
 A Logical Framework for Multi-Device User Interfaces 
 

Fabio Paternò, Carmen Santoro 
CNR-ISTI, HIIS Laboratory 

Via G. Moruzzi 1, 56124 Pisa 
 Italy 

{fabio.paterno, carmen.santoro}@isti.cnr.it 
 

ABSTRACT 
In this paper, we present a framework for describing 
various design dimensions that can help in better 
understanding the features provided by tools and 
applications for multi-device environments. We indicate 
the possible options for each dimension, and also discuss 
how various research proposals in the area are located in 
our framework. The final discussion also points out 
important areas for future research. 

Keywords: Multi-device User Interfaces; Logical 
Framework; Distributed and Migratory User Interfaces. 

ACM Classification Keywords 
H.5 Information Interfaces and Presentation; 
H.5.2 User Interfaces  

General Terms: Design, Human Factors. 

INTRODUCTION 
Nowadays, it is extremely common to see users performing 
their tasks using various devices ranging from the 
traditional stationary desktop platform to mobile devices 
with various multimodal interaction resources. However, 
by now, users’ expectations have not yet been adequately 
fulfilled. Often all this technological offering is not 
exploited as it could be, and when users perform cross-
device service access they encounter various usability 
issues: poor adaptation to the context of use, lack of 
coordination among tasks performed through different 
devices, inadequate support for seamless cross-device task 
performance. For example, one potential source of 
frustration for users is the inability to continue to perform 
their tasks when they have to move about and change the 
interaction device. In such cases, users either have to 
manually perform some activity in the first device in order 
to save the up-to-date interaction state and then reconstruct 
it afterwards on the new device, or, in the worst case, they 
have to start their activities over again from scratch when 
moving to the second device. A study reported in [4] aimed 
to achieve a better understanding of why and how people 
use multiple devices in their everyday life. The authors 

found out that users already employ a variety of techniques 
for accessing and managing information across devices. 
However, there is still room for improvements, especially 
from the user experience viewpoint: participants in the 
study reported that managing information across devices is 
the most challenging aspect of using multiple devices. To 
this end, various approaches are possible. In distributed 
User Interfaces (UIs) we have solutions that allow users to 
exploit user interfaces distributed across multiple devices at 
a given time to access their applications. In migratory UIs 
users can change device and still access the application 
with some level of continuity, which means that at least 
some parts of the original user interface preserve their state 
after changing device. More generally, it is important to 
reach a better understanding of how we can design tools 
and applications exploiting multi-device UIs, which is the 
main goal of the framework that we propose. 

In this paper, after discussing some relevant work in the 
area, we first suggest a logical framework in order to 
describe the range of possibilities that multi-device UIs 
offer, by identifying ten dimensions that have been judged 
relevant for such systems based on our analysis of the state 
of art and experience in designing multi-device 
environments. Then, we summarise the main points of the 
framework by also providing a table supporting an analysis 
of some proposals in this field. Finally, we conclude with 
some summary remarks and indications for areas that are 
currently underexplored and need more research work. 

STATE OF THE ART 
The recombinant computing approach [7] has been 
proposed and investigated to facilitate users in exploiting 
multiple technologies in a composite manner (rather than in 
isolation). On the one hand, the approach does not require 
the involved components to have mutual awareness, but on 
the other hand the components have to specify how they 
exchange information (thus, they need to have a 
recombinant implementation). A recent study [17] aimed to 
investigate the key elements that characterise the User 
eXperience (UX) when users exploit Web-based 
applications through different computing platforms (mainly 
desktop and mobile devices). This study also identified an 
initial framework for cross-platform service UX, in which 
the central elements include i)fit for cross-contextual 
activities (the structure of the application across different 
devices matches the user’s activity, leading to an effective 
fit for tasks in different contexts), ii)flow of interactions 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
EICS’12, June 25–26, 2012, Copenhagen, Denmark. 
Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00. 

45



and content (the transitions across the devices are 
experienced as fluid and connected), and iii)perceived 
service coherence (the application and its components are 
perceived as consistent and coherent, as part of the same 
service). In our paper we aim to provide a more structured 
framework, which is also able to highlight the main 
technical issues in multi-device User Interfaces (UIs). 

Demeure et al. [5] have investigated distributed user 
interfaces (DUIs). The introduced reference framework 
defines four possible dimensions for the distribution: what 
is distributed, who is distributing it, when, from/to where. 
According to the authors, the framework does not consider 
the collaboration among users since this dimension is 
assumed to be “a natural extension” of DUI when several 
users are involved in the distribution. Some analogies can 
be found between that framework [5] and ours: the 
computation dimension, which introduces the notion of 
splittability, defines which parts of the interface can be 
distributed and is similar to our “granularity”; coordination 
is related to the “trigger activation type”; communication 
corresponds to “UI generation phase”. However, the main 
difference with our proposal is that our framework 
addresses multi-device UIs in more general terms 
(including also e.g. as resulting from migration) and is not 
limited to DUIs. 

A problem space for UI plasticity is proposed in [3]. The 
problem space is defined by a few dimensions and an 
interactive system is modelled as a graph of models that 
can be dynamically manipulated by, and/or encapsulated as 
services. Their approach to this problem is to bring 
together MDE (Model Driven Engineering) and SOA 
(Service Oriented Approach). In our case, we provide a 
more detailed set of dimensions in which the tool support 
for multi-device environments can also be analysed, and 
we do not limit our analysis to model-based approaches. 

Myngle [15] is a support that facilitates device change (e.g. 
desktop to mobile) in Web navigation. It provides an easy 
way to revisit content previously accessed, by providing a 
unified web history from multiple personal devices, and 
allowing users to filter their history based on high-level 
categories. Since it is proposed as a browser extension 
(Firefox, Chrome) and as a native application for a few 
mobile platforms, thus it lacks portability. Also, it cannot 
support access to resources (e.g. session cookies, 
JavaScript variables, …) that are not usually mapped in the 
URL. 

Multi-device applications are important in many domains. 
In [9] the authors investigated how to improve learnability 
in ubiquitous systems (e.g. multi-device museum guides). 
Authors claim that one design principle to promote the 
learnability of such systems is to improve their UI 
consistency. They  identified three types of consistency, in 
order to better address the issues of multi-device, multi-
user contexts: i)within-device consistency, which occurs 
when the UI design is consistent with the design of 
previous applications developed for a specific mobile 

device; ii)across-device consistency: it occurs when the UI 
design is consistent with the design developed on other 
mobile devices; iii)within-context consistency:  when 
consistency is applied to the context, including aspects that 
are not strictly connected with the devices. For instance, a 
museum is a social, informal context in which interactive 
learning is supported: therefore, the user interface should 
reflect these characteristics to some extent. To this goal, the 
authors have compared three different  interaction styles 
(gamepad controller emulation, mobile multi-touch, and 
Wii-based emulation) and they concluded that the within-
device consistency generally gives better results for 
museum applications (these results can be also generalised 
to other similar ubiquitous contexts). 

Previous work by the research community has coped with 
multi-device access to applications. Olsen et al. [13] 
studied techniques to combine multiple clients working on 
the same task, and have introduced the concepts of “Join” 
and “Capture”. Join refers to collaborations with other 
users, whose clients can subscribe to data associated to a 
particular task; clients are promptly notified whenever data 
change. Capture consists of assembly of interactive 
resources to address specific problems, for instance by 
exploiting different modalities, with the aim to improve 
interaction. The authors claim that their integrated 
approach of multi-client interaction and multi-user 
collaboration is able to provide synchronization among 
tasks. This aspect is related in some way to the migration 
dimension of our framework. However, the paper does not 
consider a scenario where multiple users, independently 
from their physical position, share application interfaces. 
The authors also state that, although the multiple devices 
involved share the same network and are integrated in the 
same task, they are not aware of each other.  

In general, we found a variety of research contributions in 
the area of multi-device user interfaces, and we cannot 
mention all of them. However, despite the increasing 
interest on this topic, when designers and developers want 
to support users in accessing applications (or parts of them) 
through various devices, they have often difficulties in 
identifying the possibilities and aspects that should be 
considered. The main goal of our framework is to provide a 
set of dimensions that allow users, designers, and 
developers to analyse the possibilities of tools and 
applications accessed in multi-device environments. This is 
useful both in the design of new multi-device environments 
and in the evaluation of existing ones. 

A LOGICAL FRAMEWORK FOR MULTI-DEVICE UIs 
A number of factors enable the analysis, design and 
comparison of multi-device user interfaces.  Such factors 
have been identified by analysing related work in the area, 
emerging applications, and carrying out research in tools 
for supporting multi-device environments.  

There are many ways to support multi-device applications. 
They range from accessing them through different devices 
at different times (one device at each time), to situations in 

46



which users access multiple devices at the same time 
through a UI that dynamically changes its distribution 
across them. Other cases could occur when the user 
changes the interaction device and the user interface 
supports (or not) the possibility to preserve the interaction 
state. Thus, with this framework we want to systematically 
analyse the various possible situations in which cross-
platform access can be performed. These dimensions are 
described in the following subsections in which we 
consider various types of multi-device UIs. A solution can 
assume just one value in each dimension (when 
applicable). We have not identified  particular 
dependencies between dimensions and the range of the 
possible values is specified for each framework dimension. 

UI Distribution 
This aspect analyses whether the solution considered is 
able to support the distribution of the user interface 
elements across various devices at a given time. We have 
distributed UIs when the UI elements of a given application 
are distributed across more than one device. In such 
distribution some elements can be even duplicated. 
Therefore, since at each time there are (at least) two 
devices involved in the rendering of the UI, UI distribution  
implies the existence of some coordination across the 
involved interactive devices supporting the access to the 
application logic by exploiting input/output from/to the 
various devices involved in the distribution. An example is 
when people access large screens to see large amount of 
information and use a mobile device to enter some queries. 
As for the range of values, the distribution can be dynamic 
(when the user interface elements can vary their allocation 
to the devices during a user session) or static (when the 
distribution configuration cannot change during a session). 

An approach for dynamic distribution of UIs at run-time is 
discussed in [1], where the authors highlight the 
availability of diverse devices that characterise smart 
networked environments. Among the potentialities of 
distributed user interfaces in such contexts, there is the 
possibility for the user to enhance the interaction, for 
instance by increasing the communication bandwidth. 

Although not mentioned explicitly as distribution, an early 
example of interface splitting among several devices was 
also tackled in [12]: Pebbles SlideShow Commander 
allowed users to control a PowerPoint presentation running 
on a laptop through a handheld with wireless connection. 
Multibrowsing [10] is an example of dynamic UI 
distribution, as it enables users to move existing pages 
among multiple displays.   

UI Migration 
This dimension analyses whether there is some continuity 
when users change device and still access the same 
application. Users should be enabled to change the current 
device in use (the source device) and then have available 
the application on a different device (the target device) 
while the system automatically preserves the interaction 
state reached with the first device and offers an adapted UI 

on the new device. It is worth pointing out that distributed 
UIs and migratory UIs are two independent concepts: there 
may exist distributed UIs which are also able to migrate, 
but we can also have only distributed user interfaces 
(which do not migrate at all), or migratory UIs that are not 
distributed across multiple devices. In addition, multi-
device UIs are different from distributed UIs: the latter is 
just an example, a particular case of the former. The range 
of values for this dimension is represented by the elements 
whose state can be preserved and transferred from one 
device to another: UI elements, functions, history, 
bookmarks, etc. However, it is worth noting that the state 
of the interactive application that can be captured/preserved 
depends on the implementation environment considered. 
For example, in Web applications it can include the state of 
forms, JavaScript variables, cookies, sessions, history, 
bookmarks, etc. An example of this is [8], which supports 
state persistence of web application in terms of state of 
HTML forms, session cookies, and JavaScript variables. 
Other types of applications (e.g. those supported by cloud 
computing) are able to preserve the state of only server-
side information, others do not provide any support at all to 
UI continuity.  

According to [17] continuity is considered to depend on 
how well the system supports cross-platform transitions, 
task migration and synchronization. An automatic solution 
for migrating UIs and preserving their state has recently 
been presented [2]. This approach, called Deep Shot, 
allows the migration of a user interface (or parts of it) by 
simply “shooting” it with a mobile phone camera. The 
authors claim that Deep Shot is compatible even with 
applications that are not Web-based. One limitation of this 
tool is that extra work is needed by developers to enable 
deep shooting/posting within an existing application.  

UI Granularity 
In this case we consider the granularity of the user interface 
that is manipulated (through e.g. distribution or migration) 
across various devices. As for the range of values we have:  

 entire UI: the UI is seen as a single monolithic item, 
which can be e.g. moved/copied between devices; 

 groups of UI elements: in this case we consider the 
possibility of e.g. distributing structured parts of user 
interfaces (e.g. navigation bars, articulated content areas 
with text and images, …) across various devices; 

 single UI elements: in this case, single UI elements are 
distributed across devices; 

 components of UI elements: interactive elements, 
which are usually characterised by prompt, input, and 
feedback are distributed across devices. For example, the 
user enters an input through a mobile device and the 
resulting feedback is shown on a large screen. 

Some levels of granularity were addressed in [8], where a 
platform for totally/partially migrating Web pages across 

47



devices is described. Various levels of granularity were 
also addressed in [11] to support UI distribution. 

Trigger Activation Type 
This dimension analyses how the request for a change in 
the cross-device user interface is triggered. This change 
could then activate e.g. a migration or a (re-)distribution of 
the UI. The simplest case is user-initiated: the user actively 
selects when, to which device and what should be changed. 
With automatic trigger the system autonomously activates 
the change when it recognises the verification of suitable 
contextual conditions (e.g. in case of a high battery 
consumption level and a simultaneous user’s proximity to 
another device). Therefore, the system might decide that a 
device change is appropriate and then select the new device 
to be used. This type of automatic trigger can be related to 
the work on implicit human-computer interaction driven by 
the context discussed in [14], in which the system acts 
proactively on the basis of context information. Another 
option is a mixed type of trigger activation (partially 
suggested automatically and partially determined by the 
user): the system first automatically suggests a change to 
the user who is still able to modify some parameters in the 
request. In the case of the user-generated trigger we further 
distinguish between push and pull modalities depending on 
whether the triggered migration is from the local device to 
a remote one or vice versa. Therefore, the range of values 
is: user (which can be further decomposed into push/pull 
modality), system, and mixed.  

In [8] both user (push and pull) and automatic migration 
triggering are available.  

Device Sharing between Multiple Users 
Multi-user interaction raises a wide variety of issues and 
possible solutions. Our framework is focused on support 
for multi-device environments. Thus, here we want to 
consider only the cases in which there are various devices 
and some of them can be shared by multiple users. This can 
happen either because the same device is targeted by the 
user interfaces of their applications (an example could be 
when two users use the same large display as a target for a 
migration from their mobile devices) or different users 
access the same interface on the same device (e.g. when 
two or more users exploit the same wall-sized interactive 
screen by using their own devices).  

The multi-user/device framework discussed in [6] and the 
related scenarios explicitly consider the situation of several 
users concurrently accessing the same UI on a public 
display. Sharing implies that the supporting environment is 
able to indicate what the shareable devices are, whether 
there is any conflict in their use, and provide some 
information regarding their state. Thus, the possible levels 
of sharing considered are: multiple users can move 
information on that device (sharing by moving), or can 
even interact with that device (sharing by interacting). 

Timing 
Here the aspect considered is the time when a device 
change should occur in a multi-device configuration. An 
example typical case is a migration that has to be carried 
out as soon as the migration trigger is sent from the source 
device (immediate effect) in order to achieve seamless 
continuity. Another case covers the possibility for the user 
to specify the time when to defer the change in the multi-
device configuration (deferred effect). This could be useful 
when the target device is temporarily unavailable to the 
user, hence the effect will be delayed until a more 
appropriate time. In this case the support should enable 
users to specify the device to be used as target, even if it 
could be temporarily unavailable in the current 
environment. The deferring time is implicitly managed in 
Deep Shot [2], which allows launching on a different 
device an application with a previously captured work 
whenever the user needs it. Myngle [15] could also be seen 
as an example of system that handles this possibility, since 
it lets the user choose when to restore the previous state of 
a Web application on a different device. Thus, the range of 
values for this dimension includes: immediate, deferred,  
and mixed (when both the previous ones are possible). 

Interaction Modalities Involved 
This dimension analyses the modalities involved in the 
multi-device UI. There are three possible values. Mono-
modality means that the devices involved in the cross-
device access support the same, (single), interaction 
modality. Trans-modality means that different devices can 
support different modalities, but any device supports only 
one modality at a given time. Multi-modality occurs when 
the multi-device interface simultaneously supports two or 
more interaction modalities in one (at least) of the devices 
involved. Various modalities have been considered in the 
dynamic interactors distribution proposed in [1], where the 
authors assume that each device category available in a 
smart environment has specific interaction resources (IRs). 
The approach is based on distribution of UI interactors 
among available IRs (devices). Distribution is performed 
automatically according to context information and 
developer/user settings. In their work, the authors refer to 
multi-modality as the combined use of multiple modalities 
within a (distributed) UI. However, they do not report on 
supporting more than one modality within the same device. 

UI Generation Phase 
This dimension specifies the phase when the user interface 
is obtained so as to be rendered on the target device(s). On 
the one hand, in the design-time case the UI is built in 
advance for each type of device, and then at run-time only 
the state has to be updated, in case of migration.  On the 
other hand, the run-time  case covers the situation where a 
run-time engine dynamically generates the user interface, 
according to the features of the target device. Also an 
intermediate approach (mixed case) is still possible where 
the supporting engine dynamically generates the user 
interfaces for the different devices by exploiting some 

48



logical descriptions which have been created at design 
time. Therefore, we have three possible values. 

The aspects related to the design time are discussed in [16], 
which presents Dygimes, a testbed for model-based UI 
development. Networked cooperating devices potentially 
offer a set of interaction resources to the mobile user. The 
authors distinguish between static and dynamic approaches 
for UI distribution, i.e. for distributing interaction resources 
(IRs) among UI components. The static approach would 
require knowing at development time the runtime context 
peculiarities, which is rather difficult since it implies to 
know which IRs are available in the environment and to 
which IR every part of a UI will be distributed. The 
dynamic approach allocates at runtime UI components to 
IRs, either automatically by the system or manually upon 
user request. The authors propose a possible solution 
describing the UI using a model-based approach. Different 
models are used to create descriptions at development time, 
while the actual UIs are generated at runtime starting from 
the models. 

UI Adaptation Aspects 
When changing the device(s) currently used, user interface 
adaptation is usually required. The adaptation process can 
have an impact at various granularity levels: either the 
entire application is changed depending on the new 
context, or just some logical UI parts (presentation, 
navigation, content) or even single UI components are 
adapted. There is also the case that no adaptation is 
provided, often generating low usability results.  

By adaptation at the presentation level we mean, for 
example, the possibility to change the presentation layout. 
There are various ways to adapt the presentation ranging 
from simple scaling to applying information visualization 
techniques (e.g. semantic zooming, fisheye, …). 
Navigation refers to the connections among the different 
presentations: for example, when the number of 
presentations increases or decreases then the connections 
between them will be adapted accordingly. Content 
adaptation refers to when some information is removed, 
added, or modified (e.g. summarised) in order to produce a 
more usable UI depending on the resources of the device. 
One proposal [8] concerns a platform for partial migration 
of Web UIs with adaptation capabilities particularly useful 
when Web pages are migrated towards small devices: 
pictures are scaled, content can be split into several 
presentations, interaction components can be replaced by 
more suitable ones. 

We identify three main approaches to adaptation: Scaling, 
in which the user interface is just linearly scaled according 
to the interaction resources of the available device, as it 
happens with Safari on IPhone; Transducing, an approach 
preserving the initial structure while translating the 
elements into other formats, and compressing/converting 
images to match device characteristics; Transforming goes 
further to modify both contents and structures originally 
designed for desktop systems to make them suitable to 

display on small screens. The multi-user/device framework 
previously cited [6] also tackles UI adaptation: 
transformation modules convert information into different 
representations (e.g. visual to audio) according to user’s 
preferences. Transformations rely on previously defined 
annotations specifying how to convert resources at runtime. 

Architecture 
Two different strategies can be considered with regard to 
the architecture of a possible platform supporting a multi-
device environment: client/server, in which there is an 
intelligent unit managing all requests and sending all data 
to target devices, thus controlling the user interface 
allocated across various devices; peer-to-peer, where the 
devices directly communicate and negotiate the distribution 
parameters.  Within this type of coarse-grained distinction, 
it is still possible to identify more refined approaches for 
managing some phases, one of this being the interaction 
state preservation (when supported). For example, with a 
client-side approach we have some (client-side) 
mechanisms such as plug-ins or scripts that gather the 
interaction state data on the client and then send the 
collected data to the migration engine for further 
processing. With a server-side approach there is a server 
which is able to gather requests from the client side and 
consequently stores the relevant information. However, the 
choice between client/server and peer-to-peer may be 
driven by other aspects of the platform. For instance, if UI 
adaptation features are included in the platform, then the 
server support is highly desirable, since the computational 
effort needed to transform/generate the target interface 
might be too huge for a mobile device.  

The migration platform described in [8] is based on a 
server which creates logical description of the source UI, 
adapts it to the target device capabilities and generates on-
the-fly a specific implementation. The cross-device 
infrastructure of DeepShot [2] also relies on an instant 
messaging protocol which is server-based, even the devices 
involved in migration are usually co-located. On the 
contrary, a peer-to-peer strategy could offer more 
flexibility. For example, a set of devices equipped with 
peer-to-peer clients in the same network that do not rely on 
an external Web server could exchange information 
locally. This simplified architecture also leads to lower 
communication latencies between devices. An example of 
peer-to-peer implementation for distributed user interfaces 
is in [11], which requires the use of a specific development 
toolkit in order to benefit from this feature. 

DISCUSSION and CONCLUSIONS 
Table 1 provides a concrete example of how our logical 
framework can be used to analyse various proposals. For 
sake of brevity and lack of space we only consider a small 
set of tools.  

The table shows that there are various points in the 
framework that are partially covered by most proposals and 
can be the topic for new research work. For example, there 
is a lack of solutions able to exploit peer-to-peer 

49



communication among sets of devices that are 
opportunistically accessed. Another part that has received 
limited attention, also for its complexity, is the ability to 
preserve the state of UI functionalities in migration. 

Aspect\Tool Web 
Migration 
[8] 

DeepShot 
[2] 

Myngle 
[15] 

Peer-to-
peer DUIS 
[11] 

Dygimes 
[16] 

Multimodal 
distribution  

 [1] 

Distribution Not 
Supported 

Not 
Supported 

Not 
Applicable 

Dynamic Dynamic Dynamic 

Migration UI 
elements / 
functions 

UI 
elements 

Web 
history  

UI 
elements 

Not 
Applicable

UI elements 

Granularity Entire UI / 
Groups  

Entire UI / 
Groups 

Entire UI Entire UI / 
Groups /  

Entire UI / 
Groups /  

Entire UI / 
Groups /  

Trigger User / 
Automatic  

User  Automatic  User Automatic Automatic  

Sharing Move 
informat. 

Not 
supported  

Not 
supported  

Move 
informat. 

Not 
applicable 

Not applicable 

Timing  Immediate Mixed Mixed Immediate Immediate Immediate 

Modalities Transmod. Monomod. Monomod. Monomod. Monomod. Multimodal 

Generation Run-time Mixed  Runtime Runtime Mixed  Mixed 

Adaptation Transduc./
Transf. 

Scaling Scaling Transduc. Transduc./
Transf. 

Transducing/ 

Transfor. 

Architecture Client/Serv Client/Serv
. 

Client/Serv Peer-peer Client/Serv
. 

Client/Serv. 

Table 1: Example Application of the Logical Framework 

Another topic that deserves further study regards users’ 
attitudes towards multi-device UIs when the context is 
shared with other users, and while performing tasks with 
privacy concerns. This is a research direction that we also 
plan to further investigate in the future. In addition, the 
support of richer set of interaction modalities and their 
various combinations seem an area that needs to be better 
explored also considering the recent technological 
improvements for modalities such as voice and gesture.  

To conclude, we can say that despite the increasing number 
of research proposals in the area of multi-device UIs, there 
is still need for further solutions able to address the parts of 
the logical space proposed that are still underexplored, such 
as the support for multimodal distributed user interfaces  or 
peer-to-peer architectures for migration of Web 
applications. 

ACKNOWLEDGMENTS 
This work has been partly supported by the SMARCOS 
Project, http://www.smarcos-project.eu/ 

REFERENCES 
1. Blumendorf, M., Roscher, D., and Albayrak, S. Dynamic User 

Interface Distribution for Flexible Multimodal Interaction, in 
Proceedings of ICMI-MLMI’10, Acm New York, 2010. 

2. Chang, T.H., and Li, Y. Deep Shot: A Framework for 
Migrating Tasks Across Devices Using Mobile Phone 

Cameras, in Proceedings of CHI 2011, ACM Press, 2011, 
2163-2172. 

3. Coutaz J., Balme L., Alvaro, X., Calvary, G., Demeure, A., 
Sottet, J.: An MDE-SOA Approach to Support Plastic User 
Interfaces in Ambient Spaces. HCI (6) 2007: 63-72. 

4. Dearman, D., and Pierce, J. It’s on my other Computer!: 
Computing with Multiple Devices, in Proceedings of CHI ‘08, 
ACM Press, 2008, 767-776. 

5. Demeure, A., Sottet, J.-S., Calvary, G., Coutaz, J., Ganneau, 
V., and Vanderdonckt, J. The 4C Reference Model for 
Distributed User Interfaces, in Proceedings of ICAS '08, 
IEEE, 2008, 61-69. 

6. Ding, Y., and Huber, J. Designing multi-user multi-device 
systems: an architecture for multi-browsing applications, in 
Proceedings of MUM '08, ACM Press, 2008, 8-14. 

7. Edwards W. K., Newman M. W., Sedivy J. Z., Smith T. F. 
Experiences with recombinant computing: Exploring ad hoc 
interoperability in evolving digital networks. ACM Trans. 
Comput.-Hum. Interact. 16(1): (2009) 

8. Ghiani, G., Paternò, F., and Santoro, C.  Push and Pull of Web 
User Interfaces in Multi-Device Environments, to appear in 
Proceedings AVI 2012, Capri, 2012, ACM. 

9. Jimenez Pazmino, P., and Lyons, L. An exploratory study of 
input modalities for mobile devices used with museum 
exhibits, in Proceedings of CHI 2011, ACM Press, 2011, 895-
904. 

10. Johanson, B., Ponnekanti, S., Sengupta, C. and Fox, A. 
Multibrowsing: Moving Web Content across Multiple 
Displays, in Proceedings of Ubicomp 2001, Springer-Verlag, 
2001, LNCS 2201, 346-353. 

11. Melchior, J., Grolaux, D., Vanderdonckt, J., and Van Roy, P. 
A toolkit for peer-to-peer distributed user interfaces: concepts, 
implementation, and applications, in Proceedings of EICS 
2009, ACM, 2009, 69-78. 

12. Myers, B.A. Using handhelds and PCs together, 
Communications of the ACM, 44 (11), 2001, 34-41. 

13. Olsen, D.R., Nielsen, S.T., and Parslow, D. Join and Capture: 
a Model for Nomadic Interaction, in Proceedings of UIST '01, 
ACM, 2001, 131-140. 

14. Schmidt, A. Implicit Human Computer Interaction Through 
Context. Personal and Ubiquitous Computing 4(2/3), 2000, 
191-199. 

15. Sohn, T., Li, F.C.Y., Battestini, A., Setlur, V., Mori, K.,  and 
Horii, H.  Myngle: unifying and filtering web content for 
unplanned access between multiple personal devices,  
Proceedings UbiComp 2011, ACM, 257-266. 

16. Vandervelpen, C., and Conix, K. Towards Model-Based 
Design Support for Distributed User Interfaces, in 
Proceedings of NordiCHI 2004, ACM, 2004, 61-70. 

17. Wäljas, M., Segerståhl, K., Väänänen-Vainio-Mattila, K., and 
Oinas-Kukkonen, H. Cross-Platform Service User Experience: 
A Field Study and an Initial Framework, Proceedings of 
MobileHCI 2010 (Lisboa, Portugal, September 2010), ACM 
Press 219-228. 

50




