

 $\mathbf{C}$ 

Human Centered Multimedia Institute of Computer Science

Universität

# Bringing Social Computing to Ambient Environments: Synergies and Challenges

Elisabeth André Augsburg University, Germany <u>http://hcm-lab.de</u>



### Human-Centered Multimedia

- Founded: April 2001
- Chair: Elisabeth André
- Research Topics:
  - Embodied Conversational Agents
  - Perceptive User Interfaces
  - Affective Computing
  - Interactive Storytelling
- Study Programs
  - BSc/MSc Informatics
  - BSc/MSc Informatics and Multimedia
  - Elite Graduate Program Software Engineering
  - BA Media and Communication



Universität Augsburg







# National and International Projects

- Affective Computing
- humaine emotion-research.net
- Humaine, CALLAS, CEEDS, Ilhaire, TARDIS
- Technology-Enhanced Learning



TRUST

te science of laughte



Universität

- CUBE-G, DynaLearn, eCUTE, e-Circus, TARDIS
- Multimodal Interaction, Behavior Analysis
  - IRIS, OC Trust, CEEDS, TARDIS
- <u>E-Health</u>
   Metabo
- Smart Energy
   IT4SE



### Motivation

### Mutual Gains and Benefits

#### AMI environments:

- unobtrusive sensors that let us collect subtle behavioral cues under naturalistic conditions
- usually focus on context and user activity data
- reasoning mechanisms
- typically mobile environments

#### Social Signal Processing:

- techniques for analyzing and interpreting behavioral cues and linking them onto higher-level psychological concepts, such as emotions and personality
- focus on psychological user states
- typically desktop environments







Universität Augsburg



## Conscious vs. Unconscious Interaction



### Conscious Interaction:

- Open interaction with a system where a user intentionally inputs discrete commands to explicitly express his needs
- Example: Language, Pointing ...

### Unconscious Interaction:

- Continuous (often nonverbal) behavior the user does not voluntarily control, but which may be interpreted as the implicit expression of a particular need
- Example: non-acted facial expressions and body postures

#### Role of Context:

 Both in the case of conscious and unconscious interaction, ambiguities need to be resolved by context modeling



### Outline of the Talk



- Examples of unconscious behaviors in human-machine interaction
- Unconsciously expressed social and emotional behaviors
- Problems with traditional machine learning approaches and potential solution strategies
- Agenda for future research



Distinction between Conscious and Unconscious Signals



- We got rid of the Push-to-Talk?
- But what about ...

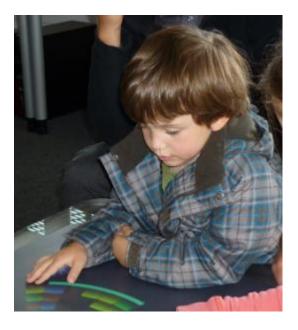


# Distinction between Conscious and Unconscious Signals



#### Push-to-Touch?

#### Push-to-Gesture?





Does the boy rest his right arm on the table or conduct a command gesture? Is the left user just raising his hands (out of desperation) or conducting a command gesture?



## Unconscious and Conscious Interaction



#### Home Entertainment System

- Distinction between command and no-command gestures (for example, greeting gestures)
- Distinction between conscious (command) and unconscious signals (for example, scratching one's head)
- Automatically interrupts presentation when the users' interest is diverted.





### Unconscious Gaze-Based Interaction



 Agents adapt presentation implicitly to the user's attention as inferred from his or her eye gaze



Michael Nischt, Helmut Prendinger, Elisabeth André, Mitsuru Ishizuka: MPML3D: A Reactive Framework for the Multimodal Presentation Markup Language. IVA 2006: 218-229





#### Human-like Conversation:

- Participants interacting with the gaze-based agents felt that the agents were aware of them
- Participants interacting with "blind" agents thought that the agents react to them in a strange way

#### Midas Touch Problem:

- interface should not react to each change of fixation
- risk of "overdoing" attentiveness
- User starts to adopt unnatural gaze behaviors



## Implicit Prediction of User Preferences from Gaze

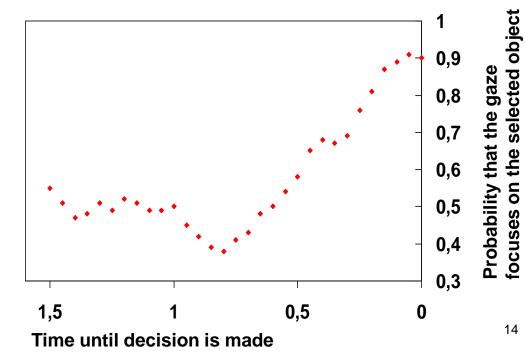


#### Question:

- Is it possible to predict based on the user's gaze behavior which one of two objects he or she prefers?
- Shimojo & Simion (CALTECH) analyzed gaze behaviors 1.5 s before a selection (by pressing a button) was made.

#### Gaze Cascade Effect:

 Probability that the user focuses on the preferred object increases continuously





## Implicit Prediction of User Preferences from Gaze



- Transfer of this work on the selection of ties
- In 81% of the cases, the preferred tie was correctly predicted.
- Better results for similar than for different ties.





Very different ties

Similar ties

Nikolaus Bee, Helmut Prendinger, Arturo Nakasone, Elisabeth André, Mitsuru Ishizuka: AutoSelect: What You Want Is What You Get: Real-Time Processing of Visual Attention and Affect. PIT 2006: 40-52

# Exploit Unconscious Signals to Optimize Data Exploration



- Users are projected into data spaces while their body suit monitors their coupling with this experience
- Exploit implicit sources of information (gaze, gestures, posture, EEG)
- Linking multiple users together to create a collective discovery system

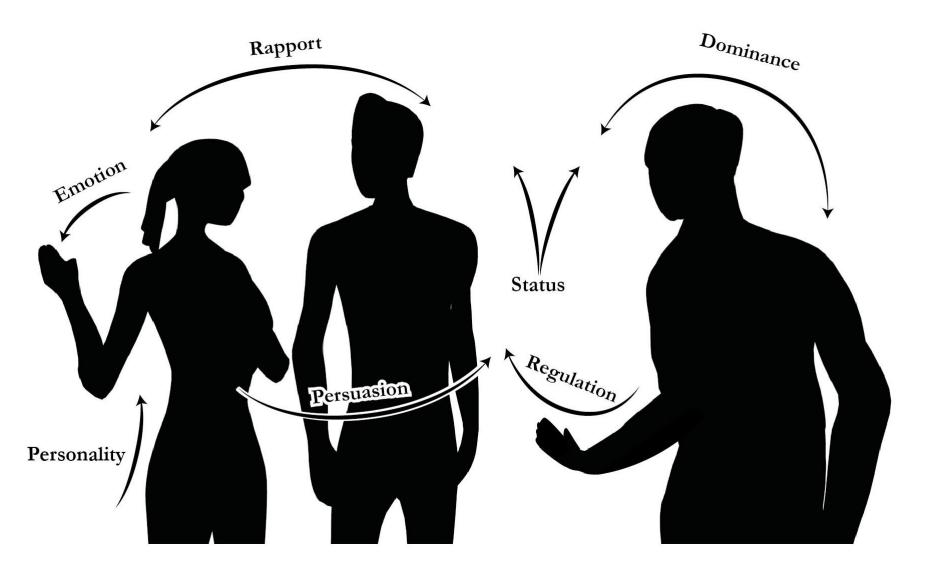






## Conscious and Unconscious Signals in Human Dialogue







# Why to Care about Social Skills of Machines?



- Traum and colleagues:
  - Many breakdowns in man-machine communication could be avoided if the machine was sensitive to the user's emotions.

#### Aist and colleagues:

 Emotional scaffolding leads to a more persistent learning performance.

#### Prendinger and colleagues:

 An empathetic system led to a more positive physiological response.

#### Bosma and André:

- Physiological data (heart rate, skin conductance etc.) are significantly correlated to the level of commitment
- → Resolve ambiguities in feedback signals, such as "ok"



## Challenges of Social Signal Interpretation



- Ambiguities of social cues
- Variations in social cues are quite high
  - Situation-specific
  - User-specific
  - ...
- Social cues may be suppressed or faked
- Even more challenges in AMI environments due to the highly unpredictable situations

## Analysis of Social Signals

- Kinds of psychological and conversational states
  - <u>Emotions</u> from
    - Facial expressions (Zeng et al. 2009)
    - Gestures (Caridakis et al. 2006)
    - Speech (Vogt et al. 2008)
    - Physiological measurements (Kim & André 2008)
  - Interest (Schuller et al. 2009)
  - Engagement (Nakano & Ishii 2012)
  - <u>Trust</u> (Bee et al. 2011)
  - Personality (Pianesi et al. 2008)
  - <u>Rapport</u> (Gratch et al. 2006)
- <u>SSPNet</u> FP7 Network of Excellence on Social Signal Processing











## Analysis of Social Signals in Small Groups



- Speech activity and fidgeting, i.e. amount of movement in a person's hands and body, to detect <u>functional roles</u> in a group (Dong et al. 2007)
- Overlapping speech, video cues, such as motion energy and audiovisual cues, such as the amount of movement during speech, to determine the <u>level of group cohesion</u> in meetings (Hung and Gatica 2010)
- Recognition of social laughter as an indicator of <u>emotional</u> <u>contagion</u> (Wagner et al. 2012)

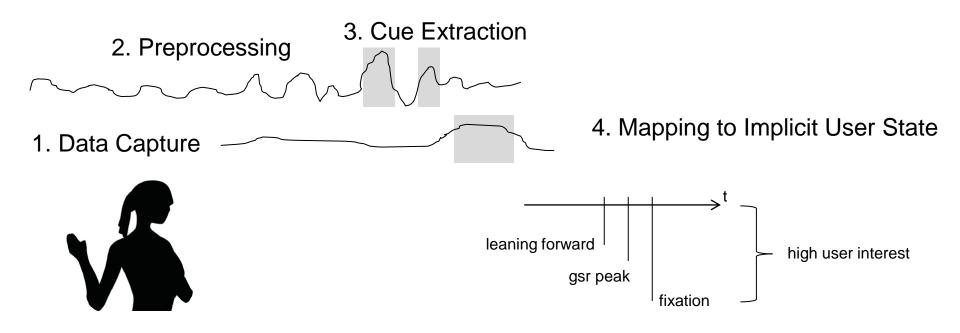




From Raw Sensor Data to Implicit User States ...



 Integrating work on <u>Embedded Computing</u> (University of Pisa, De Rossi) and <u>Social Signal Processing</u> (Augsburg University)

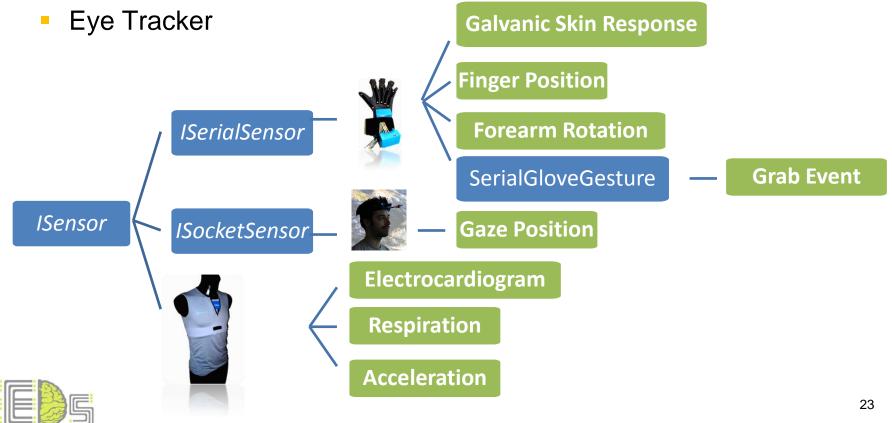






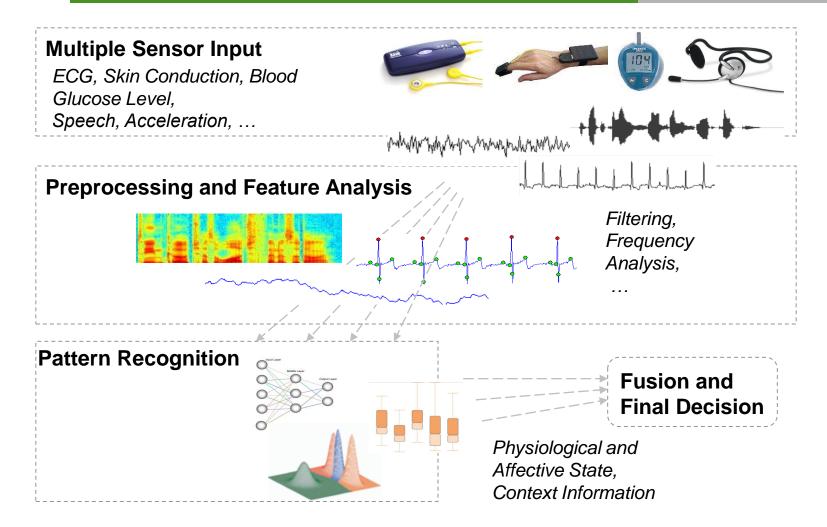
# Sensor Devices from University of Pisa

- Universität Augsburg University
- Integration of sensor devices into the SSI framework in order to provide a coherent platform for sensing and processing raw signals
  - Smartex T-Shirt
  - Data Glove



## Social Signal Interpretation: SSI by Augsburg University





SSI is freely available under: http://www.openssi.net

# Why traditional ML does not work in AMI environments



- Social cue recognition performance is overestimated
  - Most recognition systems are trained and tested on corpora that contain fixed segments with acted prototypical cues
  - Often only cues that have been labeled equally by a majority of annotators are used for classification.
- Requirements for realistic applications
  - We have to cope with non-prototypical user data.
  - Cues have to be processed frame by frame as being produced by the user.

# TENTIA EL COM

# Why traditional ML does not work in AMI environments

#### Universität Augsburg University

### Previous approaches

- Segmentation-based
- Offline
- Classifier trained on prototypical data
- Focus on acted data

### Requirements for AMI

- Framewise
- Online
- Classifier trained on all data (prototypical and nonprototypical)
- Focus on spontaneous data



# Why we need to train classifiers from spontaneous data



#### Ekman's Basic Emotions:

Anger, Disgust, Fear, Happiness, Sadness, Surprise

### Application-oriented Emotions:

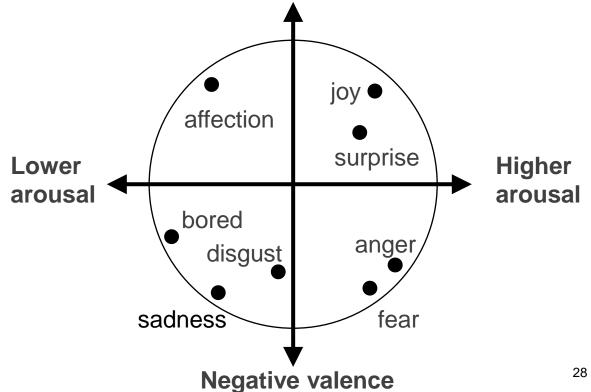
- Call Centers: Anger
- Meetings: Engagement, Approval, Disapproval
- Dialog Systems: Confidence, Confusion, Frustration, Baby Talk, Politeness, Interest
- Driver Assistance Systems: Stress
- Smart Home: Emotions do not only depend on the application, but on the user's general situation, e.g. stress with partner, tiredness due to sickness etc.



## Strategy to Cope with Unpredictable Emotional States

### Strategy:

- train a limited set of emotion classes based on pleasure and arousal in a dimensional emotion model
- which should then subsume the actually expressed emotions
   Positive valence at runtime



Universität Augsburg



# Recognition of Emotions from Spontaneous Speech



- Corpus of TU Berlin
  - Acted speech of 10 professional actors
  - **Recognition rates:** about 80 % for a 7-class problem (BERLIN)

**Joy:** In 7 Stunden wird es soweit sein. **4 Anger:** In 7 hours, it will happen.



# Recognition of Emotions from Spontaneous Speech



### SmartKom Korpus of LMU

- Spontaneous speech of ca. 80 users, approx. equal gender distribution
- Wizard-of-Oz setting
- Partly emotional speech as sometimes malfunction of system was simulated
- Recognition Rates: 26% for 7 emotions



Irritation: Ich möchte' ne Email schreiben. Email – nicht Telephon. Ok? Email. I would like to write an email. Email – not telephone. Ok? Email.

**Joy:** Ja, bitte. Ich möchte telephonisch reservieren. Yes, please. I would like to make a reservation by phone.



## Recognition of Emotions from Spontaneous Speech

- <u>AIBO Corpus of Friedrich-Alexander-Universität</u> <u>Erlangen</u>
  - Spontaneous speech of ca. 50 children between 10 and 13 years old
  - Recognition Rates: ca. 60% for four emotions

- **Joy:** Nein, Aibo, Du sollst nach links gehen. No, Aibo, you have to go to the left.
- Irritation: Aibo, Du sollst aufstehen. Aibo, you have to get up.



Universität





# Why we need to train classifiers from spontaneous data



- Accuracy for acted speech quite high
  - about 80 % for a 7-class problem (BERLIN)
- Classification of natural emotions only usable for a smaller number of classes
  - about 60 % for a 4-class problem (AIBO)
  - about 50 % for a 3-class problem (SMARTKOM)
- Feature reduction less important for natural emotions
- We cannot learn best segment length and best features for natural emotions from acted emotions



### Laughter Recognition



#### Task:

explore features that are suitable to detect laughter in continuous speech

### Challenge:

 Laughter consists of many distinctive sounds: evident, inaudible, song-like, grunt-like etc. many of which resemble speech (Bachorowski, Smoski and Owren)

### Corpus Used for Classifier Training:

- Emotionally colored conversations from SEMAINE corpus
- Additional YOUTUBE laughter sessions







 Most studies achieve > 90 %, however, no distinction between different kinds of laughter

|            | Cai et al.     | Konx &<br>Mirghafori | Felkin <i>,</i> Terrien<br>& Thorisson | Guirguis,<br>Wagner,<br>Lingenfelser &<br>André |
|------------|----------------|----------------------|----------------------------------------|-------------------------------------------------|
| Classifier | HMM            | SVM<br>MLP           | C4.5                                   | SVM                                             |
| Window     | 1.5 s          | ~2 s                 | 2.5 s                                  | 1 s                                             |
| Dataset    | TV<br>Programs | ICSI Meetings        | Own<br>Recordings                      | Semaine,<br>Youtube<br>Videos                   |
| Accuracy   | ~ 90 %         | 92 %<br>~ 96 %       | 89.5 %                                 | 91,2 %                                          |



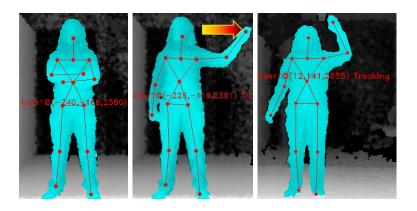


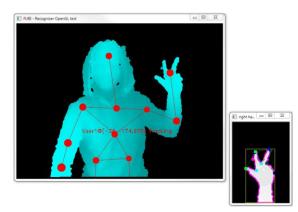
### **Higher Level Processing**



#### Kinect Gesture Recognition FUBI

- recognition of full body gestures and postures
- large set of pre-defined recognizers
- own recognizers can be defined in XML
- finger recognition







# Declarative Specification of Gestures



## XML Definition

<PostureCombinationRecognizer name="Waving">

> <Recognizer name="rightHandRight"/> <State maxDuration="1.2" minDuration="0.05" timeForTransition="0.4"/>

<Recognizer name="rightHandLeft"/> <State maxDuration="1.2" minDuration="0.05" timeForTransition="0.4"/>

</PostureCombinationRecognizer>

# Gesture





# Signals and their Interpretation in Social Interactions



Example: Level of Engagement

|           | Movement Quality                    | Specific body movements                                                                                       |  |
|-----------|-------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Speaking  |                                     |                                                                                                               |  |
| High      | high overall activity               | orientation of the body and the face towards the interlocutor                                                 |  |
| Low       | low overall activity orientation of | orientation of the body and the face away from the interlocutor                                               |  |
| Listening |                                     |                                                                                                               |  |
| High      | low overall activity                | orientation of the body and the face towards the interlocutor, head tilt, touch chin without bracing the head |  |
| Low       | high overall activity               | orientation of the body and the face away from the interlocutor, touch chin while fully bracing the head      |  |





# Signals and their Interpretation in Social Interactions



#### Example: Level of Engagement

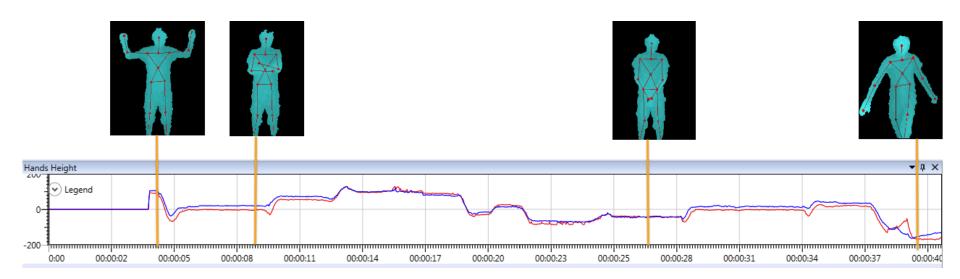




Frame-by-Frame Analysis of Bodily Behaviors



Example: Analysis of the hands' height in relation to the torso and to each other



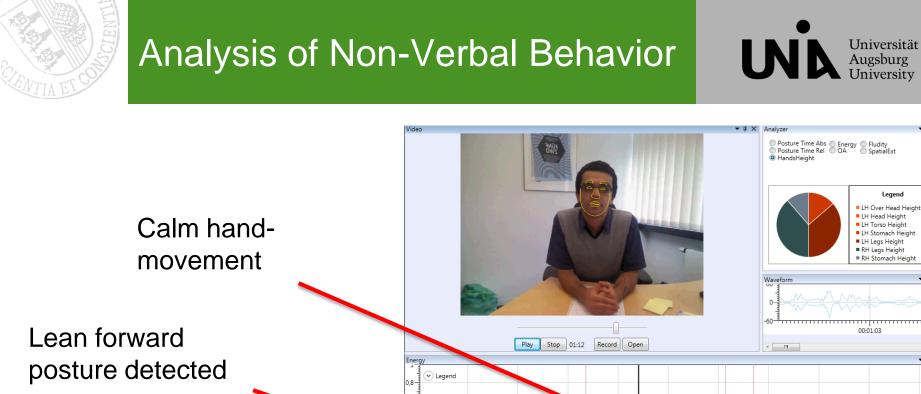


# An

# Analysis of Non-Verbal Behavior







Hands together, visualized in the graph

▼ џ × 00:01:09 00:01:12 00:01:14 00:01:17 00:01:20 00:01:23 00:01:26 00:01:29 • 4 × Legen 00:01:14 00:01:20 00:01:06 00:01:09 00.0 00:01:17 00:01:23 00:01:26 00:01:29 00:01:03

**Increased Interest** 

▼ џ × |

• џ ×

Legend



# Analysis of Non-Verbal Behavior









# Multi-Modal Social Signals

- Emotions are generally expressed through multiple modalities
- Emotions can be illustrated by a combination of vocal behavior, facial expressions, gestures and postures
- Humans base and refine their classifications of observed affective states on more than one modality machines that try to recognize emotions should do so too



# **Experimental Comparison**



Evaluation of fusion schemes on two Italian emotion corpora

#### DaFEx Corpus acted and exaggerated

#### CALLAS Corpus non-acted and natural









# Results for Various Fusion Mechanisms



|                           | DaFEx |         |      |           |         |      |          |         | CALLAS   |         |          |         |
|---------------------------|-------|---------|------|-----------|---------|------|----------|---------|----------|---------|----------|---------|
|                           | anger | disgust | fear | happiness | neutral | sad  | surprise | average | positive | neutral | negative | average |
| Single Modalities         |       |         |      |           |         |      |          |         |          |         |          |         |
| Audio                     | 0.39  | 0.32    | 0.43 | 0.21      | 0.86    | 0.67 | 0.25     | 0.45    | 0.59     | 0.64    | 0.61     | 0.61    |
| Video                     | 0.57  | 0.34    | 0.11 | 0.82      | 0.72    | 0.59 | 0.22     | 0.48    | 0.60     | 0.50    | 0.48     | 0.53    |
| Feature Level Fusion      |       |         |      |           |         |      |          |         |          |         |          |         |
| FeatureFusion             | 0.54  | 0.36    | 0.36 | 0.79      | 0.77    | 0.70 | 0.26     | 0.54    | 0.57     | 0.59    | 0.62     | 0.59    |
| Decision Level Fusion     |       |         |      |           |         |      |          |         |          |         |          |         |
| W eighted Majority Voting | 0.57  | 0.34    | 0.11 | 0.82      | 0.72    | 0.59 | 0.22     | 0.48    | 0.59     | 0.64    | 0.61     | 0.61    |
| BKS                       | 0.53  | 0.45    | 0.30 | 0.84      | 0.85    | 0.51 | 0.35     | 0.55    | 0.62     | 0.62    | 0.56     | 0.60    |
| MaxRule                   | 0.48  | 0.31    | 0.22 | 0.80      | 0.84    | 0.69 | 0.16     | 0.50    | 0.62     | 0.55    | 0.64     | 0.60    |
| ${f MinRule}$             | 0.44  | 0.39    | 0.41 | 0.44      | 0.73    | 0.59 | 0.39     | 0.48    | 0.56     | 0.61    | 0.55     | 0.57    |
| MeanRule                  | 0.52  | 0.38    | 0.36 | 0.79      | 0.78    | 0.71 | 0.26     | 0.54    | 0.59     | 0.58    | 0.59     | 0.59    |
| $\mathbf{SumRule}$        | 0.52  | 0.38    | 0.36 | 0.79      | 0.78    | 0.71 | 0.26     | 0.54    | 0.59     | 0.58    | 0.59     | 0.59    |
| ${f Weighted}{f Average}$ | 0.58  | 0.41    | 0.28 | 0.83      | 0.77    | 0.66 | 0.23     | 0.54    | 0.61     | 0.58    | 0.58     | 0.59    |
| $\mathbf{ProductRule}$    | 0.50  | 0.39    | 0.38 | 0.79      | 0.77    | 0.70 | 0.27     | 0.54    | 0.59     | 0.58    | 0.59     | 0.59    |
| ${f DecisionTemplate}$    | 0.51  | 0.41    | 0.30 | 0.67      | 0.81    | 0.61 | 0.22     | 0.50    | 0.57     | 0.60    | 0.59     | 0.59    |
| ${f DempsterShafer}$      | 0.48  | 0.41    | 0.31 | 0.67      | 0.81    | 0.59 | 0.25     | 0.50    | 0.56     | 0.62    | 0.59     | 0.59    |
| CascadingSpecialists      | 0.35  | 0.38    | 0.44 | 0.53      | 0.90    | 0.66 | 0.27     | 0.50    | 0.60     | 0.63    | 0.61     | 0.61    |
| Meta Level Fusion         |       |         |      |           |         |      |          |         |          |         |          |         |
| StackedGeneralisation     | 0.53  | 0.40    | 0.39 | 0.72      | 0.74    | 0.61 | 0.28     | 0.52    | 0.59     | 0.57    | 0.64     | 0.60    |
| Grading                   | 0.60  | 0.44    | 0.18 | 0.80      | 0.89    | 0.64 | 0.23     | 0.54    | 0.67     | 0.50    | 0.49     | 0.55    |
| Hybrid Fusion             |       |         |      |           |         |      |          |         |          |         |          |         |
| OneVersusRest             | 0.53  | 0.34    | 0.36 | 0.83      | 0.79    | 0.71 | 0.25     | 0.55    | 0.59     | 0.59    | 0.60     | 0.59    |
| OneVersusRest-Specialists | 0.59  | 0.31    | 0.40 | 0.82      | 0.76    | 0.70 | 0.21     | 0.54    | 0.60     | 0.58    | 0.63     | 0.60    |

Florian Lingenfelser, Johannes Wagner, Elisabeth André: A systematic discussion of fusion techniques for multi-modal affect recognition tasks. ICMI 2011: 19-26



#### Observations

NR Universität Augsburg University

 Enhanced results only on the acted DaFEx corpus (acted emotions seem to lead to more consistent modalities)

|   |                   | $\operatorname{DaFEx}$ |         |      |           |         |      |          |         |          | CALLAS  |          |         |  |
|---|-------------------|------------------------|---------|------|-----------|---------|------|----------|---------|----------|---------|----------|---------|--|
|   |                   | anger                  | disgust | fear | happiness | neutral | sad  | surprise | average | positive | neutral | negative | average |  |
|   | Single Modalities |                        |         |      |           |         |      |          |         |          |         |          |         |  |
|   | Audio             | 0.39                   | 0.32    | 0.43 | 0.21      | 0.86    | 0.67 | 0.25     | 0.45    | 0.59     | 0.64    | 0.61     | 0.61    |  |
|   | Video             | 0.57                   | 0.34    | 0.11 | 0.82      | 0.72    | 0.59 | 0.22     | 0.48    | 0.60     | 0.50    | 0.48     | 0.53    |  |
| • | Feature Level     | Fusi                   | on: s   | tabl | e and     | straig  | htfc | orward   | d, acce | eptabl   | le res  | ults     |         |  |

 FeatureFusion
 0.54
 0.36
 0.36
 0.79
 0.77
 0.70
 0.26
 0.54
 0.57
 0.59
 0.62
 0.59

Decision Level Fusion: impression of interchangeability

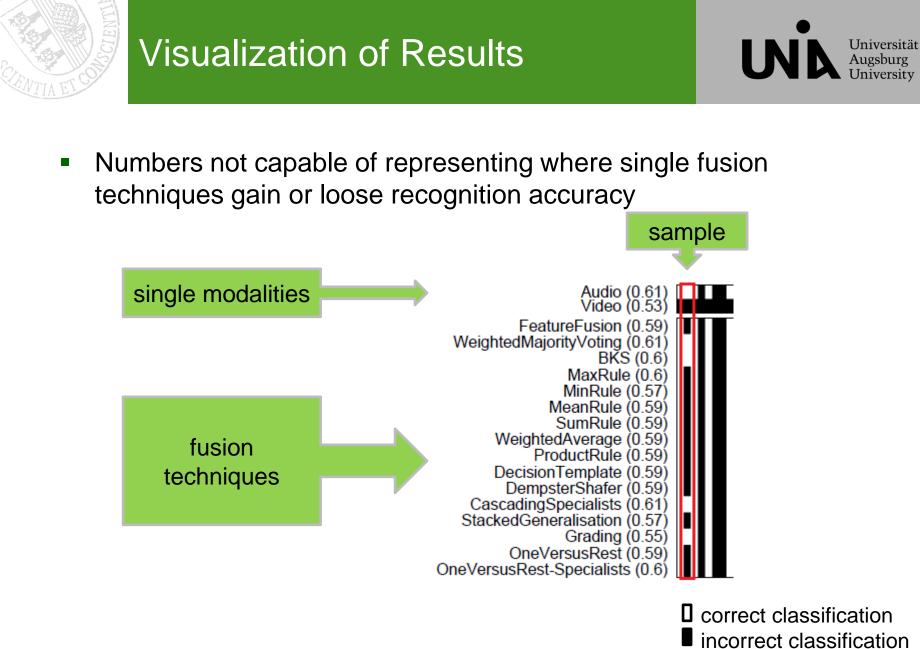
| ${f MeanRule}$         | 0.52 | 0.38 | 0.36 | 0.79 | 0.78 | 0.71 | 0.26 | 0.54 | 0.59 | 0.58 | 0.59 | 0.59 |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| ${f SumRule}$          | 0.52 | 0.38 | 0.36 | 0.79 | 0.78 | 0.71 | 0.26 | 0.54 | 0.59 | 0.58 | 0.59 | 0.59 |
| WeightedAverage        | 0.58 | 0.41 | 0.28 | 0.83 | 0.77 | 0.66 | 0.23 | 0.54 | 0.61 | 0.58 | 0.58 | 0.59 |
| $\mathbf{ProductRule}$ | 0.50 | 0.39 | 0.38 | 0.79 | 0.77 | 0.70 | 0.27 | 0.54 | 0.59 | 0.58 | 0.59 | 0.59 |

Specialist selection fails if parameterization fails (user-independent evaluation)

CascadingSpecialists 0.35 0.38 0.44 0.53 0.90 0.66 0.27 0.50 0.60 0.63 0.61 0.61

 Hybrid Fusion: more complex than simple feature fusion, but slightly better results

OneVersusRest 0.53 0.34 0.36 0.83 0.79 0.71 0.25 0.55 0.59 0.59 0.60 0.59



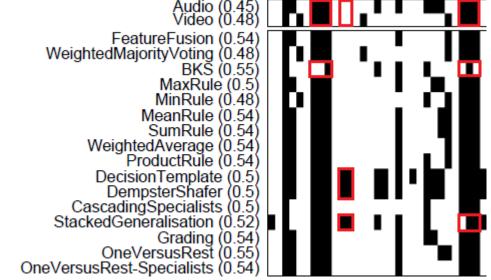
 $\Rightarrow$  We need to consider context information!



# Error Learning

Universität Augsburg University

 Error Learning (Meta Fusion Schemes, BKS, Decision Template, Dempster Shafer)



 despite wrong predictions in both modalities, correct prediction possible

#### BUT ALSO

incorrect fusion result despite correct predictions by single modalities

# CIENTIA ET CO

## Discussion

Universität Augsburg University

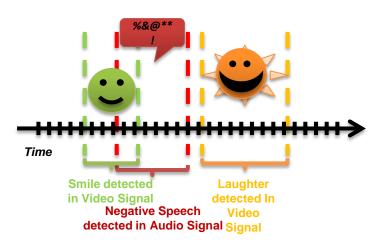
#### Hypothesis:

- Segmentation Problem
- Analysis of further modalities is triggered by spoken sentences in the vocal modality – meaningful information in other modalities is assumed, but not guaranteed

#### Possible solution:

- Reject assumption "all relevant events happen at the same time in all modalities"
- Separate treatment of events in different modalities
- Incorporate temporal component

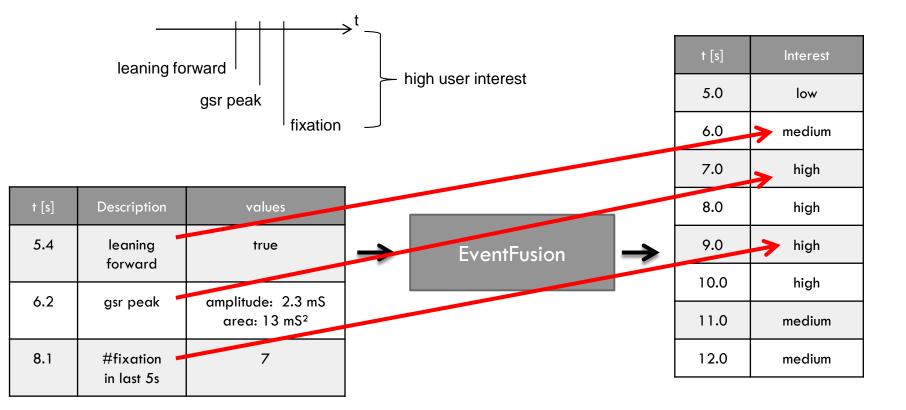






#### **Event-Based Fusion**







### Conclusions



- Social and emotional sensitivity may provide an added value to many AMI applications.
- Bringing Social Signal Processing to AMI leads to new requirements:
  - Frame-by-frame analysis instead of segment-based analysis
  - Online analysis (while the users are interacting) instead of offline analysis
  - Classifiers need to provide acceptable results for ALL data (prototypical and non-prototypical)
- Social and emotional signals are particularly difficult to interpret requiring to understand and model the causes and consequences of them.
- Realizing social and emotional intelligence requires a fully integrated loop consisting of perception, reasoning, learning and responding.
- $\Rightarrow$  Exploit context sensing and reasoning technologies from AMI



# **Future Priorities**



- Multisensory fusion
  - Integrating sensing technology in natural open environments
    - Distinguishing between command and no-command signals
       → get rid of push-to-command interfaces
  - Exploit information on context and psychological user states
    - to improve personalization
    - to increase robustness
- Fully integrated loop consisting of perception, reasoning, learning and responding → symbiotic human-machine interaction



# **Future Priorities**



- Affective User Models
  - Focusing on unconscious signals to create and maintain
    - Rapport
    - Engagement
    - Common ground
    - User experience
  - Mechanisms to cope with uncertainties
  - Models of cognition
  - Long-term user modeling



## Thanks to



