functionalities that can be useful to support the analysis of
task models. This discussion will be based on the
experience garnered with the CTTE tool [16]
(http://giove.cnuce.cnr.it/ctte.html). This tool supports a
number of possibilities: representing concurrent tasks,
cooperative tasks; calculating metrics, highlighting
meaningful features of the task model and allowing
comparison among different task models for the same
interactive system; performing reachability analysis;
interactive simulation of their dynamic behaviour;
identifying relationships among scenarios and task models,
and so on. Particular attention will be paid to those
functionalities most useful to designers and evaluators of
interactive systems.

Another important issue derived from the increasing
availability of many interactive types of platforms (ranging
from cellular phones to large screens) is how task models
can support the design of multi-platform applications

1 http://www.cc.gatech.edu/gvu/user_interfaces/Mastermind/Dukas/index.html

(applications that can be accessed through a variety of
interaction platforms).

More generally, a number of dimensions important for
designers must be considered in any discussion of tools for
task modelling:

?? How task models can be represented;

?? How tools can support the construction of the task
model;

?? What metrics can be useful to analyse the models;

?? Whether and how interactive simulation can be useful
for designers;

?? What other type of interactive analysis can be useful.

These aspects will be carefully considered also with the aid
of a taxonomy useful for comparing task modelling tools
based on experiences with the CTTE tool. Other tools
developed for similar purposes will be positioned in this
taxonomy.

The last part of the paper will be dedicated to discussing
further functionalities that would be helpful in such tools,
thus providing a research agenda for those interested in
these topics.

HOW TASK MODELS CAN BE REPRESENTED
Task models can be represented at various abstraction
levels. When designers want to specify only requirements
regarding how activities should be performed, they
consider only the main high-level tasks. On the other hand,
when designers aim to provide precise design indications
then the activities are represented at a small granularity,
thus including aspects related to the dialogue model of a
user interface (which defines how system and user actions
can be sequenced).

Many proposals have been put forward to represent task
models. Hierarchical task analysis has a long history and is
still sometimes used. The concept of hierarchical
decomposition of activities to describe has shown to be
successful because it allows designers to consider the
various possible abstraction levels while still maintaining a
clear indication of the relationships among them.

More generally, such notations can vary according to
various dimensions:

?? syntax (textual vs graphical), there are notations
that are mainly textual, such as UAN where there
is a textual composition of tasks enhanced with
tables associated with the basic tasks. GOMS is
mainly textual, even if CPM-GOMS has a more
graphical structure because it has been extended
with PERT-charts that highlight the parallel
activities. ConcurTaskTrees and GTA, are mainly
graphical representations aimed at better
highlighting the hierarchical structure. In
ConcurTaskTrees the hierarchical structure is

represented from top to down whereas in GTA it
is from left to right.

?? set of operators for task composition, this is a
point where there are substantial differences
among the proposed notations. While GOMS
supports only sequential tasks (with the exception
of CPM-GOMS that also supports parallel tasks
through the use of PERT-charts), UAN and CTT
provide a much wider set of temporal
relationships. This allows designers to describe
more flexible ways to perform tasks.

?? level of formality, in some cases notations have
been proposed without paying sufficient attention
to defining the meaning of the operators. The
result is that sometimes when task models are
created, it is unclear what is actually being
described. This is because the meaning of many
instances of such composition operators is unclear.

HOW TOOLS CAN SUPPORT THE CONSTRUCTION OF
THE TASK MODEL
Often it is difficult to create a model from scratch. To
overcome this problem various approaches have been
explored. CRITIQUE [14] is a tool that aims to create
KLM/GOMS models from the analysis of logs of user
sessions. The model is created following two types of rules:
the types of KLM operators are identified according to the
type of event, and new levels in the hierarchical structure
are built when users begin working with a new object or
when they change the input to the current object. In this
approach the limitation is that the task model only reflects
the past use of the system and not other potential uses.

U-Tel [26] analyses textual descriptions of the activities to
support and then automatically associates tasks with verbs
and objects with nouns. This approach provides some
useful results, but it is too simple in order to obtain general
results. The developers of ISODE [19] have considered the
success of UML and provide some support to import Use
Cases created by Rational Rose in their tool for task
modelling. This environment also includes TAMOT a tool
for modelling tasks specified with the DIANE+ notation.

In CTTE, to support the initial modelling work we give the
possibility of loading an informal textual description of a
scenario or a use case and interactively selecting the
information of interest for the modelling work. In this way,
the designer can first identify tasks, then create a logical
hierarchical structure and finally complete the task model.
The use of these features is optional: designers can start to
create the model directly using our editor but such features
can be useful to ease the modelling work.

To develop a task model from an informal textual
description, designers first have to identify the different
roles. Then, they can start to analyse the description of the
scenario, trying to identify the main tasks that occur in the
scenario’s description and refer each task to a particular

role. It is possible to specify the category of the task, in
terms of performance allocation. In addition, a description
of the task can be specified and the logical objects used and
handled can be specified. Reviewing the scenario
description, the designer can identify the different tasks and
then adds them to the task list. This must be performed for
each role in the application considered.

When each user’s main tasks in the scenario have been
identified, it might be necessary to make some slight
modifications to the newly defined task list. This allows
designers to avoid task repetition, refine the task names so
as to make them more meaningful, and so on. Once
designers have their list of activities to consider, they can
start to create the hierarchical structure that describes the
various levels of abstractions among tasks. The final
hierarchical structure obtained will be the input for the
main editor that allows the specification of the temporal
relationships and the tasks’ attributes and objects.

Another method supporting the automatic construction of
task models of web sites is described in [18]. This method
is able to take the HTML code of a web site and build the
corresponding task model (or at least a part of it). It first
analyses each page in order to identify the basic tasks
supported, then it analyses the grouping techniques used in
order to identify the corresponding higher level tasks. Next,
it moves on to consider relationships among the Web pages
in order to identify higher level tasks and their
relationships. The result of the automatic reconstruction can
still be edited by the designer for refining and comp leting
the task model.

METRICS FOR TASK MODELS
The structure and the information of a task model can
contain useful information for designers. It becomes
important to identify relevant metrics that help them to
capture such information and use it to analyse design
solutions and compare them.

CTTE supports the identification of a number of metrics for
the analysis of a task model. Such metrics can be used to
compare task models. This can be useful when designers
want to compare how people work in the current system
and how they could work in a new envisioned system or are
interested in comparing the implications at task level of two
alternative designs. Previously no tool has given this
support for task models. CTTE gives some information that
can be helpful for this purpose. To be comparable the two
task models should consider the same roles. The
comparison is performed in terms of number of tasks,
number of basic tasks (the tasks that are no longer
decomposed), allocation of tasks, number of instances of
temporal operators, structure of the task models (number of
levels, maximum number of sibling tasks). This
information can also be given for single task models in
order to analyse them. By comparing this type of
information it is possible to deduce some general feature of
a solution with respect to another one. For example, a

higher number of application tasks and a lower number of
user tasks imply that there is a strong shift towards
allocating task performance to the system, or a higher
number of sequential operators implies that the solution
supports a higher number of modes in its dialogues with the
user.

The tool also supports comparison between models,
designers have to select which part of the task model they
want to compare and then the result of the comparison of
the information associated with that part in the two task
models appears. There is also a possibility of activating the
presentation of the details related to some parameters. For
example, if the details of interaction tasks are selected then
the tool shows the interaction tasks of the selected role that
are in one task model but not in the other and vice versa.

We would rather avoid having the tool provide definitive
interpretations of these results, because they often depend
on the type of application considered, and features that
would characterise a good solution in one application
domain may represent a bad solution in another. On the
other hand, the automatic analysis highlights specific
features of the solutions considered that otherwis e would
have been difficult to identify, especially when large
models of real applications are considered.

In Euterpe [27] designers can specify constraints and
heuristics. Constraints apply to every specification and
should ideally have zero results. Heuristics can be used to
analyse a specification, to find inconsistencies or problems.
In this context examples of heuristics that can be queried on
the specification are: what tasks involve a certain role, what
tasks occur more than a certain number of times, what tasks
have more than a certain number of subtasks, what tasks
have more than a certain number of levels.

INTERACTIVE SIMULATORS
A simulator for task models can be useful to better analyse
the dynamic behaviour of task models including those for
cooperative applications. This feature is particularly
meaningful when the notation used to represent the model
allows the specification of many temporal relationships
among tasks in addition to sequential tasks (such as
disabling tasks, concurrent tasks, suspending tasks, and so
on). This is a support that only a few tools provide (see for
example VTMB [6]). Also in the case of tools for UML [8]
this is a feature usually missing. In addition CTTE gives
the possibility of simulating task models of applications
where the resulting behaviour depends on the interactions
of various users.

When analysing an existent application or designing a new
one it can be rather difficult for the designer to understand
the dynamic behaviour resulting from the temporal
relationships specified in the task model. The reason is that,
especially for real applications, the number of ways in
which the application can evolve is high and it is difficult
to mentally remember the various temporal constraints

among tasks and their possible effects. It becomes
important to support a what-if analysis aiming at
identifying what tasks are logically enabled if one specific
task is performed. To support this analysis of the dynamic
behaviour of task models, interactive simulators can be
helpful. The basic idea is that at any time they show the list
of enabled tasks, according to the constraints specified in
the task model. Before starting the simulation, the tool
automatically checks that the task model is complete and
consistent. When the simulator is started, then the window
on the right displays the list of tasks enabled. Then, the user
can interactively select a task to perform and the simulator
shows what the next enabled tasks are. At any time, it is
possible to go back through the performance of the tasks
which means that the effect of the performance of the last
task are undone and the list of enabled tasks becomes the
same as that previous to the performance of the last task. At
this point, the user can choose to go further backward in the
task sequence or forward, either through the same path or a
different one.

At any time, the designer can also display the specific
sequence of tasks that has been performed in the current
interactive simulation. They appear with an indication of
the role of the user that performs the task. This is a way to
interactively identify an abstract scenario that can be saved
in a file and used to compare different task models. The
tool is able to load a scenario created with another task
model in order to simulate performance of the same
sequence of tasks. If this is not possible, either because a
task is not supported in the other model, or because the
temporal relationships in that task model do not allow such
a sequence, then it means that the scenario is not supported.

More generally, the simulator can be useful in several
cases:

?? Designers can check whether the specified behaviour is
really what they were looking to describe; this is
important because, especially in case of large
specifications, it is difficult to immediately understand
the overall behaviour deriving from the combination of
the hierarchical structure and the temporal operators;

?? It can support a multidisciplinary discussion where
people with different background discuss design
decision at the task level;

?? It can be employed as interactive documentation of an
application to explain to end-users how to use it
(indicating in which order tasks can be performed,
possible choices and other dynamic information).

INTERACTIVE ANALYSIS
We have seen how an interactive simulator can be useful to
analyse the behaviour of an interactive system. However, at
times designers need other tools to analyse the content of a
model. For example, once a model has been built it may not
be immediate to understand how it is possible to reach a
certain task after the performance of another one. To help

designers to easily solve this problem we have added a new
feature in CTTE that allows them to graphically select one
starting task in the model and the desired task to reach. The
tool is able to automatically calculate a sequence of basic
tasks that shows an example of activities that should be
performed to reach the desired goal (if any).

In models describing flexible ways to perform tasks there
may be multiple paths connecting the two selected tasks.
Thus, the tool allows the designer to ask for alternative
solutions in the event that the first one is deemed to be
uninteresting.

Another issue that can be interesting to address for
designers is not only to indicate a starting task and an
arriving task, but also an intermediate task that should be
performed during the path connecting the two extremes.
Figure 1 shows an example where the tool has identified a
sequence of tasks that can be performed between the Switch
On task and the Press No task, with the additional
constraint that the path should include the Enter Number
task. As you can see, the CTTE tool is able to provide one
example of the possible results (if any) and also highlight it
in the graphical representation of the model.

Figure 1: An example of automatic task path identification.

TAXONOMY SUMMARY
Table 1 summarises some features deemed important for
analysis tools of task models and shows how they are
supported by some of the tools developed. It highlights how
CTTE represents a useful contribution to understanding the
possibilities in terms of the analyses that can be performed.
The first row indicates whether the tools are able to
consider concurrent tasks, that is, their analysis is not
limited to sequential tasks. Next, we look at their ability to
analyse cooperative tasks involving multiple users. Then,
we consider whether they are able to calculate some
metrics. We have seen that CTTE is also able to compare
two models with respect to a set of metrics. Euterpe also
supports the calculation of some metrics to analyse a

specification, and help find inconsistencies or problems.
The remaining features considered are the ability to predict
task performance (this is usually supported by tools for
GOMS such as QDGOMS [5]) and interactively simulate
the task model’s dynamic behaviour.

C
T

T
E

E
ut

er
pe

V
T

M
B

Q
D

G
O

M
S

IM
A

D
*

A
de

pt

Concurrent
tasks

XXX XXX XXX XXX XXX

Cooperative
tasks

XXX XXX

Metrics XXX XXX

Reachability XXX

Performance
evaluation

XXX XXX

Simulator XXX XXX

Table 1: Comparison of Tools for Task Modelling

MODEL-BASED USER INTERFACE DESIGN
We have seen that some design features can be analysed
through an inspection of the task model. It is also possible
to create an interactive application in such a way as to
maintain direct correspondence between the task model and
the user interface developed. Tool support for this
transformation is possible. Here it is important to consider
not only the tasks but also the objects that should be
manipulated during their performance [7].

In particular, the temporal relationships among tasks can be
used to structure the dialogues supported by the user
interface, whereas knowing the basic tasks supported by
each presentation (the set of information provided by a user
interface perceivable by the user at a given time) is useful
to select the most suitable presentation and interaction
techniques

Various approaches have been proposed to derive concrete
user interfaces from task models. A number of criteria can
be identified for this purpose. For example:

?? the logical decomposition of tasks can be reflected

in the presentation by explicitly grouping interaction
techniques associated with tasks that share the same
parent task.

?? sequential tasks can be supported in various
modalities such as: separate presentations for each
task rendered at different times; all the interaction
techniques corresponding to the sequential tasks
rendered in the same presentation (this is useful
when the tasks are closely linked either because the

sequence of tasks is performed multiple times
iteratively or because the tasks exchange
information); and lastly, through separate windows
for each task (still active over the same period of
time but which can be iconified if they take up too
much space on the screen).

?? the type of task, the type of objects manipulated and
their cardinality is another useful element. For
example, if we have a selection task then we can
immediately delimit the choice of the corresponding
interaction technique to use to those supporting
selection, in addition we can further limit the
possibility of choice depending on the type of
objects that can be selected, and, finally, if we know
what the data cardinality is we can find only a few
suitable interaction techniques, for example for
choice among low cardinality values we can select a
radio-button.

?? disabling tasks are tasks that interrupt other
activities, in some cases to initiate new activities.
They can be represented in the same manner (for
example buttons with specific graphical attributes)
and located in the same part of the layout (for
example the right bottom part of the screen) for
consistency.

Tools supporting user interface development starting with
models are ADEPT, MOBI-D and Teallach. In Adept [28]
a first set of guidelines was proposed for using task
decomposition to guide the development of interface
designs. They addressed how to reflect task decomposition
in the design, how to use task actions and objects to
determine the components that will actually appear, and the
sequencing of tasks and corresponding dialogues structure.

In Mobi-D [23] the mapping issue is addressed according
to three aspects: a mapping of domain objects with
interactors according to some priorities; style attributes
controlling some graphical and textual attributes; and
strategy preferences indicating the preferred number of
windows, the preferred way to implement sequential
constraints, and the preferred interaction and navigation
modalities.

Another tool has been developed in the Teallach project
[3], where task models are considered and tool support
focuses on the generation of the user interface for database
applications.

MODEL-BASED DESIGN of CONTEXT-DEPENDENT
SYSTEMS
One recent and important design issue is how to address the
design of interactive systems accessible through both
mobile and stationary platforms.

In general, it is important to understand what type of tasks
can actually be performed in each platform. In a multi-
platform application there are various possibilities:

?? Same task on multiple platforms in the same manner
(there could be only a change of attributes of the user
interface objects);

?? Same task on multiple platforms with performance
differences:

o Different domain objects, for example, presenting
information on works of arts can show different
objects depending on the capability of the current
device;

o Different user interface objects, for example, in a
desktop application it is possible to support a choice
among elements graphically represented, whereas
the same choice in a wap phone is supported through
a textual choice;

o Different task decomposition, for example, accessing
a work of art through a desktop can support the
possibility of accessing related information and
further details not supported through a wap phone.

o Different temporal relationships, for example, a
desktop system can support concurrent access to
different pieces of information that could be
accessed only sequentially through a platform with
limited capabilities.

?? Tasks meaningful only on a single platform, for
example, browsing detailed information makes sense
only with a desktop system.

?? Dependencies among tasks performed on different
platforms; for example, during a physical visit to a
museum users can annotate works of art that should be
shown first when they access the museum web site.

A method addressing such problems [21] is composed of a
number of steps that allow designers to start with an overall
envisioned task model of a nomadic application and then
derive concrete and effective user interfaces for multiple
devices:

?? High-level task modelling of a multi-context
application. In this phase designers need to think
about the logical activities that have to be
supported and relationships among them. They
develop a single model that addresses the various
possible contexts of use and are able to indicate
what platforms are suitable for each task.

?? Developing the system task model for the different
platforms considered. Here designers have to filter
the task model according to the target platform.
This involves creating task models in which the
tasks that cannot be supported in a given platform
are removed and the navigational tasks deemed
necessary to interact with the considered platform
are added. Thus, we obtain the system task model
for the platform considered. Such models are
specified using the ConcurTaskTrees notation.

?? From system task model to abstract user interface.
Here the goal is to obtain an abstract description of
the user interface composed of a set of abstract
presentations that are identified with the support of
the enabled task sets and structured by means of
various composition operators that reflect design
principles. Then, still with the help of the task
model, we identify the possible transitions among
the user interface presentations considering the
temporal relationships that the task model
indicates.

?? User interface generation. In this phase we have
the generation of the user interface. This phase is
completely platform-dependent and has to consider
the specific properties of the target device. For
example, if the considered device is a cellular
phone, such information is not sufficient as we also
need to know the type of micro-browser supported
and the number and the types of soft-keys
available.

Another proposal that uses CTT and binary decision trees
to describe task performance in different contexts of use is
described in [22] [25].

TASK MODELS and USABILITY EVALUATION
Task models can also be helpful to perform usability
evaluation. The most straightforward approach is the
GOMS-like approach aiming to predict task performance
on the basis of the knowledge of the time requested by each
type of user interactions, the user and the system response
time and of what actions are necessary to reach the
considered goal [5].

This can be helpful to predict possible performances when
comparing alternative designs. However, often the actual
use of a system can bring up further design issues. Thus,
interest has been increasing about how to use models for
analysing actual user behaviour. WebRemUSINE [18] is an
example of such approaches. It is an environment designed
in order to perform intelligent analysis of Web browser
logs using the information contained in the task model of
the application. It performs an automatic evaluation of a
Web site providing the evaluator with a set of measures,
concerning also group of users, useful to identify usability
problems derived from a lack of correspondence between
how users perform tasks and the system task model.

The inputs for the tool are the task model and the log files
recorded during the test sessions. The environment is
mainly composed of three modules: the ConcurTaskTrees
editor to specify task models in a hierarchical structure
enriched with a number of flexible temporal relationships
among such tasks (concurrency, enabling, disabling,
suspend-resume, order-independence, optionality, …); the
browser logging tool that has been implemented to record
user interactions and that can be easily installed in a Web
site; WebRemUSINE, the java tool able to perform an

analysis of the files generated by the logging tool using the
task model created with the CTTE tool. This approach
supports remote usability evaluation of Web sites.

The evaluation performed provides information concerning
both tasks and Web pages. These results allow the
evaluator to analyse the usability of the Web site from both
viewpoints, for example comparing the time to perform a
task with that for loading the pages involved in such a
performance. WebRemUSINE also shows an analysis of
each log files.

WHAT NEXT?
We have seen how tools for task modelling have improved
in recent years. However, there is always room for further
improvements. Here is a list of issues that can form a
research agenda for those interested in these topics:

Natural modelling, often the initial model is the result of
brainstorming by either one single person or a group.
Usually people start with some paper or whiteboard
sketches. This seems an interesting application area for
intelligent whiteboard systems [15] or augmented reality
techniques able to detect and interpret the sketches and
convert them into a format that can be edited and analysed
by desktop tools.

Cooperative modelling, in some cases there are people who
are located in separate environments (different offices in
the same building, different towns, …) who want to discuss
some issues regarding the model, with the possibility of
highlighting potential problems and indicating possible
solutions. Tools supporting these types of discussions can
be helpful, though it would probably be best if they were
based on some Web technology in order to guarantee
portability and easy access.

Direct manipulation through user interface mappings.
Models are abstract. In particular, they are useful to analyse
potential dynamic behaviours, but often they would be
more immediate if it was possible to map the tasks through
some graphical or tangible representation of the elements
manipulated during the task performance. In this way it
would be possible to obtain a type of rapid prototyping
environment to enable manipulation of the user interface,
the corresponding model and the mappings between the
user interface and task model elements. Changing the
specification of the dynamic behaviour of the model would
determine a change in the dynamic behaviour of the actual
user interface. Pet-Shop [4] offers some of these features,
but there is a need for environments easier to manipulate.

Use of information visualization techniques. In order to
better analyse the content of task models it can be
interesting to explore the use of information visualization
techniques. Other related fields are benefiting from their
application. For example, to aid analysis of the usability
test data gathered, WebQuilt [13] provides filtering
capabilities and semantic zooming, allowing the designer to
understand the test results at the gestalt view of the entire

graph, and then drill down to sub-paths and single pages.
More generally, a promising area is to provide different
interactive representations depending on the abstraction
level of interest, or the aspects that designers want to
analyse or the type of issues that they want to uncover.

Use of innovative non-WIMP techniques. In order to
address the challenges of modern interactive systems with
increasingly powerful applications and complex interfaces,
new interaction techniques have been proposed, such as
tool glasses and marking menus. The purpose is to obtain
Post-WIMP interfaces able to find a better balance between
power and simplicity als o with the support of bi-manual
manipulation. In [1] there is an example of application of
these concepts to Coloured Petri Nets specifications. It
would be interesting to explore their application to task
model specifications as well.

CONCLUSIONS
In recent years interest in tools for task modelling has been
increasing. This has generated the first engineered tools
that are supporting the more widespread adoption of task
models in the design cycle.

In this paper a taxonomy for analysing the features of these
tools has been discussed. Then, the use of task models and
related tools to support design and usability evaluation has
been considered.

Lastly, a research agenda for those interested in this field
has been proposed.
ACKNOWLEDGMENTS
This work has been supported by the CAMELEON IST
R&D project (More information at
http://giove.cnuce.cnr.it/cameleon.html).

I wish to thank Carmen Santoro and Giulio Mori for useful
discussions on the topics of this paper.
REFERENCES
1. Beaudouin-Lafon M., Mackay E., Andersen P., at al.,

CPN/Tools: A Post-WIMP Interface for Editing and
Simulating Coloured Petri Nets. Proceedings ICATPN
2001. pp.71-80, Springer Verlag LNCS N. 2075.

2. Baumeister L., John B., Byrne M., A Comparison of
Tools for Building GOMS Models, Proceedings
CHI’2000, ACM Press, pp.502-509, 2000.

3. Barclay P., Griffiths T., McKirfy J., Paton N., Cooper
R., Kennedy J., The Teallach Tool: Using Models for
Flexible User Interface Design, Proceedings
CADUI’99, pp.139-158, Kluwer Academic Publisher.

4. Bastide, R., Navarre D., Palanque, P., A Model-based
Tool for Interactive Prototyping of Highly Interactive
Applications, Proceedings ACM CHI 2002, Extended
Abstracts, pp.516-517.

5. Beard D., Smith D., Denelsbeck K., Quick and Dirty
GOMS: A Case Study of Computed Tomography,
Human-Computer Interaction, V.11, N.2, pp.157-180,
1996.

6. Biere M., Bomsdorf B., Szwillus G., The Visual Task
Model Bulder, Proceedings CADUI’99, Kluwer
Academic Publisher.

7. Bodart F., Hennerbert A., Leheureux J., Vanderdonckt
J., A Model-based approach to Presentation: A
Continuum from Task Analysis to Prototype, in
Proceedings DSV-IS’94, Springer Verlag, pp.77-94.

8. Booch G., Rumbaugh J., Jacobson I., Unified Modeling
Language Reference Manual, Addison Wesley, 1999

9. Card, S., Moran, T., Newell, A., The Psychology of
Human-Computer Interaction, Lawrence Erlbaum,
Hillsdale, 1983.

10. Gamboa Rodriguez F., Scapin D., Editing MAD* Task
Description for Specifying User Interfaces at both
Semantic and Presentation Levels, Proceedings DSV-
IS’97, pp.193-208, Springer Verlag.

11. Gray, W., John, B., Atwood, M., “Project Ernestine: A
Validation of GOMS for Prediction and Explanation of
Real-World Task Performance”, Human-Computer
Interaction, 8, 3, pp. 207-209, 1992.

12. Hartson R., Gray P., “Temporal Aspects of Tasks in the
User Action Notation”, Human Computer Interaction,
Vol.7, pp.1-45, 1992.

13. Hong J., Heer J., Waterson S., Landay J., ACM
Transactions on Information Systems (TOIS) July 2001,
Volume 19 Issue 3, pp.263-285.

14. Hudson S., John B., Knudsen K., Byrne M., “A Tool for
Creating Predictive Performance Models from User
Interface Demonstrations”, Proceedings UIST’99,
pp.93-102.

15. Landay J. and Myers B., "Sketching Interfaces: Toward
More Human Interface Design." In IEEE Computer,
34(3), March 2001, pp. 56-64

16. Mori G., Paternò F., Santoro C., CTTE: Support for
Developing and Analysing Task Models for Interactive
System Design, to appear in IEEE Transactions in
Software Engineering, September 2002.

17. Paganelli L., Paternò F., Automatic Reconstruction of
the Underlying Interaction Design of Web Applications,
Proceedings Software Engineering and Knowledge
Engineering 2002. ACM Press.

18. Paganelli L., Paternò F, Intelligent Analysis of User
Interactions with Web Applications, Proceedings of
ACM IUI 2002, S. Francisco, pp.111-118, 2002

19. Paris, C., Tarby, J. & Vander Linden, K., (2001). A
Flexible Environment for Building Task Models.
Proceedings of the IHM-HCI 2001, Lille, France.

20. Paternò, F., Model-Based Design and Evaluation of
Interactive Application. Springer Verlag, ISBN 1-
85233-155-0, 1999.

21. Paternò F., Santoro C., One Model, Many Interfaces,
Proceedings CADUI 2002, Kluwer Academics, pp.143-
154.

22. Pribeanu C., Limbourg Q., Vanderdonckt J., Task
Modelling for Context -Sensitive User Interfaces,
Proceedings DSV-IS 2001, Sprinter Verlag, LNCS N.
2220, pp.49-68.

23. Puerta A., Eisenstein J., Towards a General
Computational Framework for Model-based Interface
Development Systems, Proceedings ACM IUI’99,
pp.171-178.

24. Scapin D., Pierret-Golbreich C., Towards a Method for
Task Description: MAD, Work with Display Units (89),
pp. 371-380.

25. Souchon N., Limbourg Q., Vanderdonckt J., Task
Modelling in Multiple Contexts of Use, PreProceedings
of DSV-IS'2002, to appear.

26. Tam, R.C.-M., Maulsby, D., and Puerta, A., “U-TEL: A
Tool for Eliciting User Task Models from Domain
Experts”, Proceedings IUI’98, ACM Press, 1998

27. van Welie M., van der Veer G.C., Eliëns A., “An
Ontology for Task World Models”, Proceedings DSV-
IS’98, pp.57-70, Springer Verlag, 1998.

28. Wilson, S., Johnson, P., Kelly, C., Cunningham, J. and
Markopoulos, P., “Beyond Hacking: A Model-based
Approach to User Interface Design”. Proceedings
HCI’93. pp.40-48, Cambridge University Press, 1993.

.

